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Abstract

Over the last few decades, controller performance assessment has become one of the most

active research areas in process control community. Though most algorithms are based on

minimum variance control (MVC) benchmark, other methods, with consideration of time

varying dynamics, disturbances, model plant mismatch etc., are gaining ground as more

realistic benchmarks for advanced control monitoring. This thesis focuses on the controller

performance assessment under disturbance effects. Linear matrix inequalities (LMIs) and

covariance analysis methods are used as main mathematical tools for solving problems.

First, the controller performance of a class of linear processes is investigated under linear

time invariant (LTI) control subject to linear time varying (LTV) disturbances, abbreviated

as the LTVD problem. The structured closed-loop response is introduced to formulate the

performance limit problem and performance assessment problem. The problems are solved

for both SISO and MIMO processes by using LMI techniques. The regular, weighted and

generalized LTVD benchmarks are derived respectively with distinct objective functions

which result in different control performance in dealing with different disturbances.

A more general framework based on the structured closed-loop response is proposed

for performance assessment subject to a pre-specified variance/covariance upper bound

constraint. Its feasibility equivalence is derived with covariance control methods, giving

rise to a full or reduced order solutions accordingly. An optional optimization strategy is

presented for a practical solution by minimizing the gap between the resultant structured

closed-loop response and the existing one in the sense of H∞ norm.

A higher level performance assessment for model predictive control (MPC) applications

is studied with the consideration of disturbance effects. Both variability and constraint

are taken into account for economic benefit potential. They are utilized as two tuning



knobs to improve economic performance. The variance performance is shown to be readily

transformed to the economic performance. A systematic approach is given to evaluate

the performance of existing MPC applications, which includes variance and economic

performance assessment, sensitivity analysis and tuning guidelines.

Finally, a practical framework for industrial implementation is suggested. The software

package developed in this thesis is plant-oriented with standard DCS interfaces and is

readily applied to process industries.



Acknowledgements

The work of this thesis was done with great challenge and wonderful learning experience.

I am grateful to my supervisor, Dr. Biao Huang, for giving me this great opportunity

to participate in the collaborative work with process industry. He is so impressive on

his excellent encouraging supervision with patience, his enthusiastic deep insights into

practical problems with academic viewpoint, and his never-ending stream of energy with

positive inspirations. All of these would be definitely influencing on me during the last few

years and for the years to come.

I am fortunate to have joined the CPC group for the dynamic and active academic

atmosphere under the directions of top professors and researchers. I would like to express

my gratitude to Dr. Biao Huang, Dr. Sirish Shah, Dr. Fraser Forbes, Dr. Tongwen Chen,

Dr. Scott Meadows and Dr. Mani Bhushan for their excellent teaching in the graduate

courses, enlightening advice, organizing academic and other activities.

The conducive discussions also came from Dr. Liqian Zhang, Dr. Kwan Ho Lee, Dr.

Weihua Li, Dr. Baocang Ding, Dr. Lisheng Hu and Dr. Shankar Narasimhan in my

research work or course studies. I am grateful to them for their kindness and generosity.

A special gratitude would be given to Dr. Liqian Zhang for her continuous encouragement

and constructive suggestions. I would like to appreciate Dr. Kwan Ho Lee and Nikhil

Agarwal for their collaborative work on the improvement of the PATS software package.

Seyi Akande was supportive in the pilot experiment and deserves my appreciation. I will

always cherish the friendship with Feng Tao, Nancy Su, Xiaohui Zhang, Edward Bai, Sien

Lu, Xin Nie, Olaleye Folake, Xin Huang, Zhengang Han, Ruoyu Cheng, Salim Ahmed,

AKM Monjur Murshed, Rumana Sharmin, Vinay Kariwala, Shanshan Liu, Yutong Qi,

Xiaorui Wang, Adrian Matias Fuxman and many other CPC group members. They make



the life eventful, enjoyable and unforgettable. I wish them all the best in the future.

The work reported here was mainly conducted with so many collaborators from process

industries. The very pleasant cooperation has not only ensured the successful industrial

implementation, but also brought me an excellent opportunity in connection with the real

process industry to gain practical experience. Great thanks would be owed to Aris Espejo

and Daniel Brown for their leadership and surveillance. A special thank is given to Edgar

Tamayo for his generous help and truly friendship. Besides, I would also acknowledge

Ahmed Hanafi, Colin Ulliac, Frank Gardar, Rajeev Varma, Sheila Hale, Jim Don and many

other people in Syncrude Canada Limited. Without their assistance from practical industry,

the PATS implementation would never be so successful.

The financial support from the National Science and Engineering Research Council

of Canada, Syncrude Canada Limited and Canadian Foundation for Innovation Award

is gratefully acknowledged. In addition, I would like to express my gratitude to the

Department of Chemical and Materials Engineering and University of Alberta for the

facilities and resources in supporting my research studies.

Finally, I would like to thank my wife and my parents for their greatest love, continuous

support, encouragement and understanding for so many years.



Contents

1 Introduction 1
1.1 An overview of controller performance monitoring . . . . . . . . . . . . . 1
1.2 A class of linear time-varying processes . . . . . . . . . . . . . . . . . . . 4
1.3 Output covariance upper bound problem . . . . . . . . . . . . . . . . . . . 5
1.4 Performance monitoring of MPC applications . . . . . . . . . . . . . . . . 6
1.5 Linear matrix inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Performance Monitoring of SISO Systems with LTV Disturbances 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Revisit of SISO controller performance assessment . . . . . . . . . . . . . 14
2.3 Formulation of the improved Type-C benchmark . . . . . . . . . . . . . . 16

2.3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Performance limit problem . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Performance assessment problem . . . . . . . . . . . . . . . . . . 20

2.4 Computation of the improved Type-C benchmark . . . . . . . . . . . . . . 21
2.4.1 SIMO formulation of SISO LTV problem . . . . . . . . . . . . . . 21
2.4.2 Optimization formulation . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Solution via LMI . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Algorithms for performance limit and performance assessment problems . . 28
2.5.1 Algorithm for performance limit problem . . . . . . . . . . . . . . 28
2.5.2 Algorithm for performance assessment problem . . . . . . . . . . . 29

2.6 Simulation and industrial examples . . . . . . . . . . . . . . . . . . . . . . 30
2.6.1 Simulation example . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.2 Industrial example . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



3 Performance Assessment of MIMO Systems with LTV Disturbances 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Revisit of multivariate controller performance assessment . . . . . . . . . . 40

3.2.1 Interactor matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 FCOR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 The LTVD benchmarks for MIMO processes . . . . . . . . . . . . . . . . 43
3.3.1 Performance limit problem . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Performance assessment problem . . . . . . . . . . . . . . . . . . 45

3.4 Solutions to the LTVD benchmarks . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Performance limit calculation . . . . . . . . . . . . . . . . . . . . 50
3.5.2 Performance assessment calculation . . . . . . . . . . . . . . . . . 51

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Covariance Analysis Approach to Control Performance Assessment 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Single-input single-output systems . . . . . . . . . . . . . . . . . . 59
4.2.2 Multi-input multi-output systems . . . . . . . . . . . . . . . . . . 60
4.2.3 Controller performance estimation . . . . . . . . . . . . . . . . . . 62

4.3 Framework for structured closed-loop response design . . . . . . . . . . . 62
4.4 Solutions to the feasibility problems . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Feasible solutions via full order synthesis . . . . . . . . . . . . . . 64
4.4.2 Feasible solutions via reduced order synthesis . . . . . . . . . . . . 66

4.5 Selection of LR(q−1) structure and optimization strategies . . . . . . . . . 68
4.5.1 Selection of LR(q−1) structure . . . . . . . . . . . . . . . . . . . . 68
4.5.2 Selection of optimization strategies . . . . . . . . . . . . . . . . . 70
4.5.3 Discussion of time delay mismatch . . . . . . . . . . . . . . . . . 72

4.6 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6.1 A dry process rotary cement kiln . . . . . . . . . . . . . . . . . . . 74
4.6.2 A sulphur recovery unit process . . . . . . . . . . . . . . . . . . . 76

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Performance assessment of model predictive control for variability and
constraint tuning 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



5.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.1 Benefit potential analysis . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 Tuning guidelines to achieve the target benefit potential . . . . . . . 90

5.3 Solution to the optimization problems . . . . . . . . . . . . . . . . . . . . 92
5.3.1 Calculation of standard deviations of the input variables due to the

variability change of the output variables . . . . . . . . . . . . . . 92
5.3.2 Reformulation of the economic objective function . . . . . . . . . . 95

5.4 A systematic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.1 Economic performance assessment . . . . . . . . . . . . . . . . . 97
5.4.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.3 Tuning guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.1 Simulation example . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Multi-tank experiment . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 APC Performance Monitoring: Industrial Practice and Application 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Algorithms for APC performance assessment . . . . . . . . . . . . . . . . 111

6.2.1 FCOR algorithm for multivariate controller performance assessment 111
6.2.2 MPC economic performance assessment and tuning guidelines . . . 112

6.3 Industrial APC performance monitoring framework . . . . . . . . . . . . . 115
6.3.1 Implementation background . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 A plant-oriented solution for APC performance monitoring . . . . . 117

6.4 Process description and data collection . . . . . . . . . . . . . . . . . . . . 118
6.4.1 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4.2 Process data collection . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Data analysis for APC performance assessment . . . . . . . . . . . . . . . 121
6.5.1 Variance performance assessment using the MVC benchmark . . . 121
6.5.2 Variance performance assessment using the LTVD benchmark . . . 122
6.5.3 Economic performance assessment . . . . . . . . . . . . . . . . . 125
6.5.4 Optimal tuning guidelines . . . . . . . . . . . . . . . . . . . . . . 127
6.5.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusions and Future Work 132



7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography 135



List of Tables

2.1 Performance limit results with first order GR(q−1) . . . . . . . . . . . . . . 31
2.2 Optimal feedback controllers with respect to different τ values . . . . . . . 32
2.3 Performance limit results with second order GR(q−1) . . . . . . . . . . . . 32
2.4 Optimal feedback controllers with respect to different ξ values . . . . . . . 33
2.5 Performance assessment results with first order GR(q−1) . . . . . . . . . . 34
2.6 Performance assessment results with second order GR(q−1) . . . . . . . . . 36
2.7 Performance assessment results with first order GR(q−1) . . . . . . . . . . 38
2.8 Performance assessment results with second order GR(q−1) . . . . . . . . . 38

3.1 Performance limit results based on the regular LTVD benchmark . . . . . . 50
3.2 Performance limit results based on the weighted LTVD benchmark . . . . 50
3.3 Performance limit results based on the generalized LTVD benchmark . . . 51
3.4 Performance assessment results based on the regular LTVD benchmark . . 52
3.5 Performance assessment results based on the weighted LTVD benchmark . 52
3.6 Performance assessment results based on the generalized LTVD

benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Impact of time delay mismatch . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Results of Shell system (Var.=Variability, Con.=Constraint,Tun.=Tuning) . 102
5.2 Results of Multi-Tank system ( Con.=Constraint,Tun.=Tuning) . . . . . . . 107

6.1 Performance assessment results based on the LTVD benchmark . . . . . . 123



List of Figures

1.1 Illustration of a class of time-varying processes . . . . . . . . . . . . . . . 4
1.2 The closed-loop impulse responses under different feedback controllers . . 5
1.3 Block diagram of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 General feedback control framework . . . . . . . . . . . . . . . . . . . . . 16
2.2 The trend of optimal variance vs user chosen τ value . . . . . . . . . . . . 31
2.3 The trend of optimal variance vs user chosen damping coefficient . . . . . . 33
2.4 The trend of optimal variance vs user chosen τ value . . . . . . . . . . . . 35
2.5 The trend of performance index vs user chosen τ value . . . . . . . . . . . 35
2.6 The trend of optimal variance vs user chosen damping coefficient . . . . . . 36
2.7 The trend of performance index vs user chosen damping coefficient . . . . 37
2.8 Time series plot of process output . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Control loop configuration under IMC framework . . . . . . . . . . . . . . 43
3.2 The trend of optimal variance vs user chosen λ value . . . . . . . . . . . . 53
3.3 The trend of optimal variance vs user chosen λ value . . . . . . . . . . . . 54
3.4 The trend of optimal variance vs user chosen λ value . . . . . . . . . . . . 54

4.1 General feedback control framework . . . . . . . . . . . . . . . . . . . . . 58
4.2 Impulse responses of two LR(q−1) and Rcl(q

−1) . . . . . . . . . . . . . . . 76
4.3 Maximum singular values of two LR(q−1) and Rcl(q

−1) . . . . . . . . . . . 77
4.4 H∞ norm gap between LR(q−1) and Rcl(q

−1) versus time delay . . . . . . 78
4.5 Performance indices versus time delay . . . . . . . . . . . . . . . . . . . . 79
4.6 Time series plot of process output . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Base case operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Optimal operation under ideal scenario . . . . . . . . . . . . . . . . . . . . 87
5.3 Optimal operation by mean shifting only . . . . . . . . . . . . . . . . . . . 87



5.4 Optimal operation by mean shifting and variability reduction . . . . . . . . 88
5.5 Optimal operation by relaxing constraint . . . . . . . . . . . . . . . . . . . 89
5.6 General feedback control framework . . . . . . . . . . . . . . . . . . . . . 92
5.7 Reduced Shell heavy oil fractionator (Ying and Joseph, 1999) . . . . . . . . 99
5.8 Base case operation of Shell system . . . . . . . . . . . . . . . . . . . . . 101
5.9 Benefit potentials of Shell system . . . . . . . . . . . . . . . . . . . . . . . 102
5.10 Variance performance assessment result of Shell system . . . . . . . . . . . 103
5.11 Suggested CV variability tuning guideline for desired benefit potential . . . 103
5.12 Suggested constraint tuning guideline for desired benefit potential . . . . . 104
5.13 Experimental system configuration . . . . . . . . . . . . . . . . . . . . . . 105
5.14 Base case operation of Multi-Tank system . . . . . . . . . . . . . . . . . . 106
5.15 Benefit potentials of Multi-Tank system . . . . . . . . . . . . . . . . . . . 107

6.1 An overview of the PATS package . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Implementation framework for APC performance monitoring . . . . . . . . 116
6.3 Structure of plant-oriented solution for APC performance monitoring . . . . 117
6.4 Schematic diagram of the GOHTU process . . . . . . . . . . . . . . . . . 119
6.5 Time series plot of CV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6 Variance performance of data section 1 . . . . . . . . . . . . . . . . . . . . 121
6.7 Variance performance of data section 2 . . . . . . . . . . . . . . . . . . . . 122
6.8 The trend of optimal total variance vs user chosen λ value . . . . . . . . . . 124
6.9 The trend of performance index vs user chosen λ value . . . . . . . . . . . 124
6.10 Benefit potentials of different scenarios for both data sections . . . . . . . . 125
6.11 Suggested variability tuning guideline for the first data section . . . . . . . 128
6.12 Suggested constraint tuning guideline for the first data section . . . . . . . 128
6.13 Suggested variability tuning guideline for the second data section . . . . . . 129
6.14 Suggested constraint tuning guideline for the second data section . . . . . . 129
6.15 Variability sensitivity analysis for the first data section . . . . . . . . . . . 130
6.16 Constraint sensitivity analysis for the first data section . . . . . . . . . . . . 130





Glossary

Notation
ηT economic performance index with MVC as the benchmark
ηwot economic performance index without tuning
∆JB optimal benefit potential by reducing variability and relaxing

constraint simultaneously
∆JC optimal benefit potential by relaxing constraint
∆JE existing benefit potential
∆JI ideal benefit potential
∆JMV C benefit potential that is achieved by MVC
∆JT theoretical benefit potential
∆JV optimal benefit potential by reducing variability
aki quadratic objective coefficient for i-th CV at time stamp k
akj quadratic objective coefficient for j-th MV at time stamp k
at, ak zero mean white noise sequence with variance σ2

bki linear objective coefficient for i-th CV at time stamp k
bkj linear objective coefficient for j-th MV at time stamp k
d order of interactor matrix (MIMO), process time delay (SISO)
m number of MV
p number of CV
ryi percentage of variability change of i-th CV
suj percentage of constraint limit change of j-th MV
syi percentage of constraint limit change of i-th CV
ukj0 sampled data value of j-th MV at time stamp k
yki0 sampled data value of i-th CV at time stamp k
yt, yk process output at time t or k

y
(i)
t process output at time t subject to the i-th disturbance
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1
Introduction

1.1 An overview of controller performance monitoring

Since Harris’ seminal paper (Harris, 1989), controller performance assessment has attracted
significant interests from both academia and industries. The lower bound of output variance
is feedback control invariant and can be estimated directly from closed-loop routine
operating data with an a priori known process time delay. A significant distinction from
previous approaches is that it studies directly the existing control system which is subject to
a variety of unknown practical disturbances on the run-time stage rather than on the design
stage. It takes advantage of closed-loop routine operating data with no detailed information
of the controller and the process. The performance measure can give a straight insight into
the potential of improving the performance of an existing control system. Continuous
performance monitoring allows timely detection of performance degradation in control
loops and routine maintenance of such loops at optimal settings can result in huge monetary
savings for a typical chemical complex. Survey papers and books in this area have been
published by Qin (1998), Harris et al. (1999), Harris and Seppala (2001), Huang and Shah
(1999), Horch (2000), Hoo et al. (2003), and Jelali (2006).

For a given stable single-input single-output (SISO) process with time delay d, the
closed-loop relationship between the unmeasured disturbances and the process output can
be expressed as an infinite-order moving average (MA) process,

yt = (f0 + f1q
−1 + · · ·+ fd−1q

d−1 + fdq
−d + · · · )at (1.1)

1
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where at is white noise with variance σ2
a. The first d terms define the minimum variance

which is feedback control invariant (Harris, 1989),

σ2
mv = (f 2

0 + f 2
1 + · · ·+ f 2

d−1)σ
2
a (1.2)

For a process with actual output variance σ2
y , a normalized performance index (Desborough

and Harris, 1992; Harris, 2004; Quinn et al., 2005) is defined as

ηHarris = 1− σ2
mv

σ2
y

(1.3)

and the least squares regression approach is suitable to estimate the minimum variance as
well as the performance index. Many researchers adopted the close-loop potential (CLP)
factor as the performance index (Kozub, 1996; Huang and Shah, 1999):

ηclp =
σ2

mv

σ2
y

(1.4)

which can be easily estimated using an efficient stable filtering and correlation analysis
(FCOR) algorithm (Huang and Shah, 1999). This minimum variance approach was also
extended to the performance assessment of feedback/feedforward control loops (Stanfelj
et al., 1993; Desborough and Harris, 1993), cascade control loops (Ko and Edgar, 2000)
and non-minimum phase systems (Tyler and Morari, 1995). Besides the minimum
variance control (MVC) benchmark, some other optional benchmarks have also been
studied with the replacement of σ2

mv by some optimal criterion value σ2
opt (Eriksson and

Isaksson, 1994; Hugo, 2001) or some user specified response value σ2
user (Huang and

Shah, 1999; Li et al., 2003), i.e.,

ηopt =
σ2

opt

σ2
y

or ηuser =
σ2

user

σ2
y

(1.5)

For a multi-input multi-output (MIMO) process, the multivariate controller performance
can also be evaluated by the MVC benchmark (Harris et al., 1996; Huang et al., 1997a; Ko
and Edgar, 2001b; Shah et al., 2001). The difficulty in multivariate controller performance
assessment is the factorization of the time delay matrix, which is known as the interactor
matrix. The interactor matrix is an equivalent form of the time delay in multivariate
systems. It is shown that a unitary interactor matrix is an optimal factorization of time
delays for multivariate systems in terms of minimum variance control and controller
performance assessment (Huang and Shah, 1999). A key to performance assessment
of multivariate processes using MVC as the benchmark, is to estimate the benchmark
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performance from routine operating data with an a priori knowledge of time delays or
interactor matrices. The expression for the feedback control invariant term (minimum
variance) is then derived by using the interactor matrix. The multivariate performance
indices can be estimated by multivariate FCOR algorithm (Huang and Shah, 1999).
Likewise, the MVC benchmark was extended to evaluate the performance of feedforward
plus feedback controller of MIMO systems (Huang et al., 2000) and MIMO non-minimum
phase systems (Huang and Shah, 1999) as well. In addition, the LQG (Linear Quadratic
Gaussian) benchmark (Huang and Shah, 1999; Shah et al., 2001) takes both the control
effort and the output performance into account. Its tradeoff curve can be obtained in terms
of the H2 norm of the appropriate transfer function matrices.

With more and more model predictive control (MPC) applications in the process
industry, the problem of how to evaluate their performance has drawn great attention.
Ko and Edgar (2001b) presented a benchmark based on the finite horizon minimum
variance controller by using closed-loop data and the knowledge of the order of the delay
matrix. With the knowledge of the process and disturbance models, the lower bounds on
constrained performance of a finite horizon minimum variance controller can be obtained
(Ko and Edgar, 2001a). The MVC benchmark has also been used to investigate the
performance of industrial MPC applications with consideration of constraints, optimization
and interaction (Gao et al., 2003). The design versus achieved benchmark (Patwardhan et

al., 2002) uses a criterion that commensurates with the actual design objective value of
the controller and then compares the achieved performance. This idea is analogous to the
method of Kammer et al. (1996), which was based on the frequency domain comparison of
the achieved and design objective functions for LQG. For a model predictive controller, if
the design objective function is denoted by Ĵk and the optimal control moves by ∆u∗k, the
optimal value of the design objective function is given by

Ĵ∗k = Ĵk(∆u∗k)

The performance index using design versus achieved as a benchmark is defined as

η(k) =
Ĵ∗k
Jk

(1.6)

where Jk is the actual achieved objective function value. This performance index actually
reflects whether or not the achieved performance meets the design requirements. The
historical benchmark (Huang and Shah, 1999) is based on the comparison of the achieved
objective functions in the good region with the current performance. Schäfer and Cinar
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(2004) tried to integrate the historical benchmark and design versus achieved benchmark
for monitoring and diagnosis.

It should be noted that no single performance index is sufficient for effective
performance monitoring (Kozub, 1996). For the MPC performance assessment, one should
not just rely on any one specific index and it would be more appropriate to check all relevant
indices that reflect performance measures from different aspects (Shah et al., 2001).

1.2 A class of linear time-varying processes

For the linear time varying (LTV) processes, little work has been done on the controller
performance assessment since it is not a straightforward extension of its linear time
invariant (LTI) counterpart (Li et al., 1997; Li and Evans, 1997; Huang, 2002). For a linear
process T controlled by Q shown in Figure 1.1 , it is driven by a sequence of zero mean
white noise at and subject to several different disturbance dynamics, Ni, i = 1, 2, · · · ,

in different time durations respectively. This is often observed in chemical processes due

Figure 1.1: Illustration of a class of time-varying processes

to the temporary interference of operations by operators or a temporary grade change of
raw materials. The change of disturbances is often reflected in the disturbance model
parameters, which can be significantly different from its previous ones. Since LTI
controllers are dominantly applied in industrial practice, they are often de-tuned in order
to cope with such kind of time varying disturbances. Then, what is the best that an LTI
controller can do in the presence of LTV disturbances? What is the achievable performance
of an LTI controller that can be estimated from closed-loop routine operating data?

Huang (1999) and Olaleye et al. (2002, 2004a, 2004b) studied this kind of processes
and proposed the Type-C benchmark to evaluate the controller performance. Both the
process and controller are considered linear time invariant, and the disturbance models are
piecewise constant in the parameters, where one of them may be the most representative and
one is a major but transient upset. The Type-C benchmark (Huang, 1999) is characterized
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by a controller that minimizes the variance of the most representative section of the
disturbances subject to some controller performance requirement in regulating the major
transient disturbance. This is beneficial to improve the controller performance to the best
in regulating the most representative disturbance while the performance of regulating the
major transient upset is not sacrificed.

1.3 Output covariance upper bound problem

Most of current controller performance assessment algorithms are based on the MVC
benchmark. It does provide an absolute theoretical lower bound of output variance against
which real controllers can be compared (Harris, 1989). This variance lower bound is
feedback control invariant due to the process time delay and could be achieved under
MVC strategy. Unfortunately, MVC is seldom implemented in practice because of its
lack of robustness to model uncertainty and use of excessive input actions (Astrom and
Wittenmark, 1997). Therefore, the closed-loop response of a general regulatory feedback
control loop can be divided into two parts, the first part is feedback control invariant and
the second part is dependent on the feedback controller. This can be seen clearly from
the closed-loop impulse response. For a linear process with time delay d under different
feedback control strategies, its closed-loop impulse responses to the disturbance could
appear as shown in Figure 1.2 and the magnitude of minimum variance is dependent on
the process time delay d and output disturbance. The minimum variance results from the
impulse response of the first part and becomes the lower bound of output variance. For

0 d  

0

0.2

0.4

0.6

0.8

1

Time

y

 

 

Controller 1
Controller 2
Controller 3
MVC control

Figure 1.2: The closed-loop impulse responses under different feedback controllers
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the same output disturbance, the additional output variance beyond the minimum variance
comes from the impulse response of the second part which is affected directly by the
feedback controller. This second part could vary for different feedback controllers which
give rise to different output variances. It can be used to check whether the closed-loop
response meets the specified desired specification, such as impulse response (Tyler and
Morari, 1996), time constant or settling time (Kozub, 1996), closed-loop pole assignment
(Horch and Isaksson, 1999), and so on, which is classified as the user specified benchmark
(Huang and Shah, 1999). Since the output variance typically represents product quality
consistency, if the output variance satisfies an upper bound constraint, the product quality
should thus be guaranteed. In this case, what should the second part look like? This
is referred to as the output variance upper bound problem and the resultant closed-loop
response is defined as the structured closed-loop response (Xu and Huang, 2006). For
MIMO systems, the output covariance is the direct extension and the corresponding
problem is called the output covariance upper bound problem.

1.4 Performance monitoring of MPC applications

MPC applications have been widely used in the process industry. How to evaluate the
performance of an MPC application and its cascaded regulatory control loops has become
one of greatest interests in the process control community. The past research focused
mainly on the comparison of the dynamic performance, such as the MVC benchmark, the
design versus achieved benchmark (Patwardhan et al., 2002) and the historical benchmark
(Huang and Shah, 1999). The economic performance assessment of MPC applications
has rarely been covered except for a few (Zhou and Forbes, 2003). However, most
MPC applications are not in full capacity in practice due to lack of maintenance and
too conservative constraint settings (Singh and Seto, 2002). Only 40% of the benefit is
usually captured and the desired benefit is often not guaranteed. Therefore, a systematic
and stardardized approach is demanded to monitor MPC applications and facilitate the task
of MPC maintenance.

As a matter of fact, the latest generation of MPC technology itself includes a steady state
economic optimization and a dynamic optimization, where the steady state optimization
aims at searching for the optimal operating condition that can be driven by the dynamic
optimization (Qin and Badgwell, 2003). Thus the steady state optimization is directly
related to the economic benefit and the economic objective function becomes explicit.
On the other hand, the back off approach is often utilized in the optimal process design
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stage with the consideration of possible disturbances and uncertainty parameters (Loeblein
and Perkins, 1998). For the on-line MPC applications, this back off often implies benefit
loss due to disturbances and conservative operations. The optimal back off should be
the minimum move of the operating point away from the nominal one, which is usually
located on the constraint limit, such that the feasibility and operability are not violated.
Therefore, the optimal economic benefit could be achieved by pushing the quality variables
toward their constraint limits. In addition, if the back off could be reduced or the
constraint limits could be relaxed, further economic benefit could be obtained. Even though
the disturbances are never avoidable, it is possible to reduce the variability by tuning
the cascaded regulatory control loops. This variability analysis would bridge the MVC
benchmark and the economic benefit, which result in variance and economic performance
respectively. With these ideas in mind, variability and constraint would be the two keys on
the performance monitoring of MPC applications.

1.5 Linear matrix inequalities

The linear matrix inequality (LMI) technique is employed to solve most of the problems
proposed in this thesis. We only give a brief discussion here.

A general form of LMI is given as

F (x) = F0 +
m∑

i=1

xiFi Â 0 (1.7)

where x ∈ Rm is the unknown decision variables and Fi ∈ Rn×n for i = 0, 1, · · · ,m are
known symmetric matrices. “Â” means that F (x) is a positive definite matrix, i.e.,

zT F (x)z > 0,∀z 6= 0, z ∈ Rn (1.8)

The LMI (1.7) is equivalent to n polynomial inequalities, which means its principal minors
are positive. An important property of LMIs is that the set {x|F (x) Â 0} is convex, that
is, the LMI (1.7) forms a convex constraint on x. The convexity of LMIs plays a crucial
role in optimization since a convex function has a global optimum over a convex set. The
Schur complement lemma is often used to convert a class of convex nonlinear inequalities
into the equivalent LMI.

Lemma 1.5.1 (Schur complement lemma) The following two statements are equivalent:

• R(x) Â 0, Q(x)− S(x)R(x)−1S(x)T Â 0.
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•
(

Q(x) S(x)
S(x)T R(x)

)
Â 0.

A lot of control problems can be transformed into LMIs, such as linear constraints, stability
of linear systems, the quadratic objective function (Boyd et al., 1994; VanAntwerp and
Braatz, 2000). The advantage of LMI technique is that LMIs can be solved numerically
very efficiently using ellipsoid algorithm or interior-point methods, which converge in
polynomial time. Some software toolboxes are actually available, such as Matlab LMI
toolbox (Gahinet et al., 1995), SeDuMi (Sturm, 1998-2001) and SDPT3 (Tütüncü et

al., 2001), just to name a few.

1.6 Outline of the thesis

With the variety of methods available, this thesis aims at addressing some of the relevant
issues that have not been resolved in the literature. Whereas some of the results are
extensions and generalizations of the available results, some new concepts are introduced.

This thesis can be broadly divided into the following three parts:
1. Performance assessment of control loops with LTV disturbances (Chapter 2 and 3);
2. Covariance analysis approach for controller performance assessment (Chapter 4)
3. Performance assessment of MPC applications (Chapter 5 and 6)
A block diagram of the thesis is shown in Figure 1.3. The controller performance in

regulating the process subject to disturbances is studied by developing different approaches
in different chapters. Each individual chapter of this thesis is self-contained: starting with
introduction, problem formulation or derivation, and then presenting the proposed solution
or algorithms, followed by case studies and conclusions.

Chapter 2 is concerned with performance assessment of univariate control loops subject
to linear time varying disturbance dynamics. The problem is motivated by the observation
that most industrial controllers are linear time invariant (LTI) but the process, particularly
the disturbance dynamics, is time varying. The time varying behavior of disturbance
dynamics is modelled by piecewise constant parameters of linear disturbance models,
namely linear time varying (LTV) dynamics. Thus, during a period of process operation,
the process may be affected by several disturbances in terms of different disturbance
dynamics or models. This problem has been previously solved using the standard Type-
C benchmark, by minimizing the variance of a most representative disturbance while
satisfying a structured regulatory performance requirement for one of other disturbances,
typically the transient but most significant disturbance. This leaves performance in
regulating the remaining disturbances unspecified. In this chapter, this problem is



Sec. 1.6 Outline of the thesis 9

DisturbancesDisturbances

1. Introduction

2. Improved Type-C benchmark

3. LTVD benchmarks3. LTVD benchmarks

4. Covariance analysis approach

5. MPC performance analysis

6. Industrial implementation

7. Conclusions

LMI 
technique

LMI 
technique

ProcessProcess

Controller

Figure 1.3: Block diagram of thesis

formulated as minimization of the sum of the weighted variances of all but one major
disturbance that is considered under the structured regulatory performance requirement. It
is solved from the following two perspectives: 1) Models of LTV disturbances are given,
the limit of the achievable structured closed-loop performance of any LTI controller for the
LTV disturbances is calculated, and the optimal LTI control law is derived if the process
model is also known; 2) no complete models about the process or the disturbances are
available except for the time delay of the process, an algorithm is developed to assess the
performance of the existing LTI controller in the presence of LTV disturbances. This leads
to an improved Type-C benchmark and a better trade-off can be obtained in regulating
different disturbances in the sense of output variance.

In Chapter 3, the standard and improved Type-C benchmarks are extended into MIMO
systems. Similar result is obtained as that of SISO systems. In this chapter, the standard
Type-C benchmark is redefined as the regular linear time varying disturbances (LTVD)
benchmark and the improved Type-C benchmark as the weighted LTVD benchmark.
The regular LTVD benchmark aims at minimizing the total output variance subject to a
most representative disturbance and the weighted LTVD benchmark is to minimize the
sum of weighted total output variances subject to different disturbances. Another LTVD
benchmark, the generalized LTVD benchmark, is also proposed to minimize the maximum
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total variance subject to different disturbances. These three LTVD benchmarks are
compared and the result shows that the weighted and generalized LTVD benchmarks can
always lead to better trade-offs on the total output variances under different disturbances
than the regular one.

In Chapter 4, a covariance analysis approach is proposed to monitor the control loop
performance. Owing to the process time delays, the closed-loop response can be divided
into feedback control invariant part and feedback controller dependent part. If the latter
part is replaced by a user specified response trajectory, the resultant closed-loop response
is referred to as structured closed-loop response. The user specified structured closed-loop
response has been used as an achievable control against which one can assess performance
of control loops. In the control performance monitoring literature, the user specified
response is often given as a first-order transfer function with some specified performance
requirement, such as time constant. In this chapter, this problem is solved from a systematic
approach, i.e., in viewpoint of a variance/covariance upper bound on the outputs. With
available closed-loop routine operating data and process time delay/interactor matrix, the
desired structured closed-loop response can be obtained directly via an estimated closed-
loop time series model. A significant feature is that the output variance/covariance upper
bound constraint can be explicitly specified according to the product specifications and is
always satisfied when the problem is feasible. This desired structured closed-loop response
can thus be served as a benchmark against which the existing controller performance
can be compared. Two approaches, linearizing change of variables and Frank and Wolfe
algorithm, are shown to be suitable for solving this problem, which result in full order and
reduced order solutions respectively.

In Chapter 5, the performance of existing MPC applications is to be evaluted on the basis
of the routine operating data. Even the multivariate controller performance assessment
(MVPA) has been developed for several years, its application in advanced model predictive
control (MPC) has been limited mainly due to issues associated with comparability of
variance control objective and that of MPC applications. MPC has been proven as one
of the most effective advanced process control (APC) strategies to deal with multivariable
constrained control problems with an ultimate objective towards economic optimization.
Any attempt to evaluate MPC performance should therefore consider constraints and
economic performance. This chapter shows that the variance performance assessment may
be transferred to performance assessment of MPC applications. A systematic approach
is put forward to evaluate the economic performance of MPC applications, including
economic performance assessment, sensitivity analysis and variance/constraint tuning
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guidelines. The MPC economic performance can be evaluated by solving benefit potentials
through either variability reduction of quality output variables or tuning of constraints. The
result shows the possible economic improvement potentials of existing MPC applications
with/without variability/constraint tuning efforts. The sensitivity analysis gives rise to
the impact of variability/constraint changes of different variables on the economic benefit
potential. The result can be employed to identify the importance of different variables to the
economic benefit potential and used as a reference in choosing tuning variables on either
variability or constraint. The variability/constraint tuning guidelines tell which variables
should be selected and how much should be tuned on either variability or constraint in
order to achieve the desired target benefit potential.

In Chapter 6, an industrial APC performance monitoring framework is introduced with
the implementation background. This framework is based on the developed software
package which is named as Performance Analysis Technology and Solutions (PATS).
The algorithms of two main components are summarized and adapted for suitability and
convenience of industrial application. At the same time, a plant-oriented solution for APC
performance monitoring is proposed within this framework, integrated by the components
for real-time data collection, multivariate controller performance assessment (MVPA),
APC economic performance assessment and tuning guidelines (LMIPA). It is illustrated
by performance analysis of an industrial MPC application, which is used to control the
reactor section of a gas oil hydrotreating unit (GOHTU).

This thesis has been written in the format in accordance with the rules and regulations
of the Faculty of Graduate Studies and Research, University of Alberta. Some chapters
have been published in journals and conference proceedings. In order to link the different
chapters, there is some overlap and redundancy of material. This has been done to ensure
completeness and cohesiveness of the thesis material and help the reader understand the
material easily.



2
Performance Monitoring of SISO Systems

with LTV Disturbances ∗

2.1 Introduction

The change of process disturbance dynamics in chemical processes is often observed, due
to, for example, the temporary interference of operations by operators or a temporary
grade change of raw materials. The change of disturbances is reflected in process model
parameters, in particular, the disturbance model parameters, which can be significantly
different from its previous ones. Even though the optimal strategy to handle this kind
of time varying disturbances is to use parameter varying control or switching control
(Sun and Ge, 2005), the controllers in industrial practice are, however, dominantly linear
time invariant (LTI) controllers. To avoid the problem associated with such time varying
disturbances, the LTI controller is often de-tuned or sometimes even suspended (if the
abnormal disturbance is significant). This practice can compromise performance in
regulating normal disturbances.

Motivated by these observations, one would naturally consider an optimal LTI control
strategy to regulate time varying disturbances; in particular, we consider linear time varying
(LTV) disturbances that can be modeled by a series of piecewise constant disturbance

∗This chapter has been published in Xu, F. and Huang, B., Performance monitoring of SISO control loops
subject to LTV disturbance dynamics: an improved LTI benchmark, Journal of Process Control, 16, 567-579,
2006
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models. One would ask, what is the best that an LTI controller can do in the presence of
LTV disturbances? This problem is formulated as the assessment of the limit of achievable
performance. This limit of performance serves as a useful guideline for the design of an LTI
controller and answers questions, such as, whether a switching or an adaptive controller is
necessary. Another equally important problem is the performance assessment problem. In
this case, a controller has been implemented in the process. One does not have complete
knowledge about the process and disturbance models except for the process time delay
as required by most conventional control performance assessment algorithms. One would
like to estimate the achievable performance of the LTI controllers from the closed-loop
routine operating data. Its importance has been well addressed by many authors (Huang
and Shah, 1999; Desborough and Harris, 1992; Harris, 1989).

Based on the above rationale, Huang (1999) and Olaleye et al. (2002, 2004a, 2004b)
proposed three optional benchmarks. They assumed that the process and controller are both
linear time invariant, and the disturbance models are piecewise constant in the parameters
subject to abrupt changes and thus a disturbance trajectory may be separated into several
stationary sections, where one of them may be the most representative and one is a major
but transient upset. The Type-C benchmark (Huang, 1999) is characterized by a controller
that minimizes the output variance of the most representative section of the disturbances
subject to some predefined regulatory performance on one of the remaining disturbances.
That is to say: the abnormal disturbance or major upset, which is typically transient, should
have been settled down along some user specified reference trajectory or funnel. This
is beneficial because it ensures that a specified performance of the controlled variable is
achieved in regulating transient but major upset (Qin and Badgwell, 1996). The desired
closed-loop response to this section of the disturbance could be first order or higher order
with a predefined regulatory requirement and it often leaves some degree of freedom that
could be used to search for an LTI controller that minimizes the output variance of the
most representative section of the disturbances (Huang, 1999). In general, there is a
control performance requirement such as the settling time or time constant to regulate the
abnormal disturbances of the process in industrial practice; for example, the closed-loop
time constant is often tuned to be equal to the open-loop time constant.

In (Huang, 1999) and (Olaleye, 2002; Olaleye et al., 2004b), the desired regulatory
response to the major disturbance was assumed to take the form of a first order transfer
function with only one free parameter to be determined by optimization. The Type-C
benchmark was obtained via an ad hoc method or unconstrained nonlinear programming
(NLP) technique, e.g., Nelder-Simplex method. But this leaves the performance of
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remaining disturbances unspecified in the previous work. The contributions of this chapter
are in four aspects: 1) The problem is reformulated as a minimization of the sum of the
weighted variances of all but one major disturbance that is subject to a structured regulatory
performance requirement. 2) It is shown that when the decision variables are only present
as the numerator coefficients in the transfer function of structured closed-loop response,
the optimization problem can always be converted into linear matrix inequalities (LMIs)
and thus can be solved efficiently. 3) The user specified structured closed-loop response is
extended to more general first order and second order dynamics. 4) The performance limit
problem together with the optimal LTI controller law is solved in addition to performance
assessment problem. In consequence, a better trade-off on output variances in regulating
different disturbances can be achieved in a more practical manner.

The remainder of this chapter is organized as follows. The SISO controller performance
assessment is revisited in Section 2.2. In Section 2.3 an improved Type-C benchmark
problem is formulated, together with the statement of performance limit and performance
assessment problems. Section 2.4 describes the computation strategy for the improved
Type-C benchmark problem via the LMI technique. The algorithms for performance limit
problem and performance assessment problem are given in Section 2.5. Simulation and
industrial examples are provided in Section 2.6, followed by concluding remarks in Section
2.7.

2.2 Revisit of SISO controller performance assessment

Harris (1989) has shown that minimum variance control can be used as the benchmark to
measure an existing controller’s performance by using closed-loop routine operating data
alone. For a given time invariant process with time delay d, a moving average model can
be used to fit the closed-loop output data yt :

yt = (f0 + f1q
−1 + ... + fd−1q

−(d−1)

︸ ︷︷ ︸
F (q−1)

+q−dRcl(q
−1))at (2.1)

where at is a white noise sequence. Then the first part is feedback control invariant due
to the process time delay d. Under minimum variance control, Rcl(q

−1) of the second
part vanishes. Therefore, the lower bound of process output variance can be used as a
benchmark and estimated from its closed-loop response:

yt|mv = (f0 + f1q
−1 + ... + fd−1q

−(d−1))at = F (q−1)at (2.2)
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For a linear time varying process, Huang (1999) has proposed three optional benchmarks
to do controller performance assessment, which were studied further by Olaleye et al.
(2002, 2004a, 2004b) . They are referred to as Type-A, Type-B and Type-C benchmarks
respectively. The Type-A benchmark is suitable to evaluate the performance of time
varying controllers. It is assumed that both the process and disturbance are time varying,
the closed-loop response under time varying minimum variance control can be written as

yt|mv = (f0(t) + f1(t)q
−1 + ... + fd−1(t)q

−(d−1))at = F (q−1, t)at (2.3)

which can be established on the basis of a moving window. The Type-B and Type-C
benchmarks, however, only consider abrupt changes of disturbance dynamics, i.e., the
parameters of the disturbance model are piecewise time invariant, and the process remains
time invariant. It is further assumed that one of the disturbances is most representative
affecting the process and the corresponding process output data is denoted as i-th section,
the others are denoted as k-th sections respectively, where k = 1, 2, · · · and k 6= i. The
Type-B benchmark uses minimum variance control of the most representative section of
data as a benchmark to evaluate the controller performance over the entire time period.
The benchmarking closed-loop response of the i-th section is exactly the same as (2.2),
i.e.,

y
(i)
t |Type−B = y

(i)
t |mv = (f

(i)
0 + f

(i)
1 q−1 + ... + f

(i)
d−1q

−(d−1))at = Fi(q
−1)at (2.4)

By applying this benchmark to the k-th section, its closed-loop response is derived as

y
(k)
t |Type−B =

Nk(q
−1)

Ni(q−1)
Fi(q

−1)at (2.5)

where Ni(q
−1) and Nk(q

−1) are referred to the i-th and k-th disturbance models
respectively. Note that minimum variance control of one portion of data may not be suitable
to other sections of data when disturbance dynamics changes significantly (Huang, 1999).
If this happens, the Type-C benchmark is suggested and the j-th disturbance is considered
as the major transient disturbance. The Type-C benchmark is defined to minimize the
output variance of the most representative section of the disturbances subject to some
predefined specifications in regulating other sections of disturbances. For the j-th section
of data, its benchmarking closed-loop response is formulated as

y
(j)
t |Type−C = (Fj(q

−1) + q−dGR(q−1))at (2.6)

where GR(q−1) satisfies some predefined specifications but leaves some unknown
parameters to be determined. For the i-th section of data,

y
(i)
t |Type−C =

Ni(q
−1)

Nj(q−1)
(Fj(q

−1) + q−dGR(q−1))at (2.7)
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By minimizing its output variance, the unknown parameters of GR(q−1) can be solved and
the Type-C benchmark is established. For the remaining sections, e.g., k-th section of data,
its benchmarking closed-loop response can be simply calculated from

y
(k)
t |Type−C =

Nk(q
−1)

Nj(q−1)
(Fj(q

−1) + q−dGR(q−1))at (2.8)

The challenge in solving Type-C benchmark lies in the fact that an optimal LTI control
should be solved for LTV disturbances, and most problems remain open in the literature.

2.3 Formulation of the improved Type-C benchmark

2.3.1 Preliminary

The derivation in this section has the following assumptions: (1) The plant is linear time
invariant with minimum phase. (2) The disturbance model is piecewise constant linear time
varying. (3) The controller is time invariant.

Consider a SISO process q−dT̃ (q−1) shown in Figure 2.1 subject to several different
disturbance dynamics, Nk(q

−1), k = 1, 2, · · · , in different enough long time durations
respectively, at is a sequence of white noise with zero mean, d is the process time delay,
and T̃ (q−1) is the time delay free part of the process transfer function with minimum

Figure 2.1: General feedback control framework

phase. The process is controlled by an LTI controller Q(q−1). The change of disturbance
dynamics takes place at time t = θ. Without loss of generality, it is assumed that the i-
th disturbance dynamics is the most representative of the disturbances that are affecting
the process while the j-th section of the disturbances corresponds to the significant but
transient upset affecting the process. For the Type-C benchmark, it is required that the
closed-loop response to the j-th section of the disturbances settles down along some user
specified trajectory. Thus, the closed-loop response to the j-th section of the disturbances
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can be written in a general form (Huang, 1999):

y
(j)
t = (f

(j)
0 + f

(j)
1 q−1 + ... + f

(j)
d−1q

−(d−1)

︸ ︷︷ ︸
Fj(q−1)

+q−dGR(q−1))at (2.9)

where GR(q−1) is a stable and proper transfer function that is specified by the user
and is feedback control dependent. The performance specification, such as settling time
specification alone, can typically leave some free parameters that can be used to find a
controller that optimizes the regulatory performance of the i-th section of the disturbances.
A simple choice of GR(q−1), for example, is suggested as

GR(q−1) =
α

1− λq−1
λ = exp(−∆T

τ
) (2.10)

where α is the free parameter to be determined and λ is specified according to the desired
closed-loop time constant τ with sampling period ∆T (Kozub, 1996). In this chapter,
we define the response of equation (2.9) as a structured closed-loop response, meaning
that GR(q−1) is chosen by the user according to specified dynamic structure, first order
in this instance. This leaves α as a free parameter. Another choice of GR(q−1) can take,
for example, the form of a lead-lag system. Here we consider more general expressions
for GR(q−1), i.e., the first order and second order transfer functions. The rationale is
that most process dynamic behavior may be approximated by either first order or second
order models. In particular an under-damped dynamic response must be represented by
at least second order dynamics, justifying the necessity of exploring the second or high
order structure. We will consider the following two more common forms of GR(q−1) in the
sequel.

GR(q−1) =
α + βq−1

1− λq−1
(2.11)

GR(q−1) =
α0 + α1q

−1 + α2q
−2

1 + λ1q−1 + λ2q−2
(2.12)

where

λ1 =




−e−

ξ∆T
τ (e

√
ξ2−1∆T

τ + e
−
√

ξ2−1∆T
τ ) when ξ ≥ 1,

−2e−
ξ∆T

τ cos(

√
1−ξ2∆T

τ
) when 0 < ξ < 1.

λ2 = e−
2ξ∆T

τ

and ξ is the damping coefficient, τ is the natural period or the inverse natural frequency
(Ogunnaike and Ray, 1994). For the second order system, ξ and τ can be determined
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according to the desired characteristic of the under-damped response, such as rise time,
overshoot, decay ratio, settling time, and so on.

According to Huang (1999), for a minimum phase process, the output of the major
disturbance, y

(j)
t , in equation (2.9) is an achievable process response, and the output of

the most representative disturbance, y
(i)
t , can be formulated as

y
(i)
t =

Ni(q
−1)

Nj(q−1)
(Fj(q

−1) + q−dGR(q−1))at (2.13)

The corresponding controller Q∗(q−1) can be solved as

Q∗(q−1) =
Rj(q

−1)−GR(q−1)

T̃ (q−1)(Fj(q−1) + q−dGR(q−1))
(2.14)

where Fj(q
−1) and Rj(q

−1) can be obtained from the Diophantine equation, Nj(q
−1) =

Fj(q
−1)+q−dRj(q

−1). It can be shown this controller is stable and proper as far as GR(q−1)

has stable first order dynamics and T̃ (q−1) is minimum phase (Olaleye et al., 2004b).
For other disturbances (other than i-th and j-th) affecting the process in different

time durations, their closed-loop responses can always be expressed as the same form as
equation (2.13) with i = k, k 6= j.

The optimization problem of the Type-C benchmark (Olaleye et al., 2004b; Huang,
1999) only considers two different disturbance dynamics, one is the most representative
and the other one is a major but transient upset. Their outputs are referred to as y

(i)
t and

y
(j)
t , respectively. It is obvious that the best result is to gain a trade-off between these two

different disturbances. If there exist more than two different disturbances, the suitability of
the Type-C benchmark is not guaranteed.

The improved Type-C benchmark proposed in this chapter considers all disturbances
simultaneously. It is also assumed that there exists one major but transient upset disturbance
which should be regulated to satisfy a user specified trajectory, i.e., a structured closed-loop
response. This requirement forms the constraint for the benchmark optimization problem.
The objective function is chosen to minimize the sum of the weighted output variances of all
remaining disturbances, which is referred to as total variance. The importance in regulating
different disturbances can be obtained through a trade-off by assigning different weighting
values to the different disturbances in the objective function. Although this problem is not
a multivariable control problem but an LTV control problem, it will be shown that it is
solvable via an optimal multivariable control formulation.

The improved Type-C benchmark problem can be summarized as follows: the process
with time delay d is assumed to be subject to piecewise constant disturbance dynamics.
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It is further assumed that the j-th section of the disturbances is a major but transient
upset, and it should be regulated to satisfy some user specified performance requirement,
through the specification of GR(q−1). In general, not all parameters are determined by this
performance specification. The optimal values of these free parameters are then obtained by
minimizing the total variance, i.e., the sum of the weighted output variances of all sections
of disturbances other than the j-th section of the disturbances. If there are totally n sections
of different disturbances affecting the process, this problem can be formulated as

GR(q−1) = min
x

{
n∑

i=1,i6=j

ρ2
i · V ar

{
y

(i)
t

}}
(2.15)

where the decision variable x includes all unknown free parameters of GR(q−1), ρ2
i

represents the weighting coefficient for the i-th section of the disturbances, and y
(i)
t is

given in equation (2.13). It is obvious that if there is only one weighting coefficient that
is assigned a nonzero value, then the improved Type-C benchmark optimization problem
reduces to the standard Type-C benchmark (Huang, 1999). Therefore, the standard Type-C
benchmark is a special case of the improved Type-C benchmark.

Remark 2.3.1 How does the proposed benchmark compare with conventional ones

including moving window type of algorithms? What will happen if the proposed algorithm

is not used in the presence of time varying disturbance? Let’s consider several distinct

disturbances affecting a process. By applying the conventional performance benchmarking,

we would compare the existing control performance with a benchmark control that can

minimize output variance of all disturbances with different dynamics. This benchmark

control must therefore be time varying and is not consistent with most practical controls

that are time invariant, and will tend to underestimate existing control performance. Then

how to interpret the performance if two indices are different for two different disturbance

sections, say the first section is large and the second is small? Our answer is: if these two

indices are calculated from the proposed algorithm, then one can make a recommendation

that the second section has the possibility to reduce its output variance to the percentage

as indicated by the index by simply tuning time invariant control. However, if they are

calculated from the conventional algorithm, then one can only recommend that the second

section has the possibility to reduce its output variance to the percentage as indicated by

the index if the existing time invariant control is replaced by time varying control.
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2.3.2 Performance limit problem

The output expression of y
(i)
t has been derived subject to the user specified structured

closed-loop response in the j-th section of the disturbances, as is shown in equation (2.13).
In the case that the disturbance models are all known, the unknown free parameters of
GR(q−1) can be calculated via the following improved Type-C benchmark optimization
problem:

GR(q−1) = min
x

{
n∑

i=1,i6=j

ρ2
i · V ar

{
Ni(q

−1)

Nj(q−1)
(Fj(q

−1) + q−dGR(q−1))at

}}

= min
x

n∑

i=1,i6=j

ρ2
i · ‖

Ni(q
−1)

Nj(q−1)
(Fj(q

−1) + q−dGR(q−1))‖2
2

(2.16)

where Nj(q
−1) = Fj(q

−1) + q−dRj(q
−1), x is the decision variable which includes all the

unknown free parameters of GR(q−1), and the corresponding optimal LTI control law can
be calculated from equation (2.14).

2.3.3 Performance assessment problem

In industrial implementation, control loop performance assessment has to be done using
routine operating data. By time series analysis, the closed-loop transfer function from the
white noise to the process output can be estimated directly from routine operating data.
Once the benchmark control response is known, the control loop performance assessment
problem is readily solved by comparing the benchmark control response with the existing
process output and identifying the opportunity to improve.

For a SISO process that is affected by different disturbance dynamics, the process
outputs of the i-th and j-th sections can be expressed as

y
(i)
t = G

(i)
cl (q−1)at and y

(j)
t = G

(j)
cl (q−1)at

where G
(i)
cl and G

(j)
cl can be directly estimated from routine operating data. The output of

the i-th section can thus be formulated as (Huang, 1999; Olaleye et al., 2004b)

y
(i)
t =

G
(i)
cl (q−1)

G
(j)
cl (q−1)

(F̂j(q
−1) + q−dGR(q−1))at (2.17)

where F̂j(q
−1) can be obtained from Diophantine equation of G

(j)
cl and GR(q−1) is specified

by the user.
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For the performance assessment problem based on the improved Type-C benchmark, the
purpose is to minimize the sum of the weighted variances of all sections of the outputs with
respect to different disturbances except for the j-th output, but subject to the performance
specification on the j-th disturbance.

As we have shown, for the systems without knowing the process and disturbance
models, the closed-loop transfer function from the white noise to the output can be directly
estimated from routine operating data by time series analysis. The ratio of Ni(q

−1) and
Nj(q

−1) is the same as that of G
(i)
cl (q−1) and G

(j)
cl (q−1), the closed-loop transfer functions

from the white noise to the output. In this case, the unknown free parameters of GR(q−1)

can be calculated via the following improved Type-C benchmark optimization problem:

GR(q−1) = min
x

{
n∑

i=1,i6=j

ρ2
i · V ar

{
G

(i)
cl (q−1)

G
(j)
cl (q−1)

(F̂j(q
−1 + q−dGR(q−1))at

}}

= min
x

n∑

i=1,i6=j

ρ2
i · ‖

G
(i)
cl (q−1)

G
(j)
cl (q−1)

(F̂j(q
−1 + q−dGR(q−1))‖2

2

(2.18)

where F̂j(q
−1) can be obtained from Diophantine equation of G

(j)
cl (q−1) .

2.4 Computation of the improved Type-C benchmark

2.4.1 SIMO formulation of SISO LTV problem

To calculate the improved Type-C benchmark, we need to minimize the sum of the
weighted variances of the process output in response to different disturbance dynamics
subject to the specified performance for the j-th disturbance dynamics. Although this is
a SISO LTI control design problem for LTV disturbances, we may solve the problem by
stacking different closed-loop models together to form a single-input multi-output (SIMO)
problem. Each element of this SIMO system consists of the same process model but
different disturbance models. By Parseval’s theorem (Ljung, 1999), each output variance
can be related to the H2 norm of its corresponding system, and the variance of the SIMO
system is the sum of variance of each subsystem. The above heuristic argument can be
rigorously shown by the following theorem,

Theorem 2.4.1 For a process under a single LTI control subject to n piecewise constant

disturbance dynamics occurring at n different time periods with closed-loop models Gi ∈
RH2, i = 1, · · · , n, if the stacked system

[
G1 G2 · · · Gn

]T ∈ RH2, then the sum of
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the output variances over n different time periods is the same as the variance of the stacked

system.

n∑
i=1

‖Gi‖2
2 =

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

G1
...

Gn

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

2

Proof: Assume that, without loss of generality, the closed-loop system is excited by the
white noise at with zero mean and unit variance. The outputs of different time periods with
respect to different piecewise constant disturbance dynamics can be written as

y
(i)
t = Gi(q

−1)at, i = 1, 2, · · · , n

In the case of E(at)
2 = σ2 6= 1, Gi(q

−1) can be normalized by multiplying a
factor of 1/σ so that the white noise has unit variance. Using Parseval’s Theorem
(Ljung, 1999; Söderström and Stoica, 1989), the sum of variances over n different time
periods can be formulated as

n∑
i=1

V ar(y
(i)
t ) =

n∑
i=1

E([Gi(q
−1)at][Gi(q

−1)at]
T )

=
n∑

i=1

1

2π

∫ π

−π

|Gi(e
jω)|2Φat(ω)dω

=
n∑

i=1

1

2π

∫ π

−π

|Gi(e
jω)|2dω

=
n∑

i=1

‖Gi‖2
2

where Φ represents spectrum of signal (Ljung, 1999) and Φat(ω) is constant 1.
For the stacked SIMO system, the output can be written as

Yt =




y
(1)
t
...

y
(n)
t


 =




G1(q
−1)

...
Gn(q−1)


 at = G(q−1)at
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Then its output variance yields

trace[Cov(Yt)] = trace
{
E([G(q−1)at][G(q−1)at]

T )
}

=
1

2π

∫ π

−π

trace
{
G(ejω)Φat(ω)G∗(e−jω)

}
dω

=
1

2π

∫ π

−π

trace
{
G(ejω)G∗(e−jω)

}
dω

=
1

2π

∫ π

−π

n∑
i=1

|Gi(e
jω)|2dω

=
n∑

i=1

‖Gi‖2
2

This gives
∑n

i=1 V ar(y
(i)
t ) = trace[Cov(Yt)]. Since

1

2π

∫ π

−π

trace
{
G(ejω)G∗(e−jω)

}
dω = ‖G‖2

2

The above derivation also implies

n∑
i=1

‖Gi‖2
2 = ||G||2 =

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

G1
...

Gn

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

2

¤

Therefore, the objective function of the optimization problem of the improved Type-C
benchmark can be formulated as the H2 norm of a stacked system with SIMO structure.
We can deal with this stacked system in a similar manner as a single system. For example,

if two SISO systems, G1 and G2, with their state space realizations as
[

A1 B1

C1 D1

]
and

[
A2 B2

C2 D2

]
respectively, then the stacked system G becomes (Chen and Francis, 1995)

G =

[
A B
C D

]
=




A1 0 B1

0 A2 B2

C1 0 D1

0 C2 D2


 (2.19)

In this way, we can convert several SISO systems into a single stacked SIMO system
in order to solve the optimization problem of the improved Type-C benchmark. In the
case when the weighted coefficients are not the same, they could be integrated into their
corresponding subsystems respectively before a SIMO system is stacked. Then the total
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variance of a SISO LTV system is equal to the variance of the corresponding single stacked
SIMO system. This will transform the objective function of total variance into the variance
of the single stacked SIMO system, and therefore make it convenient to calculate the
objective function in the optimization.

2.4.2 Optimization formulation

As far as the improved Type-C benchmark is concerned, the optimization problem can
always be converted into anH2 norm optimization problem of a system or a stacked system.
The derived discrete-time transfer function or transfer function matrix, such as equation
(2.16) and equation (2.18), can further be converted into the state space form as

ξk+1 = Aξk + Bak

Ψk = Cξk + Dak

(2.20)

where A is asymptotically stable (its eigenvalues are all located within the unit circle).
Then its H2 norm can be formulated as (Zhou et al., 1996)

‖G‖2
2 = trace

{
DT D + BT WoB

}
= trace

{
DDT + CWcC

T
}

(2.21)

where Wc and Wo are referred to as the controllability and observability gramians which
are positive definite and satisfy

AWcA
T −Wc + BBT = 0

AT WoA−Wo + CT C = 0
(2.22)

Therefore the optimization problem can be finally converted into one of the following two
forms,

min
x

{
trace(DDT + CWcC

T )
}

(2.23)

subject to

AWcA
T −Wc + BBT = 0

Wc Â 0

where A is asymptotically stable and (A,B) is controllable. Or dually,

min
x

{
trace(DT D + BT WoB)

}
(2.24)

subject to

AT WoA−Wo + CT C = 0

Wo Â 0

where A is asymptotically stable and (C,A) is observable.
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2.4.3 Solution via LMI

The standard Type-C benchmark problem was studied by Huang (1999) and Olaleye et al.

(2002,2004), they assumed that the desired regulatory response to the major disturbance
takes the form of a first order transfer function with only one unknown free parameter
to be determined by optimization. The Type-C benchmark was obtained via an ad hoc

method or unconstrained nonlinear programming (NLP) technique, e.g., Nelder-Simplex

method. In the following we will show that the optimization problem of the improved
Type-C benchmark can be converted into LMIs under certain conditions, i.e., when the
decision variables are only present as the numerator coefficients in the transfer function of
the structured closed-loop response, and thus can be solved in a more efficient manner.

For the following transfer function (d0 is constant),

G(z) = d0 +
β1z

n−1 + β2z
n−2 + · · ·+ βn−1z + βn

zn + α1zn−1 + · · ·+ αn−1z + αn

(2.25)

its observable canonical form of the state space realization is given as the following:

G(z) =

[
A B
C D

]
=




−α1 1 0 · · · 0 β1

−α2 0 1 · · · 0 β2
...

...
...

...
...

−αn−1 0 0 · · · 1 βn−1

−αn 0 0 · · · 0 βn

1 0 0 · · · 0 d0




(2.26)

For a SISO system with its objective transfer function in the form of equation (2.25), if
the unknown free parameters present only in the coefficients of the numerator in the proper
transfer function of GR(q−1), they will also appear only in the coefficients of the numerator
in the corresponding closed-loop transfer function, such as equation (2.13) and equation
(2.17). In addition, d0, the first coefficient of the closed-loop transfer function from the
white noise to the process output must be non-zero due to the time delay in the open-loop
plant. Therefore, in its observable canonical form of state space realization, A, C and D

are all constant matrices or scalar without containing any unknown free parameters. The
elements of B, however, are linear combinations of the free parameters. If we formulate
the optimization problem as (2.23), when (A,B) is controllable and all the eigenvalues of
A are located within the unit circle, it is readily converted into LMIs and can be solved
efficiently.

Similarly, for the improved Type-C benchmark optimization problem, each SISO system
in the objective function can be readily converted into its observable canonical form of the
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state space realization. These SISO systems can then be stacked into a SIMO system, as
is shown in equation (2.19). Therefore, if the unknown free parameters all present in the
elements of B as their linear combinations for each SISO system, the above conclusion
is applicable to the stacked SIMO system. That means, in the state space realization of
the stacked SIMO system, A, C and D are all constant matrices without including any
unknown free parameters and the elements of B are linear combinations of the unknown
free parameters. Consequently the corresponding optimization problem for the stacked
SIMO system can also be transformed into the formulation as (2.23) and ready to be solved.

To summarize, if the unknown free parameters only present as the coefficients of
the numerator in the proper transfer function GR(q−1), the optimization problem of the
improved Type-C benchmark can be transformed into the form as (2.23). When the stacked
SIMO system is asymptotically stable and controllable, the optimization problem (2.23)
can be finally solved by a semi-definite programming (SDP) problem (Boyd et al., 1994).
It is given by the following theorem,

Theorem 2.4.2 For a discrete time LTI system (A,B, C, D) with linear combinations of

unknown free parameters in B, its H2 norm optimization problem (2.23) can be converted

into the following SDP problem as

min
x
{trace(Φ)} (2.27)

subject to
(

AΣAT − Σ B
BT −I

)
¹ 0

DDT + CΣCT − Φ ¹ 0

− Σ ≺ 0

where x is the decision variable which includes all the unknown free parameters.

Proof: Refer to Sato and Liu (1999) or Wang et al. (2000).

¤

In the following, we will show that the elements of B can be expressed as the linear
combinations of the unknown free parameters by an example. If GR(q−1) takes the form
of equation (2.10), the closed-loop transfer functions for the two sections in the objective
function are derived as

G1(z) = 1 +
0.27z4 − 0.27λz3 + (α− 0.6)z + 0.6λ− α

z5 − (0.67 + λ)z4 + 0.67λz3
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and
G3(z) = 1 +

0.47z4 − 0.47λz3 + (α− 0.6)z + 0.6λ− α

z5 − (0.87 + λ)z4 + 0.87λz3

Their observable canonical forms are given respectively by

G1(z) =

[
A1 B1

C1 D1

]
=




0.67 + λ 1 0 0 0 0.27
−0.67λ 0 1 0 0 −0.27λ

0 0 0 1 0 0
0 0 0 0 1 α− 0.6
0 0 0 0 0 0.6λ− α
1 0 0 0 0 1




and

G3(z) =

[
A3 B3

C3 D3

]
=




0.87 + λ 1 0 0 0 0.47
−0.87λ 0 1 0 0 −0.47λ

0 0 0 1 0 0
0 0 0 0 1 α− 0.6
0 0 0 0 0 0.6λ− α
1 0 0 0 0 1




Let the two weighting coefficients both take the unit value, i.e., ρ1 = ρ3 = 1, and the
stacked system can be expressed as the structure of equation (2.19). When λ is assigned a
value, the stacked A, C and D are all constant matrices. The free parameter α only exists
in the stacked matrix B. It can be further formulated as

B =

[
B1

B3

]
= S1SS2 + S3

where

S1 =
[
0 0 0 1 −1 0 0 0 0 −1

]T
, S = α, S2 = 1

S3 =
[
0.27 −0.27λ 0 −0.6 −0.6λ 0.47 −0.47λ 0 −0.6 0.6λ

]T

Since λ is specified a value a priori, the only free parameter α appears only in S. This
is a suitable formulation that can be used directly by the Matlab LMI toolbox (Gahinet et

al., 1995).
Likewise, if the state space realization takes the controllable canonical form, then the

corresponding optimization problem (2.24) can also be converted into an SDP problem.
This is shown in the following theorem.

Corollary 2.4.1 For a discrete time LTI system (A,B,C, D) with linear combinations of

unknown free parameters in C, its H2 norm optimization problem (2.24) can be converted

into the following SDP problem as

min
x
{trace(Φ)} (2.28)
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subject to
(

AT ΣA− Σ CT

C −I

)
¹ 0

DT D + BT ΣB − Φ ¹ 0

− Σ ≺ 0

where x is the decision variable which includes all the unknown free parameters.

2.5 Algorithms for performance limit and performance
assessment problems

2.5.1 Algorithm for performance limit problem

The procedure for calculating the performance limit based on the improved Type-C
benchmark can be summarized in the following algorithm, where σ2

opt represents the
achievable variance under the optimal feedback control.

Algorithm 2.5.1 Given a process model with stable inverse, and the disturbance models

of n different dynamics, the performance limit of the LTI control subject to piecewise

constant disturbance dynamics can be calculated through the following steps:

(1) Denote the major but transient upset disturbance model as Nj(q
−1) and the other

disturbance models as Ni(q
−1), i = 1, 2, · · · . Determine the process time delay

according to the process model. Specify the predefined response GR(q−1), such

as a first order transfer function in equation (2.11) or a second order transfer

function in equation (2.12). Fj(q
−1) can be obtained from Diophantine equation

as Nj(q
−1) = Fj(q

−1) + q−dRj(q
−1).

(2) According to equation (2.16), minimize the H2 norm and obtain the optimal values of

the unknown free parameters of GR(q−1). The H2 norm minimization of equation

(2.16) can be formulated as H2 norm minimization of a multivariable system which

has been shown in the previous section.

(3) With known GR(q−1), calculate the H2 norm of Ni(q
−1)

Nj(q−1)
(Fj(q

−1) + q−dGR(q−1)) and

denote it as σ2
opt(yi), which is the performance limit in regulating the i-th section of

the disturbances, for i = 1, 2, · · · , n.

(4) With known GR(q−1) and the process model T (q−1), the corresponding optimal

controller can be obtained from equation (2.14).
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2.5.2 Algorithm for performance assessment problem

The controller performance index is defined as the following,

η̂ =
σ̂2

opt

σ̂2
act

(2.29)

where σ̂2
opt represents the estimated achievable variance at the optimum, and σ̂2

act stands
for the estimated actual variance. The procedure for performance assessment based on the
improved Type-C benchmark can be summarized in the following algorithm.

Algorithm 2.5.2 If a controller has already been implemented in the control loop,

its performance assessment problem can be done using routine operating data via the

following steps:

(1) Separate data into appropriate sections according to the disturbance dynamics. For

off-line assessment problem, this can be done through the stationarity test of time

series data (Shiavi, 1999). For on-line assessment, this can be done through detection

of abrupt change algorithms as discussed in (Olaleye et al., 2004b). Denote the

major but transient upset section as the j-th section, which is desired to be controlled

within certain time frame. Denote any one of the other sections as the i-th section,

i = 1, 2, · · · , n, i 6= j, and assign the weighting values for different sections. Specify

the predefined response GR(q−1), such as a first order transfer function in equation

(2.11) or a second order in equation (2.12).

(2) By time series analysis, estimate the closed-loop transfer functions for the i-th and j-

th sections respectively, denote them as G
(i)
cl (q−1) and G

(j)
cl (q−1). Calculate F̂j(q

−1)

from the following Diophantine equation,

G
(j)
cl (q−1) = F̂j(q

−1) + q−dRj(q
−1)

(3) According to equation (2.18), minimize the H2 norm and obtain the optimal values of

the unknown free parameters of GR(q−1). With known GR(q−1), calculate the H2

norm of the transfer function in equation (2.17) and denote it as σ̂2
opt(yi) for the i-th

section, i = 1, 2, · · · , n, i 6= j. Calculate the H2 norm for the j-th data section from

F̂j(q
−1) + q−dGR(q−1), and denote it as σ̂2

opt(yj).

(4) Estimate the actual variances for the different sections from their corresponding

routine operating data, denote them as σ̂2
act(yi), i = 1, 2, · · · , n, i 6= j, and σ̂2

act(yj),

respectively.
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(5) Estimate the performance index η̂(yi) from the ratio of σ̂2
opt(yi) and σ̂2

act(yi), i =

1, 2, · · · , n, i 6= j. Estimate the performance index η̂(yj) from the ratio of σ̂2
opt(yj)

and σ̂2
act(yj).

2.6 Simulation and industrial examples

2.6.1 Simulation example

A jacketed reactor (Cooper et al., 2004) is considered to demonstrate the proposed
algorithms, where the sampling time is chosen as 10 second. The reactor is a continuously
stirred vessel in which an exothermic reaction occurs. The reactor exit stream temperature
is controlled by manipulating a valve to adjust the cooling liquid flow rate. The disturbance
variable of interest for this process is the temperature of cooling liquid entering the jacket.

The process transfer function is given by

q−dT̃ = q−6−0.02633− 0.009711q−1

1− 0.8999q−1

The transfer functions of three disturbance models with respect to three different sections
are assumed to be

N1(q
−1) =

0.07899

1− 0.9169q−1
1 6 t < 2001

N2(q
−1) =

0.06729

1− q−1
2001 6 t < 4001

N3(q
−1) =

0.06185

1− 0.9535q−1
4001 6 t 6 6000

The second section is assumed as a major but transient upset section of the disturbances. It
is required to make it satisfy a user specified structured closed-loop response, which may
take any one of the following two forms,

GR(q−1) =
α + βq−1

1− λq−1
or GR(q−1) =

α0 + α1q
−1 + α2q

−2

1 + λ1q−1 + λ2q−2

where α, β, α0, α1 and α2 are the decision variables, and λ, λ1, λ2 can be specified a value
or a bounded region. The true F2(q

−1) can be obtained from Diophantine equation of
N2(q

−1), which is given below,

F2(q
−1) = 0.0673 + 0.0673q−1 + 0.0673q−2 + 0.0673q−3 + 0.0673q−4 + 0.0673q−5

The first section is assumed to be the most representative one so that we can also evaluate
the performance based on the standard Type-C benchmark in order to do comparisons with
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the improved Type-C benchmark. In addition, the true variances of the closed-loop transfer
functions under current feedback control for three different disturbances can be calculated
directly from their true models respectively. Meanwhile, the actual variances of the closed-
loop systems for three different disturbances can be calculated theoretically.

2.5.1.1 Performance limit calculation

Case 1 Assume that the user specified structured closed-loop response of the second
disturbance takes the first order transfer function, where the time constant τ is given as
40, 95, 180 and 270, respectively for the sake of comparison. The free parameters α and
β should be determined such that the sum of the weighted variances of the first and third
sections (ρ1 = ρ3 = 1) is minimized.

According to Algorithm 2.5.1 for the performance limit problem, the results are given
in Table 2.1. It can be seen that with the increasing value of time constant, τ , which is

Table 2.1: Performance limit results with first order GR(q−1)
τ α∗ β∗ σ2

opt(y1) σ2
opt(y2) σ2

opt(y3)

40 0.0142 0.0089 0.0300 0.0284 0.0205
95 0.0161 0.0066 0.0289 0.0298 0.0202

180 0.0178 0.0047 0.0279 0.0319 0.0199
270 0.0188 0.0035 0.0274 0.0341 0.0196
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Figure 2.2: The trend of optimal variance vs user chosen τ value

specified for the desired structured closed-loop response of the second section, the optimal
variances of the first and third sections are all decreasing gradually while the corresponding
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Table 2.2: Optimal feedback controllers with respect to different τ values
τ(s) Q∗(q−1)

40 −29.99+53.59q−1−28.95q−2+4.51q−3

1−0.41q−1−0.29q−2−0.79q−6+0.41q−7+0.13q−8−0.05q−9

95 −28.89+54.84q−1−29.7q−2+3.38q−3

1−0.53q−1−0.33q−2−0.76q−6+0.48q−7+0.18q−8−0.04q−9

180 −27.93+53.67q−1−28.34q−2+2.39q−3

1−0.58q−1−0.35q−2−0.74q−6+0.48q−7+0.21q−8−0.03q−9

270 −27.35+52.58q−1−27.15q−2+1.79q−3

1−0.59q−1−0.36q−2−0.72q−6+0.47q−7+0.22q−8−0.02q−9

variance of the second section at the optimum is increasing (Figure 2.2). It is predictable
that the variance of the second section will become larger with the relaxation of its specified
value of time constant τ , while the variance of the first and third section is decreasing owing
to the relaxation of the performance in the second section. In addition, the corresponding
optimal feedback controllers can be derived according to equation (2.14). The obtained
optimal feedback controllers are listed in Table 2.2.

Case 2 Assume that the user specified structured closed-loop response of the second
section takes the second order transfer function, where λ = [λ1, λ2] is determined by ξ

and τ . Now τ is fixed and equals to 100, and ξ is given as 0.2155, 0.3441, 0.5912, 0.8261

and 1.0, respectively. The free parameters in α ( α = [α0, α1, α2]) should be determined
such that the sum of the weighted variances of the first and third sections (ρ1 = ρ3 = 1) is
minimized.

With given values of ξ and τ , λ = [λ1, λ2] can be obtained according to equation (2.12).
The results are given in Table 2.3. It can be seen that with the increasing value of the

Table 2.3: Performance limit results with second order GR(q−1)
ξ α∗ σ2

opt(y1) σ2
opt(y2) σ2

opt(y3)

0.2155 [0.0142, -0.0220, 0.0089] 0.0300 0.0287 0.0205
0.3441 [0.0152, -0.0214, 0.0078] 0.0294 0.0294 0.0204
0.5912 [0.0166, -0.0202, 0.0062] 0.0286 0.0307 0.0201
0.8261 [0.0175, -0.0192, 0.0052] 0.0281 0.0319 0.0199

1.0 [0.0180, -0.0185, 0.0046] 0.0278 0.0327 0.0198

damping coefficient ξ, the variances of the first and the third sections are both decreasing
while the variance of the second section is increasing (Figure 2.3). It shows once again that
the decreasing of the variances in the first and third sections is obtained at the cost of the
variance inflation in the second section. Since the user specified response GR(q−1) presents
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Figure 2.3: The trend of optimal variance vs user chosen damping coefficient

Table 2.4: Optimal feedback controllers with respect to different ξ values
ξ Q∗(q−1)

0.2155 −29.97+80.52q−1−67.1q−2+12q−3+4.52q−4

1−1.58q−1+0.24q−2+0.35q−3−0.79q−6+1.12q−7+0.02q−8−0.32q−9−0.05q−10

0.3441 −29.4+78.88q−1−66.17q−2+12.71q−3+3.95q−4

1−1.56q−1+0.22q−2+0.34q−3−0.77q−6+1.1q−7+0.01q−8−0.3q−9−0.43q−10

0.5912 −28.62+76.34q−1−64.35q−2+13.43q−3+3.16q−4

1−1.51q−1+0.2q−2+0.33q−3−0.75q−6+1.05q−7−0.004q−8−0.28q−9−0.03q−10

0.8261 −28.11+74.41q−1−62.63q−2+13.66q−3+2.64q−4

1−1.47q−1+0.17q−2+0.31q−3−0.74q−6+1.02q−7−0.008q−8−0.26q−9−0.03q−10

1.0000 −27.82+123.5q−1−216.5q−2+184.6q−3−72.62q−4+6.95q−5+1.91q−6

1−3.25q−1+3.58q−2−1.15q−3−0.42q−4+0.25q−5−0.73q−6+2.32q−7−2.41q−8

+0.59q−9+0.41q−10−0.15q−11−0.02−12

under-damped dynamic characteristics, the variance of the second section is increasing
rapidly with the reduced damping coefficient while the variance decreasing in the first and
third sections is rather slow. Similarly, the obtained optimal feedback controllers are listed
in Table 2.4.

2.5.1.2 Performance assessment calculation

As is shown in the previous two cases, the performance limit problem is solved when the
process and disturbance models are all known and the corresponding optimal controller can
also be obtained thereafter based on the improved Type-C benchmark. On the other hand,
for a given process under regulatory control, the performance of the existing controller
can be evaluated based on the improved Type-C benchmark. In the following two cases, a
well-designed controller has been implemented to control this process, which is given by

Q(q−1) =
−2.7 + 2.419q−1

1− q−1
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Our task is to evaluate its performance using routine operating data. Performance
assessment problem will be solved for the structured closed-loop responses with first order
and second order transfer functions respectively.

Case 3 For the same specification as Case 1 in Section 2.5.1.1, study the corresponding
performance assessment problem.

The performance assessment problem is different from the performance limit problem in
that we have no knowledge about the process model other than the time delay. Time series
modeling has to be done first before performance estimation. According to Algorithm
2.5.2 for the performance assessment problem based on the improved Type-C benchmark,
we obtain the results shown in Table 2.5. Compared with the results of the performance
limit problem in Table 2.1, the overall estimated results resemble their theoretical ones
well with certain error due to the estimation (Figure 2.4) and the error can be reduced
by increasing the sampling size of the routine operating data. For all three sections, the
trends of variance change with respect to increasing of τ value are almost the same as their
corresponding ones of the performance limit problem. In addition, performance indices
of three sections are also shown in Figure 2.5. We can see that with larger time constant
specified for the structured closed-loop response of the second section, a better trade-off
can be gained among three sections with closer performance indices in this case.

Table 2.5: Performance assessment results with first order GR(q−1)

τ α̂∗ β̂∗ σ̂2
opt(y1) σ̂2

opt(y2) σ̂2
opt(y3) η̂(y1) η̂(y2) η̂(y3)

40 0.0101 0.0068 0.0346 0.0266 0.0217 0.7822 0.6962 0.7708
95 0.0113 0.0047 0.0339 0.0272 0.0215 0.7679 0.7131 0.7619

180 0.0122 0.0028 0.0333 0.0280 0.0214 0.7536 0.7343 0.7594
270 0.0127 0.0013 0.0329 0.0286 0.0215 0.7451 0.7501 0.7626

Case 4 For the same specification as Case 2 in Section 2.5.1.1, study the corresponding
performance assessment problem.

According to Algorithm 2.5.2 for the performance assessment problem based on the
improved Type-C benchmark, we get the results shown in Table 2.6 and Figure 2.6.
Compared with the corresponding results in Table 2.3 and Figure 2.3, similar conclusions
can be drawn. The performance indices of all three sections are also given in Figure 2.7. In
this case, a better trade-off is gained among three sections with closer performance indices
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Figure 2.4: The trend of optimal variance vs user chosen τ value
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Figure 2.5: The trend of performance index vs user chosen τ value

when ξ = 1.0.

2.6.2 Industrial example

The improved Type-C benchmark is used to evaluate the control loop performance in a
Sulphur Recovery Unit (SRU), which was studied by Olaleye et al. (2004b) for the standard
Type-C benchmark problem. In this example, a proportional-integral-derivative (PID)
controller is applied to control the difference, 2SO2 − H2S, by manipulating the flowrate
of the trim air. This data set inludes 740 data points with three data sections (Figure 4.6)
and the time delay is 2 sampling units.

According to Algorithm 2.5.2 for the performance assessment problem, the improved
Type-C benchmark is applied by minimizing the sum of variances of the first and third
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Table 2.6: Performance assessment results with second order GR(q−1)
ξ α̂∗ σ̂2

opt(y1) σ̂2
opt(y2) σ̂2

opt(y3) η̂(y1) η̂(y2) η̂(y3)

0.2155 [0.0108, -0.0171, 0.0071] 0.0345 0.0269 0.0215 0.7800 0.7047 0.7628
0.3441 [0.0117, -0.0171, 0.0067] 0.0341 0.0272 0.0214 0.7722 0.7137 0.7585
0.5912 [0.0121, -0.0155, 0.0053] 0.0337 0.0277 0.0213 0.7618 0.7267 0.7565
0.8261 [0.0125, -0.0145, 0.0043] 0.0334 0.0281 0.0214 0.7551 0.7359 0.7575

1.0 [0.0126, -0.0136, 0.0036] 0.0332 0.0283 0.0214 0.7513 0.7414 0.7590
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Figure 2.6: The trend of optimal variance vs user chosen damping coefficient

sections subject to some user specified performance requirement in regulating the major
disturbance occurring in the second section of data set. In this example, the time constant
of the desired close-loop system is taken as 1.0 min when regulating the major disturbance
occurring at the second section. ARMA (auto-regressive moving average) models of
second order are used to fit the time series of all three data sections. When the first order
transfer function of time constant 1 min is taken as the user specified structured closed-loop
response for the second section, we have the result shown in Table 2.7. Compared with the
result in (Olaleye et al., 2004b), we can see that the optimal variances of the first and third
sections are all decreased to some degree while there is an increase of variance on the
second section satisfying the time constant requirement. This is in part due to the improved
benchmark with the objective to minimize the weighted sum of the output variances of the
first and third sections, and also due to the selection of a lead-lag first order system with one
more degree of freedom for the user specified closed-loop response on the second section.
Therefore, a better trade-off is gained while meeting the time constant constraint.

When the second order transfer function is applied for the structured closed-loop
response on the second section, the result is given in Table 2.8. The natural period and
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Figure 2.8: Time series plot of process output

damping coefficient are selected as τ = 0.5705 and ξ = 0.7071 such that the structured
closed-loop response on the second section has the same responding speed as the open-loop
system without any oscillation. Since there are three decision variables in this case, it can
be seen that the performance on the three sections can be further balanced. Especially when
the structured closed-loop response is required to have some kind of oscillations, the second
order transfer function is no doubt a better choice to gain not only a good trade-off among
different disturbances but also a good satisfaction for the user specified requirements.

In this example, the performance index of the second section is much smaller than the
first and third sections in both situations. The results are consistent with what we observed
from the actual output variances. Since the performance of the second section is poor
while the first and third sections have good performance, it is a reminder for the user to
take actions to tune the existing LTI controller in order to improve the performance of the
second section and lower down the performance of other two sections such that a better
trade-off could be obtained.

It is noted that, the values of the performance indices may be greater than 1, which



Sec. 2.7 Conclusions 38

Table 2.7: Performance assessment results with first order GR(q−1)

τ = 1.0 λ = 0.3679 α̂∗ = 0.6341 β̂∗ = 0.0801
Data section σ̂2

opt σ̂2
act η̂

1st 1.4389 1.3160 1.0934
2nd 3.1660 11.7948 0.2684
3rd 1.9255 2.1273 0.9052

Table 2.8: Performance assessment results with second order GR(q−1)
τ = 0.5705 ξ = 0.7071 α̂∗ = [0.3264, 0.1801, 0.1255]
Data section σ̂2

opt σ̂2
act η̂

1st 1.4524 1.3160 1.1037
2nd 3.4931 11.7948 0.2962
3rd 1.9108 2.1273 0.8982

indicates that the existing control is better than the benchmark control with respective to a
specific section of the disturbances. Note that the optimal (benchmark) control is LTI and
is optimal for the specified objective function. For the section with the major disturbance,
if the performance index is larger than 1, it can be regarded as an indication that shows the
user specified response is actually relaxed with respect to its current response in the sense
of variance. In addition, the trade-off can also be further balanced by adjusting different
weighting values.

2.7 Conclusions

This chapter has considered performance analysis problems for a SISO process that is
subject to time varying disturbance dynamics. In particular, we consider the disturbance
dynamics that can be represented as piecewise constant models. An improved LTI
benchmark is proposed to calculate the performance limit and do the performance
assessment. It is shown that the problems can be formulated as an optimal SIMO control
problem and solved via LMI technique. The solutions are given under both performance
limit and performance assessment framework. The simulation and industrial examples
demonstrate the suitability of the improved Type-C benchmark which always leads to a
better trade-off in regulating different disturbances in the sense of process output variance.



3
Performance Assessment of MIMO

Systems with LTV Disturbances

3.1 Introduction

In this chapter, we extend the linear time varying disturbance assessment (LVTD) problem
from SISO into MIMO processes. Following a similar structure as the last chapter, we
first solve the regular LTVD problem; two other problems are also solved for MIMO
systems, which are referred to as the weighted LTVD problem and generalized LTVD
problem, respectively. For the weighted LTVD problem, we formulate the problem as the
minimization of the sum of the weighted total variances (trace of covariance matrix) of all
but one major disturbance that is considered under the structured regulatory performance
requirement. For the generalized LTVD problem, the objective is to minimize the
maximum total variance of all but one major disturbance. The performance limit problem
is solved in addition to performance assessment problem.

The remainder of this chapter is organized as follows. Multivariate controller
performance assessment is revisited in Section 3.2. The LTVD problems for MIMO
processes are derived in Section 3.3, and they are referred to as the regular, weighted and
generalized LTVD benchmarks, respectively. The solutions to these LTVD benchmark
problems are given in Section 3.4. Simulation examples are provided in Section 3.5,
followed by concluding remarks in Section 3.6.

39
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3.2 Revisit of multivariate controller performance
assessment

Several authors have proposed solutions for the performance evaluation of multivariate
controllers based on the MVC benchmark (Harris et al., 1996; Huang et al., 1997a; Ko
and Edgar, 2001b). The difficulty in multivariate controller performance assessment is
the factorization of the time delay matrix, which is known as the interactor matrix. In
the following, the interactor matrix is introduced first, and then the FCOR algorithm for
multivariate controller performance assessment is summarized thereafter.

3.2.1 Interactor matrix

If a multivariate process is represented by

yt = T (q−1)ut + N(q−1)at (3.1)

where T (q−1) is a p × m proper, rational polynomial transfer function matrix, N(q−1) is
a disturbance model, yt, ut and at are output, input and white noise vectors of appropriate
dimensions. Then there exists a unique, non-singular, p×p lower left triangular polynomial
matrix D, such that |D| = qr and

lim
q−1→0

DT = lim
q−1→0

T̃ = Ko (3.2)

where Ko is a full rank (full column rank or full row rank) constant matrix, the integer
r is defined as the number of infinite zeros of T , and T̃ is the time delay free transfer
function (factor) matrix of T which contains only finite zeros. The matrix D is defined as
the interactor matrix and can be written as

D = D0q
d + D1q

d−1 + D2q
d−2 + · · ·+ Dd−1q (3.3)

where d is denoted as the order of the interactor matrix and is unique for a given transfer
function matrix, and Dis (for i = 0, 1, · · · , d − 1) are coefficient matrices (Huang et

al., 1997b).
Instead of taking the lower triangular form, if the interactor matrix satisfies

DT (q−1)D(q) = I (3.4)

then this interactor matrix is defined as the unitary interactor matrix. The existence of
the unitary interactor matrix has been established by (Peng and Kinnaert, 1992). Huang
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and Shah (1999) have found that a unitary interactor matrix is an optimal factorization of
time delays for multivariate systems in terms of minimum variance control and controller
performance assessment. This unitary interactor is an all-pass term, and factorization of
such a unitary interactor matrix does not change the spectral property of the underlying
system. It has been shown that multiplying a unitary interactor matrix to the output
variables does not change the quadratic measure or the variance of the corresponding output
variables, i.e.,

E[ỹt
T ỹt] = E[yT

t yt] (3.5)

where ỹt = q−dDyt, which can be called as the interactor filtered output. Therefore, in
terms of the quadratic measure of the variance, the overall performance assessment of yt is
the same as that of interactor filtered output ỹt.

The interactor matrix is an equivalent form of the time delay in multivariate systems.
It needs process model (or at least the first few Markov Matrices) to capture the delay
terms. The interactor matrix can be factored out by using QR factorization (Rogozinski et

al., 1987; Peng and Kinnaert, 1992), or SVD (Singular Value Decomposition) (Huang et

al., 1997b), or direct definition (Lu, 2005).

3.2.2 FCOR algorithm

A key to performance assessment of multivariate processes using MVC as a benchmark, is
to estimate the benchmark variance from routine operating data with a priori knowledge
of interactor matrices. This feedback control invariant term (minimum variance) can
be estimated from routine operating data by multivariate time series analysis (Huang
et al., 1997b). The overall and individual performance indices can be calculated by
multivariate FCOR (filtering and correlation analysis) algorithm (Huang and Shah, 1999).

With unitary interactor matrix D, the process output in (3.1) can be expressed as

yt = T (q−1)ut + N(q−1)at = D−1T̃ ut + Nat (3.6)

Since q−dDN = F + q−dR, the interactor filtered output can be written as

ỹt = q−dDyt = q−dT̃ ut + q−dDNat = Fat + q−d(T̃ ut + Rat) (3.7)

and then the closed-loop response of the filtered output under minimum variance control
can be obtained as

ỹt|mv = Fat = (F0 + F1q
−1 + · · ·+ Fd−1q

−d+1)at (3.8)
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and yt|mv can be solved as

yt|mv = qdD−1(F0 + F1q
−1 + · · ·+ Fd−1q

−d+1)at (3.9)

For the unitary interactor matrix, we have D−1(q) = DT (q−1),i.e.,

D−1 = (D0q
d + · · ·+ Dd−1q)

−1 = DT
0 q−d + · · ·+ DT

d−1q
−1 (3.10)

Therefore

yt|mv = (DT
0 + · · ·+ DT

d−1q
d−1)(F0 + F1q

−1 + · · ·+ Fd−1q
−d+1)at

, (E0 + E1q
−1 + · · ·+ Ed−1q

−d+1)at

(3.11)

where

(E0, E1, · · · , Ed−1) , (DT
0 , DT

1 , · · · , DT
d−1)




F0 F1 · · · Fd−1

F1 F2 · · ·
...

...
... Fd−1

Fd−1




(3.12)

If E(ata
T
t ) = Σa, then we have

E(yty
T
t )|mv = trace(E0ΣaE

T
0 + E1ΣaE

T
1 + · · ·+ Ed−1ΣaE

T
d−1) (3.13)

The overall and individual performance indices can thus be calculated respectively as the
following,

ηo =
trace(E(yty

T
t )|mv)

trace(E(ytyT
t ))

=
trace(E0ΣaE

T
0 + E1ΣaE

T
1 + · · ·+ Ed−1ΣaE

T
d−1)

trace(E(ytyT
t ))

(3.14)

and

ηi =
diag(E(yty

T
t )|mv)

diag(E(ytyT
t ))

=
diag(E0ΣaE

T
0 + E1ΣaE

T
1 + · · ·+ Ed−1ΣaE

T
d−1)

diag(E(ytyT
t ))

(3.15)

An important assumption of these existing results with minimum variance control as the
benchmark is that the disturbance dynamics is linear time invariant. However, practical
experiences indicate that the disturbance dynamics are often time varying. In the following
sections, we will consider a class of time varying disturbance dynamics and then present
our solutions.
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3.3 The LTVD benchmarks for MIMO processes

To start, we reiterate the following assumptions: (1) The plant is linear time invariant with
no unstable zeros. (2) The disturbance model is piecewise linear time varying. (3) The
controller is time invariant. The derivations in this chapter are based on the internal model
control (IMC) framework that is mathematically equivalent to the conventional feedback
control.
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Figure 3.1: Control loop configuration under IMC framework

Consider a MIMO process T (q−1) shown in Figure 3.1 subject to piecewise constant
disturbance dynamics, Ni(q

−1) and Nj(q
−1), in different time durations respectively. at is

white noise sequences with zero mean. T (q−1) is assumed minimum phase which can
be factorized as two different parts, T (q−1) = D−1T̃ (q−1), where T̃ (q−1) is the time
delay free part of the process model and D is the unitary interactor matrix, which is the
generalized time delay for MIMO processes (Huang and Shah, 1999). T̂ (q−1) is the internal
process model. The process is controlled by a controller Q∗(q−1) specified under the
IMC framework (Morari and Zafiriou, 1989), which can be converted into a conventional
feedback controller Q(q−1) as

Q(q−1) = Q∗(q−1)(I − T (q−1)Q∗(q−1))

We have assumed that the disturbance dynamics is piecewise linear time varying. This
type of time varying disturbances are reflected as different output trajectories in different
time sections, each section having a linear time invariant disturbance model. It is assumed
that the i-th disturbance dynamics is the most representative of the disturbances that are
affecting the process while the j-th section of the disturbances corresponds to the significant
but transient upset within the process. It is required that the closed-loop response to the j-th
section of disturbance is to be settled down along some user specified trajectory.

The process is also affected by some other disturbances in addition to the two specified
above. Since different disturbances affect the process at different time periods, we denote
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the closed-loop response to the k-th disturbance as the k-th section response or simply
call it as the k-th section for simplicity, where k = 1, 2, · · · , n. For the regular LTVD
benchmark, i 6= j, j 6= k, i 6= k, and the k-th section is only used to verify the suitability
of the obtained benchmark. For the weighted LTVD benchmark and the generalized LTVD
benchmark, we only differentiate the j-th section from other sections, i.e., k will include
the value of i. For simplicity the operator q−1 is omitted in the following derivations. In
addition, we call the trace of the covariance matrix as total variance, which is equal to
the square of H2 norm of the transfer matrix when the input is white noise with identity
covariance matrix.

3.3.1 Performance limit problem

For this problem, the true models, T , N and Q∗ are all known. The output can be expressed
as the following:

yt = (I −D−1T̃Q∗)Nat

= qdD−1(q−dDN − q−dT̃Q∗N)at

= qdD−1(F + q−dR− q−dT̃Q∗N)at

= qdD−1(F + q−d(R− T̃Q∗N))at

where d is denoted as the order of the unitary interactor matrix D (Huang and Shah, 1999).
The last term of the right side of the above equation, D−1(R − T̃Q∗N)at, depends on
the controller Q∗ and thus can be shaped by it (Huang and Shah, 1999). The first term,
qdD−1F , does not depend on the control and is also known as feedback control invariant,
a term representing minimum variance control output.

For the j-th data section, it is required to be settled down according to some user
specified response GR, thus

y
(j)
t = qdD−1(Fj + q−dGR)at = (I −D−1T̃Q∗)Njat (3.16)

A simple and practical choice of GR elements can take any one of the following two
forms,

αij

1− λijq−1
or

αij + βijq
−1

1− λijq−1
(3.17)

where αij and βij are unknown free parameters to be determined and λij represents the
response dynamics that can be specified by the user.

If the user specified closed-loop response for the j-th section is satisfied under the
controller Q∗, then the output of any one of the other sections, i.e., k-th section, can be
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derived as follows,

y
(k)
t = (I −D−1T̃Q∗)Nkat

= qdD−1(Fj + q−dGR)N−1
j Nkat

(3.18)

where
q−dDNj = Fj + q−dRj (3.19)

Then the output of the i-th section is given by

y
(i)
t = qdD−1(Fj + q−dGR)N−1

j Niat (3.20)

In this situation, the optimal controller Q∗ can be obtained as

Q∗ = T̃−1(Rj −GR)N−1
j (3.21)

It is ready to obtain the corresponding optimal controller Q under conventional feedback
framework (see Figure 3.1) as

Q = Q∗(I −D−1T̃Q∗)−1

= T̃−1(Rj −GR)(Fj + q−dGR)−1q−dD
(3.22)

The objective of the regular LTVD benchmark is to determine the unknown free parameters
of the transfer function matrix GR such that the total variance of the output due to the i-th
disturbance is minimized, i.e., the H2 norm of the i-th closed-loop transfer function matrix
as in equation (3.20) is minimized. For the weighted LTVD benchmark, the cost function
is the sum of the weighted total variances of different sections of the outputs except for that
of the j-th output, i.e., the sum of the weighted H2 norms of transfer function matrices of
all the n sections other than that of the j-th section, as shown in equation (3.18). For the
generalized LTVD benchmark, the objective is to minimize the maximum H2 norm of the
transfer function matrices of all the other n− 1 sections without including the j-th section.

3.3.2 Performance assessment problem

For the performance assessment problem, we have neither the model of the process nor the
models of the disturbances. What we have is only the unitary interactor matrix D, which
can be obtained from the first few Markov matrices of the process under study (Huang and
Shah, 1999; Huang et al., 1997b). By time series analysis, we can obtain the closed-loop
transfer function matrices G

(j)
cl and G

(k)
cl under feedback control, i.e.,

y
(k)
t = G

(k)
cl at = (I + D−1T̃Q)−1Nkat

y
(j)
t = G

(j)
cl at = (I + D−1T̃Q)−1Njat
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Therefore, the following equation holds,

G
(j)−1
cl G

(k)
cl = N−1

j Nk

If a filter, q−dD, is applied to the process output, it separates the filtered output into the
feedback control independent part and the feedback control dependent part via Diophantine
equation. For the interactor filtered output of the j-th data section, its closed-loop response
has to meet some user specified requirement as GR; therefore we have

q−dDy
(j)
t = (Fj + q−dGR)at = q−dD(I + D−1T̃Q)−1Njat

For the interactor filtered output of the k-th data section, we have

q−dDy
(k)
t = q−dD(I + D−1T̃Q)−1Nkat

= (Fj + q−dGR)N−1
j Nkat

= (Fj + q−dGR)G
(j)−1
cl G

(k)
cl at

Therefore, the output of the i-th, j-th and k-th sections can be written respectively as

y
(i)
t = qdD−1(Fj + q−dGR)G

(j)−1
cl G

(i)
cl at (3.23)

y
(j)
t = qdD−1(Fj + q−dGR)at (3.24)

y
(k)
t = qdD−1(Fj + q−dGR)G

(j)−1
cl G

(k)
cl at (3.25)

and Fj can be obtained from the Diophantine equation as

q−dDG
(j)
cl = Fj + q−dRj (3.26)

In order to achieve the user specified response for the j-th section shown in equation
(3.24), the regular LTVD benchmark aims at searching through the unknown free
parameters of GR such that the H2 norm of the transfer function matrix of the i-th section
as in equation (3.23) is minimized. Meanwhile, the objective of the weighted LTVD
benchmark is to minimize the sum of the weighted H2 norms of the transfer function
matrices of all sections other than that of the j-th section, and the aim of the generalized
LTVD benchmark is to minimize the maximum H2 norm of the transfer function matrices
of all sections except for that of the j-th section, as shown in equation (3.25).
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3.4 Solutions to the LTVD benchmarks

For the regular LTVD benchmark problem, all the unknown free parameters of GR, which
are the decision variables in x, can be obtained by solving an H2 optimization problem. It
can be expressed as

GR = min
x

‖qdD−1(Fj + q−dGR)N−1
j Ni‖2

2 (3.27)

for the performance limit problem and

GR = min
x

‖qdD−1(Fj + q−dGR)G
(j)−1
cl G

(i)
cl ‖2

2 (3.28)

for the performance assessment problem.
For the weighted LTVD benchmark, if there are totally n different piecewise constant

disturbances, it can be formulated by

GR = min
x

n∑

k=1,k 6=j

ρ2
k · ‖qdD−1(Fj + q−dGR)N−1

j Nk‖2
2 (3.29)

for the performance limit problem and

GR = min
x

n∑

k=1,k 6=j

ρ2
k · ‖qdD−1(Fj + q−dGR)G

(j)−1
cl G

(k)
cl ‖2

2 (3.30)

for the performance assessment problem, where ρ2
k represents the weighting coefficient

with respect to the k-th disturbance.
For the generalized LTVD benchmark, it can be formulated as

GR = min
x

max
k=1,··· ,n,k 6=j

‖qdD−1(Fj + q−dGR)N−1
j Nk‖2

2 (3.31)

for the performance limit problem and

GR = min
x

max
k=1,··· ,n,k 6=j

‖qdD−1(Fj + q−dGR)G
(j)−1
cl G

(k)
cl ‖2

2 (3.32)

for the performance assessment problem.
The regular LTVD benchmark problem can be directly solved by optimizing the H2

norm of a system. For the weighted LTVD benchmark, however, the objective is the
sum of the weighted H2 norm of the transfer function matrices of different sections.
Each section has its own transfer function matrix which can be imagined as a system.
In the objective function, we have n − 1 different systems which are related to the
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corresponding n − 1 sections respectively. Those different systems can be integrated
with the corresponding weighting values into themselves and can be arranged into a new
expanded multi-input multi-output (MIMO) structure with inputs unchanged and outputs
expanded. As a consequence, the weighted LTVD benchmark can be dealt with as the H2

norm optimization problem of an expanded system. If Gk = qdD−1(Fj + q−dGR)N−1
j Nk

or Gk = qdD−1(Fj + q−dGR)G
(j)−1
cl G

(k)
cl , then we have

n∑

k=1,k 6=i

‖ρkGk‖2
2 =

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

ρ1G1
...

ρnGn

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

2

For the generalized LTVD benchmark, it is actually a min-max H2 norm optimization
problem.

Since any system has its state space respresentation

ξk+1 = Aξk + Bak

Ψk = Cξk + Dak

(3.33)

the above optimization problems from equation (3.27) to equation (3.32) can all be
converted and solved via the following optimization problem (Zhou et al., 1996),

min
x

{
trace(DDT + CWcC

T )
}

(3.34)

subject to

AWcA
T −Wc + BBT = 0

Wc Â 0

where A is stable and (A,B) is controllable. Or dually,

min
x

{
trace(DT D + BT WoB)

}
(3.35)

subject to

AT WoA−Wo + CT C = 0

Wo Â 0

where A is stable and (A,C) is observable.
This kind of optimization problem can be solved by nonlinear programming (NLP)

techniques. Under certain conditions, it can be further converted into linear matrix
inequalities (LMIs) and thus can be solved more efficiently (Xu and Huang, 2006), as
described in the previous chapter.
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3.5 Simulation examples

The following MIMO system is considered to investigate the different cases of the LTVD
benchmark problems.

The process transfer matrix and the controller are given respectively by

T =

[
q−1

1−0.4q−1
q−2

1−0.1q−1

0.3q−1

1−0.1q−1
q−2

1−0.8q−1

]
, Q =

[
0.5−0.2q−1

1−0.5q−1 0

0 0.25−0.2q−1

1−0.25q−2

]

The process is assumed to be affected by three different piecewise constant disturbance
dynamics with the models provided below with respect to these disturbances.

N1 =

[
1

1−0.5q−1
−0.6q−1

1−0.5q−1

0.5q−1

1−0.5q−1
1

1−0.5q−1

]
1 6 t < 2001

N2 =

[
1

1−0.9q−1
−0.6q−1

1−0.9q−1

0.5q−1

1−0.9q−1
1

1−0.9q−1

]
2001 6 t < 3001

N3 =

[
1

1−0.7q−1
−0.6q−1

1−0.7q−1

0.5q−1

1−0.7q−1
1

1−0.7q−1

]
3001 6 t 6 4500

The second disturbance has the slowest dynamics and is considered here as the major
disturbance. Control of the second disturbance needs to satisfy the user specified closed-
loop response, which takes a lead-lag transfer function matrix as

GR =

[ 1
1−λ1q−1 0

0 1
1−λ2q−1

] [
α11 + β11q

−1 α12 + β12q
−1

α21 + β21q
−1 α22 + β22q

−1

]
=

[
α11+β11q−1

1−λ1q−1
α12+β12q−1

1−λ1q−1

α21+β21q−1

1−λ2q−1
α22+β22q−1

1−λ2q−1

]

where α =

[
α11 α12

α21 α22

]
and β =

[
β11 β12

β21 β22

]
are decision variables, and λ = [λ1 λ2] can

be specified by given values or bounded regions within which λ1 and λ2 are allowed to be
changing (Huang and Shah, 1998).

From the process transfer function matrix, a unitary interactor matrix D can be factored
out as:

D =

[−0.9578q −0.2873q
−0.2873q2 0.9578q2

]

We can factorize F2 and R2 from the Diophantine equation q−dDN2 = F2 + q−2R2 as:

F2 =

[ −0.9578q−1 −0.2873q−1

−0.2873 + 0.2203q−1 0.9578 + 1.034q−1

]
, R2 =

[ −1.006
1−0.9q−1

0.3161
1−0.9q−1

0.1983
1−0.9q−1

0.931
1−0.9q−1

]

Since in a SISO system, σ2 is referred to as the variance of a signal time series, for
convenience, here we also use the same notation for the total variance in the MIMO system,
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i.e., the trace of the output covariance matrix. For the performance assessment problems,
σ̂2 represents the estimated total variance and η̂ is the corresponding performance index.
The performance index is defined as the ratio of optimal total variance and the present total
variance. In the following simulation examples, we choose λ1 = λ2 in order to observe the
changes of optimal total variances with different λ values.

3.5.1 Performance limit calculation

If the process and disturbance models are known, the optimal output total variances can
be calculated with different user chosen λ values, based on the regular, weighted and
generalized LTVD benchmarks respectively. The results are given in Table 3.1, Table 3.2
and Table 3.3 respectively. The optimal total variances are also shown in Figure 3.2, Figure
3.3 and Figure 3.4 respectively with solid lines.

Table 3.1: Performance limit results based on the regular LTVD benchmark[
λ1 λ2

] [
0.3 0.3

] [
0.5 0.5

] [
0.7 0.7

]

α∗
[−0.3007 −0.0727

0.0535 0.4753

] [−0.3239 −0.0934
0.0384 0.5120

] [−0.3542 −0.0787
−0.0210 0.5595

]

β∗
[−0.1530 −0.0251

0.0303 0.2419

] [−0.1244 −0.0001
0.0290 0.1967

] [−0.0818 −0.0426
0.0095 0.1291

]

σ2
opt(y1) 2.7938 2.7223 2.6298

σ2
opt(y2) 3.6753 3.8844 4.3277

σ2
opt(y3) 3.0154 3.0028 2.9846

Table 3.2: Performance limit results based on the weighted LTVD benchmark[
λ1 λ2

] [
0.3 0.3

] [
0.5 0.5

] [
0.7 0.7

]

α∗
[−0.2266 −0.0709

0.0173 0.3738

] [−0.2414 −0.0787
−0.0110 0.3984

] [−0.2610 −0.0814
0.01956 0.4312

]

β∗
[−0.1201 −0.0282

0.0092 0.2004

] [−0.0963 −0.0134
0.0011 0.1617

] [−0.0594 −0.0106
0.0029 0.1017

]

σ2
opt(y1) 2.8129 2.7473 2.6616

σ2
opt(y2) 3.4641 3.5821 3.8234

σ2
opt(y3) 2.9493 2.918 2.8721

For all of the three different LTVD benchmarks, with the increasing λ values, the optimal
total variance of the first section is getting smaller, while the optimal total variance of the
second section is becoming larger. It should be noted that for the third section, its optimal
total variance is also decreasing with the increasing of λ values.
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Table 3.3: Performance limit results based on the generalized LTVD benchmark[
λ1 λ2

] [
0.3 0.3

] [
0.5 0.5

] [
0.7 0.7

]

α∗
[−0.1531 −0.0503

0.0066 0.2725

] [−0.1626 −0.0525
0.0052 0.2895

] [−0.1765 −0.0275
0.0334 0.3143

]

β∗
[−0.0962 −0.0182

0.0090 0.1713

] [−0.0818 −0.0188
0.0017 0.1456

] [−0.0570 0.0056
0.0078 0.1018

]

σ2
opt(y1) 2.8727 2.8168 2.7499

σ2
opt(y2) 3.3128 3.3822 3.5197

σ2
opt(y3) 2.9291 2.8939 2.8466

With the same λ values, the smallest optimal total variance of the first section is always
obtained on the regular LTVD benchmark. This is due to the fact that its objective function
is aiming at minimizing the total variance of the first section only.

Comparing with the regular LTVD benchmark, the other two benchmarks lead to better
trade-offs among different sections other than the transient section in the sense of total
variance. As far as the regular LTVD benchmark is concerned, the total variance of the
third section is not included in the objective function to be minimized, so its performance
is not always guaranteed.

As for the weighted and generalized LTVD benchmarks, both of them can result in the
trade-offs among different sections other than the transient one. However, the former one
leads to a smaller sum of the weighted total variances of different sections while the latter
results in a smaller maximum total variance of different sections.

3.5.2 Performance assessment calculation

For the case that the complete process model and disturbance model are all unavailable
except for the closed-loop routine operating data and the interactor matrix, we can estimate
the closed-loop model by time series analysis. The optimal output total variances can
also be calculated with different user chosen λ values, based on the regular, weighted and
generalized LTVD benchmarks respectively. The results are given in Table 3.4, Table 3.5
and Table 3.6 respectively. The optimal total variances are also shown in Figure 3.2, Figure
3.3 and Figure 3.4 respectively with dashed lines. Comparing the results of performance
limit problems with those of performance assessment problems, it can be seen that the
overall trends agree very well. The difference is likely due to the time series modelling
error.
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Table 3.4: Performance assessment results based on the regular LTVD benchmark[
λ1 λ2

] [
0.3 0.3

] [
0.5 0.5

] [
0.7 0.7

]

α∗
[−0.2642 −0.1369

0.0084 0.4881

] [−0.2859 −0.1313
0.0265 0.5302

] [−0.3215 −0.1406
−0.0187 0.5822

]

β∗
[−0.1400 −0.0409

0.0135 0.3127

] [−0.1293 0.0216
0.0352 0.2467

] [−0.1026 0.0345
0.0261 0.1446

]

σ̂2
opt(y1) 2.8419 2.7701 2.6827

σ̂2
opt(y2) 3.4803 3.696 4.1403

σ̂2
opt(y3) 3.0205 2.9877 2.9623

η̂(y1) 0.9576 0.9334 0.9039
η̂(y2) 0.5103 0.5420 0.6071
η̂(y3) 0.8741 0.8646 0.8573

Table 3.5: Performance assessment results based on the weighted LTVD benchmark[
λ1 λ2

] [
0.3 0.3

] [
0.5 0.5

] [
0.7 0.7

]

α∗
[−0.1929 −0.0887

0.0075 0.3860

] [−0.2119 −0.0552
−0.0286 0.4148

] [−0.2407 −0.1155
−0.0437 0.4548

]

β∗
[−0.1253 0.0840
−0.0097 0.2669

] [−0.1174 0.0961
0.0292 0.2120

] [−0.0902 0.0866
−0.0039 0.1248

]

σ̂2
opt(y1) 2.8841 2.8165 2.7231

σ̂2
opt(y2) 3.2569 3.3897 3.6599

σ̂2
opt(y3) 2.9237 2.8832 2.8357

η̂(y1) 0.9718 0.9490 0.9175
η̂(y2) 0.4776 0.4970 0.5367
η̂(y3) 0.8461 0.8344 0.8206

3.6 Conclusion

Three different LTVD benchmarks for MIMO processes are proposed and studied in this
chapter for evaluating the controller performance in the sense of total variance. The process
is subject to piecewise constant LTV disturbance dynamics. It can be concluded that the
weighted and generalized LTVD benchmarks can gain better trade-offs between different
sections of the disturbances than the regular LTVD benchmark. In the case there are only
two different disturbances, these three LTVD benchmarks are exactly the same. But when
there are more than 2 different disturbances, these three LTVD benchmarks are different.
When only one representative disturbance is concerned, the regular LTVD benchmark is the
right choice. However, when the sum of weighted total variances is to be minimized, we
should choose the weighted LTVD benchmark. If we concern about the maximum (worst
case) total variance of different disturbances, we would better choose the generalized LTVD
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Table 3.6: Performance assessment results based on the generalized LTVD benchmark[
λ1 λ2

] [
0.3 0.3

] [
0.5 0.5

] [
0.7 0.7

]

α∗
[−0.1602 −0.0957

0.0264 0.3294

] [−0.1620 −0.0246
−0.0672 0.3290

] [−0.1681 −0.1205
0.0010 0.3343

]

β∗
[−0.1195 0.0717
−0.0412 0.2453

] [−0.1144 0.0268
−0.0264 0.1948

] [−0.0897 0.1247
−0.0255 0.1294

]

σ̂2
opt(y1) 2.9118 2.8707 2.8073

σ̂2
opt(y2) 3.1696 3.2291 3.3635

σ̂2
opt(y3) 2.9118 2.8707 2.8098

η̂(y1) 0.9811 0.9673 0.9459
η̂(y2) 0.4648 0.4735 0.4932
η̂(y3) 0.8427 0.8308 0.8132
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Figure 3.2: The trend of optimal variance vs user chosen λ value

benchmark to evaluate the controller performance.
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4
Covariance Analysis Approach to Control

Performance Assessment ∗

4.1 Introduction

Most of current controller performance assessment algorithms are based on the minimum
variance control (MVC) benchmark and the performance index is calculated by comparing
the minimum variance and the actual variance (Harris, 1989; Desborough and Harris, 1992;
Huang and Shah, 1999). However, the minimum variance control law may not be the
implementable one in practice due to its lack of robustness to model uncertainty and use
of excessive input actions (Astrom and Wittenmark, 1997). More realistic user specified
benchmark controls thus have been investigated. This class of benchmark compares the
variance of current closed-loop dynamics with the variance of the user specified closed-
loop dynamics directly (Kozub, 1996).

The user specified closed-loop dynamics can be determined in terms of performance
requirement, such as time constant, settling time, decay ratio, desired variance, and so
forth. Tyler and Morari (1996) have formulated an acceptable performance as constraints
on the closed-loop impulse response coefficients. Performance assessment can be done by
comparing the actual impulse response coefficients with those of acceptable performance.

∗This chapter has been published in Xu, F., Lee, K.H. and Huang, B., Monitoring control performance
via structured closed-loop response subject to output variance/covariance upper bound, Journal of Process
Control, 16, 971-984, 2006
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One useful practical specification can be expressed according to time constant or settling
time (Kozub, 1996). A modified performance index proposed by Horch et al. (1999,
2000) is based on the user assigned closed-loop pole. Li et al. (2003) has developed
a relative performance index which can be regarded as an alternative form of user
specified performance benchmark. It is a measure that compares the variance of the
output data from an acceptable reference model and that from the actual process, where
the acceptable reference model can take nonparametric model form, like finite impulse
response, or parametric models, like the first order transfer function. Huang and Shah
(1998) have systematically described the user specified performance benchmark, from
single-input single-output (SISO) case to multi-input multi-output (MIMO) case, and also
from minimum phase system to non-minimum phase system. It was further extended to
the controller performance assessment of linear time varying systems which are subject
to piecewise constant disturbance dynamics (Huang, 1999; Olaleye, 2002; Olaleye et

al., 2004b; Xu and Huang, 2006).
However, the user specified closed-loop dynamics cannot be arbitrarily determined due

to the process time delay. For the time delay systems, the closed-loop response can
be divided into two parts, one is feedback control invariant and the other one feedback
controller dependent (Harris, 1989). Therefore, only the latter part can be replaced by a
user specified response trajectory. The obtained closed-loop response is referred to as the
structured closed-loop response (Xu and Huang, 2006). The optimal structured closed-loop
response can be used as an achievable control against which one can assess performance of
control loops. In the previous work, the user specified response is given as a first order or
second order transfer function or matrix with some specified performance requirement for
the characteristic parameters, such as time constant and/or damping coefficient. However,
the choice of the user specified response is not arbitrary. For example, in the closed-loop
pole assignment, the choice of closed-loop pole is based on either robustness considerations
or available additional process knowledge (Horch and Isaksson, 1999).

In this chapter, we attack this problem from viewpoint of a variance/covariance upper
bound on the outputs. This is due to the fact that the variance typically represents
product quality consistency (Shunta, 1995). The reduction of variances of some quality
variables not only means the improved product quality but also makes it possible to
operate to the constraints to increase throughput, reduce energy consumption and save
raw materials. The covariance is the direct extension of the variance from SISO systems
to MIMO systems. Therefore, if the output variance/covariance is not larger than its
desired upper bound, the product quality consistency can be ensured. Meanwhile, the
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theoretical framework on the covariance control problems was proposed by Skelton et

al. (1998). The necessary and sufficient conditions for a positive definite matrix to
be assignable to the state vector and parametrization of all controllers that assign such
a covariance to the state vector were obtained (Collins and Skelton, 1987; Hsieh et

al., 1989; Hsieh and Skelton, 1990; Grigoriadis and Skelton, 1997; Zhu et al., 1997).
However, the output variance/covariance constrained problem to be dealt with in this
chapter is a multi-objective design problem and thus the covariance control framework
presented in (Skelton et al., 1998) is not applicable to this problem. Furthermore, in many
control applications assigning a covariance to the state vector is not suitable in controller
performance monitoring. Instead, specifying certain bounds on the covariance for the input
and output vectors is often required (Hsieh et al., 1989; Zhu et al., 1997). Huang (2003)
and Huang et al. (2003b) extended this idea to include the input in the controlled variables
and showed that the generalized covariance constrained (GCC) problem can be converted
into the feasibility problem via linear matrix inequalities (LMIs). If the GCC problem
is feasible, the corresponding controller can be parameterized by the solution to these
LMIs. This makes it possible to parameterize the structured closed-loop response subject
to the output variance/covariance upper bound constraint. In this chapter, we present
an effective framework and optimization methods to solve the variance/covariance upper
bound constraint problems arising in controller performance monitoring via structured
closed-loop response.

This chapter focuses on the performance assessment problem rather than the controller
synthesis problem and the complete knowledge of models is not needed. The
proposed benchmark can be used to evaluate the performance of the existing controllers.
Performance measures showing how far the current controller is from the benchmark are
presented by variance performance index and H∞ norm of the difference between the
desired structured closed-loop system and the existing closed-loop system. The main
contribution of this chapter is therefore to solve the desired structured closed-loop response
subject to the constraint of output variance/covariance upper bound. With closed-loop
routine operating output data and process time delay (i.e., no complete process model
information is available), the desired structured closed-loop response can be obtained
directly via the estimated closed-loop time series model. It is useful for the controller
performance assessment when both the chosen user specified closed-loop response with
guaranteed stability and variance/covariance constraints are satisfied simultaneously. A
significant feature is that the output variance/covariance upper bound constraint can be
explicitly specified according to the product specifications and is always satisfied when
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the problem is feasible. This desired structured closed-loop response can thus be served
as a benchmark against which the existing controller performance can be compared. In
addition, two approaches, linearizing change of variables and Frank and Wolfe algorithm,
are adopted to solve this problem, which result in a full order and a reduced order structured
closed-loop response, respectively.

The outline of this chapter is as follows. Problem statement is discussed in Section 4.2.
A framework for the structured closed-loop response design is given in Section 4.3. LMI-
based optimization methods are presented for the structured closed-loop response design
in Section 4.4. A guideline for the selection of the closed-loop response structure and the
optimization strategies for performance assessment are illustrated in Section 4.5. A case
study demonstrating the validity of our approaches is illustrated in Section 4.6, followed
by concluding remarks in Section 4.7.

The notations throughout this chapter are standard. Rn denotes the n dimensional
Euclidean space. Rn×m is the set of all n × m real matrices. I is the identity matrix
with appropriate dimensions. ∗ denotes the symmetric part or the block of no concern.
X Â 0 (resp. X º 0) means that the matrix X is symmetric and positive definite (resp.
positive semidefinite). Other notations are given in the Glossary.

4.2 Problem statement

Figure 4.1: General feedback control framework

Consider a discrete linear time invariant system

yk = T (q−1)uk + N(q−1)ak (4.1)

where T (q−1) is the process model and N(q−1) is the disturbance model, as shown in
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Figure 4.1. The state space realization of the system (4.1) is given by:

xk+1 = Axk + Buk + Gak

yk = Cxk + Fak

(4.2)

where xk ∈ Rn is the state of the system, uk ∈ Rm the control signal, yk ∈ Rp the
measured output and ak ∈ Rq the external disturbance that is a zero mean white noise
sequence satisfying:

E(ak) = 0, E(aka
T
k ) = Ω

where Ω is a positive definite matrix.
Consider a dynamic output feedback controller Qc(q

−1) described by:

xC
k+1 = Acx

C
k + Bcyk

uk = Ccx
C
k + Dcyk

(4.3)

where xC
k ∈ Rnc is the state of the controller and nc is a pre-assigned order of the controller.

The closed-loop response is then given by the following state space equations:

Xk+1 = AclXk + Gclak

yk = CclXk + Fak

(4.4)

where

Xk =

(
xk

xC
k

)
, Acl =

(
A + BDcC BCc

BcC Ac

)
, Gcl =

(
BDcF + G

BcF

)
, Ccl =

(
C 0

)

The steady state covariance of the closed-loop state vector Xk is defined as:

Σcl = lim
k→∞

E(XkX
T
k ) (4.5)

If the closed-loop system (4.4) is asymptotically stable, the closed-loop steady state
covariance matrix Σcl satisfies the following Lyapunov equation:

AclΣclA
T
cl − Σcl + GclΩGT

cl = 0 (4.6)

In the following, the resultant closed-loop response is formulated for single-input single-
output and multi-input multi-output systems, respectively.

4.2.1 Single-input single-output systems

Consider a SISO system of the form (4.1). The closed-loop response of the system (4.1) can
be divided into the feedback control invariant part and the feedback controller dependent
part owing to the process time delay, i.e.,

yk = F (q−1)ak + q−dRcl(q
−1)ak (4.7)
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where d is the process time delay. If the latter part Rcl(q
−1) is replaced by a user specified

response trajectory, which is defined by the transfer function LR(q−1), we refer to the
corresponding closed-loop response as the structured closed-loop response. It can be
written as

y∗k = F (q−1)ak + q−dLR(q−1)ak (4.8)

Our purpose is to find a suitable LR(q−1) such that all the user specified requirements
are satisfied, and at the same time the control performance is realizable by a linear time
invariant controller. Therefore, this structured closed-loop response, if exists, has been
used as a user specified benchmark to assess controller performance (Kozub, 1996; Xu and
Huang, 2006). It is assumed that a feedback controller has been implemented to control
the process, but the process model, disturbance model and controller model may all be
unknown with exception of the process time delay d. A time series of closed-loop routine
operating data can be sampled from the control loop and therefore a closed-loop time series
model Ĝcl(q

−1) can be estimated. Then the corresponding F (q−1) and Rcl(q
−1) can be

obtained from Ĝcl(q
−1) and are denoted as F̂ (q−1) and R̂cl(q

−1) respectively, i.e.,

ŷk = Ĝcl(q
−1)ak, Ĝcl(q

−1) = F̂ (q−1) + q−dR̂cl(q
−1) (4.9)

By replacing R̂cl(q
−1) with LR(q−1), the structured closed-loop response is represented by

ŷ∗k = F̂ (q−1)ak + q−dLR(q−1)ak (4.10)

If LR(q−1) is chosen as zero, then the minimum variance control response is obtained. It
is noted that, usually LR(q−1) is not chosen as zero for the user specified benchmark as
proposed by Kozub (1996). We will solve the problem of selecting LR(q−1) in an optimal
sense in this chapter.

4.2.2 Multi-input multi-output systems

Consider a MIMO system of the form (4.1). The generalization of the univariate process
time delay is known as the interactor matrix. The unitary interactor matrix is an optimal
factorization of time delays for multivariate systems (Huang and Shah, 1999). The output
filtered by the unitary interactor matrix can be separated as

q−dDyk = F (q−1)ak + q−dRcl(q
−1)ak (4.11)

which is equivalent to

yk = qdD−1F (q−1)ak + D−1Rcl(q
−1)ak (4.12)
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where D is the unitary interactor matrix and d is its order. The first term is said to be
feedback controller invariant and the second term is feedback controller dependent. By
replacing Rcl(q

−1) with LR(q−1), the structured closed-loop response is then represented
by

y∗k = qdD−1F (q−1)ak + D−1LR(q−1)ak (4.13)

Similarly, when only the closed-loop time series model and the unitary interactor matrix
are known, we have

ŷk = Ĝcl(q
−1)ak, q−dDĜcl(q

−1) = F̂ (q−1) + q−dR̂cl(q
−1) (4.14)

By replacing R̂cl(q
−1) with LR(q−1), the structured closed-loop response is thus

represented by
ŷ∗k = qdD−1F̂ (q−1)ak + D−1LR(q−1)ak (4.15)

It is seen that, when D = qd, the MIMO structured closed-loop response (4.15) is reduced
to the same form as the SISO one.

Definition 4.2.1 Given the discrete linear time invariant system (4.2), the output variance

upper bound constraint is defined as

trace
(

lim
k→∞

E(yky
T
k )

)
< σ2

y, (4.16)

(resp. the output covariance upper bound constraint is defined as

lim
k→∞

E(yky
T
k ) ≺ Φy, ) (4.17)

where σ2
y and Φy are user specified output variance and covariance upper bounds,

respectively.

It is apparent that if the system matrices in (4.2) are all known, the output
variance/covariance upper bound (4.16) or (4.17) can be satisfied by designing an
appropriate dynamic output feedback controller Qc(q

−1) in the state space formulation
shown in (4.3). Once Qc(q

−1) is solved, LR(q−1) is readily known. In this case, the
problem to find LR(q−1) is a dual of controller design problem. However, the system
matrices in (4.2) are often not available in practice. What we have is the closed-loop
routine operating data from which the closed-loop time series model (4.9) or (4.14) can be
identified. Then the controller performance assessment problem via structured closed-loop
response subject to output variance/covariance upper bound can be stated as the following.
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With known process time delay d for a SISO system or unitary interactor matrix D for

a MIMO system, and given the estimated closed-loop time series model (4.9) or (4.14),

find the parameterization of LR(q−1) such that the output of the closed-loop system (4.10)

or (4.15) satisfies the output variance upper bound constraint (4.16) or output covariance

upper bound constraint (4.17).

For this problem, if the structured closed-loop response can be parameterized
successfully, then it can be utilized as a benchmark to evaluate the controller performance
against which the output variance/covariance is compared. Therefore, a significant
characteristic of this benchmark control is that its output variance/covariance is always
constrained and no larger than the pre-specified upper bound. The extraction or estimation
of the interactor matrix without knowing complete process models has been addressed by
Huang and Shah (1999).

4.2.3 Controller performance estimation

Once LR(q−1) is solved, the existing closed-loop response can be compared against the
structured closed-loop response in the sense of output variance. For a MIMO system, its
overall performance index is defined as

η̂o =
trace(cov(ŷ∗k))
trace(cov(ŷk))

(4.18)

and its individual performance index for the i−th output is defined as

η̂i =
var(ŷ

∗(i)
k )

var(ŷ
(i)
k )

(4.19)

The estimated overall controller performance index should be greater than that of the
minimum variance benchmark which is defined as the minimum output variance over the
existing output variance. However, the individual indices are not necessary to be less than 1.
If the performance index is smaller than 1, then the smaller the performance index, the more
variance can be reduced or improved by tuning the existing controller. If the performance
index is equal to or greater than 1, then the user specified output variance/covariance upper
bound constraint has been satisfied by the existing controller.

4.3 Framework for structured closed-loop response
design

Given the process and disturbance model (4.1), the following lemmas give the basic
formulation for the synthesis of the controller subject to the output covariance upper bound
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constraint.

Lemma 4.3.1 (Huang, 2003) The closed-loop system (4.4) satisfying the output

covariance constraint (4.17) is asymptotically stable if and only if there exists a solution

{Σ, Ac, Bc, Cc, Dc} such that


−Σ Acl Gcl

AT
cl −Σ−1 0

GT
cl 0 −Ω−1


 ≺ 0 (4.20)



−Φy Ccl F
CT

cl −Σ−1 0
F T 0 −Ω−1


 ≺ 0 (4.21)

Proof: Σ is a positive definite symmetric matrix satisfying Σ Â Σcl, where Σcl satisfies
(4.6). For proof, see (Huang, 2003).

¤

Similarly, given the estimated closed-loop time series model (4.9) or (4.14), the
following provides the basic formulation for performance assessment subject to the output
variance/covariance upper bound. Since the SISO closed-loop time series model (4.9) is
equivalent to letting D = qd of the MIMO one (4.14), only the MIMO case is considered
in the sequel. In addition, we will focus on the output covariance upper bound constraint
problem.

Define the state space realization of the following matrices

D−1 =

(
AD GD

CD FD

)
, qdD−1F̂ (q−1) =

(
AF GF

CF FF

)
, LR(q−1) =

(
AR GR

CR FR

)

(4.22)
where F̂ (q−1) satisfies the Diophantine equation (4.14), AF ∈ Rnf×nf , GF ∈ Rnf×q,
CF ∈ Rp×nf , AD ∈ Rnd×nd , GD ∈ Rnd×p, and CD ∈ Rp×nd . The state space realization
of the structured closed-loop response (4.15) can be written as

Xs
k+1 = ASXs

k + GSak

yk = CSXs
k + FSak

(4.23)

where

AS =




AF 0 0
0 AD GDCR

0 0 AR


 , GS =




GF

GDFR

GR


 , CS =

(
CF CD FDCR

)
, FS = FF +FDFR

(4.24)
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Lemma 4.3.2 The structured closed-loop response (4.15) satisfying the output covariance

upper bound constraint (4.17) with yk replaced by ŷ∗k is feasible if and only if there exists a

solution {Σ, AR, GR, CR, FR} such that


−Σ AS GS

AT
S −Σ−1 0

GT
S 0 −Ω−1


 ≺ 0 (4.25)



−Φy CS FS

CT
S −Σ−1 0

F T
S 0 −Ω−1


 ≺ 0 (4.26)

Proof: The proof can be obtained by simply following Lemma 4.3.1 and omitted.

¤

With Lemma 4.3.1 and 4.3.2, the optimal controller and the optimal structured closed-
loop response can be solved respectively when the corresponding problems are feasible.
The resultant output variances are always no larger than those of user specified constant
covariance upper bound matrix, Φy. Therefore, these two problems are to be solved by
verifying the feasibility of the corresponding set of constraints. On the other hand, if the
output variances are to be minimized, e.g., by minimum variance control, we only need
to replace the constant output covariance matrix Φy with a decision variable Φ and then
minimize its trace, which is the sum of the output variances.

4.4 Solutions to the feasibility problems

4.4.1 Feasible solutions via full order synthesis

Consider a response trajectory LR(q−1) with nr = nf + nd, which we call as full order.
It can be directly solved from the closed-loop routine operating data according to the
following theorem.

Theorem 4.4.1 The structured closed-loop response (4.15) satisfying the output

covariance upper bound constraint (4.17) is feasible via a full order response trajectory

LR(q−1) if and only if there exists a solution {N1,M1, ÂR, ĜR, ĈR, F̂R} such that



−N1 −I AFD AFDN1 + J4ĈR J5 + J4F̂R

∗ −M1 M1AFD ÂR M1J5 + ĜR

∗ ∗ −M1 −I 0
∗ ∗ ∗ −N1 0
∗ ∗ ∗ ∗ −Ω−1



≺ 0 (4.27)



Sec. 4.4 Solutions to the feasibility problems 65




−Φy CFD CFDN1 + FDĈR FF + FDF̂R

∗ −M1 −I 0
∗ ∗ −N1 0
∗ ∗ ∗ −Ω−1


 ≺ 0 (4.28)

If there exists a solution, the full order LR(q−1) can be parameterized as:




FR = F̂R

CR = ĈRN−T
2

GR = M−1
2 (ĜR −M1J4FR)

AR = M−1
2 (ÂR −M1AFDN1 −M1J4CRNT

2 )N−T
2

(4.29)

where

AFD =

(
AF 0
0 AD

)
, CFD =

(
CF CD

)
, J4 =

(
0

GD

)
, J5 =

(
GF

0

)

and N2,M2 are any matrices satisfying

N2M
T
2 = I −N1M1 (4.30)

Proof: (⇒) According to Lemma 4.3.2, the structured closed-loop response (4.14)
satisfying the output covariance upper bound constraint (4.17) is feasible if and only if
(4.25) and (4.26) are satisfied, where AS, GS, CS and FS are defined in (4.24). Partition Σ

and its inverse Σ−1 as

Σ =

(
N1 N2

NT
2 N3

)
, Σ−1 =

(
M1 M2

MT
2 M3

)

where N1,M1 ∈ R(nf+nd)×(nf+nd) and N3,M3 ∈ Rnr×nr with nr = nf + nd. Define Π1

and Π2 as

Π1 =

(
I 0

M1 M2

)
, Π2 =

(
I 0

N1 N2

)

Then the following identities hold:

Π1ΣΠT
1 =

(
N1 I
I M1

)

Π2Σ
−1ΠT

2 =

(
M1 I
I N1

)

Π1ASΠT
2 =

(
AFD AFDN1 + GDRNT

2

M1AFD M1AFDN1 + M1GDRNT
2 + M2ARNT

2

)

Π1GS =

(
GFR

M1GFR + M2GR

)

CSΠT
2 =

(
CFD CFDN1 + CFRNT

2

)
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where GDR, GFR, CFR and FDR are defined as follows:

GDR =

(
0

GDCR

)
, GFR =

(
GF

GDFR

)
, CFR = FDCR, FDR = FDFR

Define Γ and Υ as

Γ =




Π1 0 0
0 Π2 0
0 0 I


 , Υ =




I 0 0
0 Π2 0
0 0 I




Pre- and post-multiply both sides of (4.25) with Γ and ΓT , respectively, and pre- and post-
multiply both sides of (4.26) with Υ and ΥT , respectively. Using the definition of the
following matrices





F̂R = FR

ĈR = CRNT
2

ĜR = M2GR + M1J4FR

ÂR = M2ARNT
2 + M1AFDN1 + M1J4CRNT

2

LMIs (4.27) and (4.28) are readily obtained with the identity (4.30).

(⇐) By
(

N1 I
I M1

)
Â 0 which is implicitly included in LMIs (4.27) and (4.28), we

infer M1 Â 0, N1 −M−1
1 Â 0 such that I − N1M1 is nonsingular. Hence, we can always

find square and nonsingular matrices N2 and M2 satisfying (4.30). By reversing matrix
manipulations, we can obtain LMIs (4.25) and (4.26). This completes the proof.

¤

4.4.2 Feasible solutions via reduced order synthesis

Note that, for any matrices X Â 0 and Y Â 0, X, Y ∈ Rn×n, if the LMI
(

X I
I Y

)
º 0 (4.31)

is feasible, then trace(XY ) ≥ n, and trace(XY ) = n if and only if XY = I (Ghaoui et

al., 1997; Zhang et al., 2003).
A reduced order LR(q−1) (i.e. with nr < nf + nd) is to be solved under the inequality

constraints (4.25) and (4.26). Similarly, define X , Σ and Y , Σ−1 such that XY = I .
Also define the following matrices:

ĀS =




AF 0 0
0 AD 0
0 0 0


 , ḠS =




GF

0
0


 , C̄S =

(
CF CD 0

)
, F̄S = FF , KR =

(
AR GR

CR FR

)
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H1 =




0 0
0 GD

I 0


 , H2 =

(
0 0 I
0 0 0

)
, H3 =

(
0 FD

)
, H4 =

(
0
I

)

Then the inequalities (4.25) and (4.26) are converted into the following inequalities


−X ĀS + H1KRH2 ḠS + H1KRH2

∗ −Y 0
∗ ∗ −Ω−1


 ≺ 0 (4.32)



−Φy C̄S + H3KRH4 F̄S + H3KRH4

∗ −Y 0
∗ ∗ −Ω−1


 ≺ 0 (4.33)

XY = I (4.34)

Hence, a feasible solution of the problem (4.32)-(4.34) can be obtained by solving the
following concave minimization problem:

Minimize{X,Y,KR} trace(XY ) subject to (4.31), (4.32), (4.33) (4.35)

To find a local optimal solution of the concave minimization problems, the popular
conditional gradient algorithm, also called the Frank and Wolfe algorithm (Frank and
Wolfe, 1956; Bertsekas, 1995), can be used, such as in (de Oliveira and Geromel, 1997;
Ghaoui et al., 1997; Zhang et al., 2003). A computational algorithm for obtaining a local
solution of the concave minimization problems is given next. To this end, define a convex
set by the set of LMIs as

C(X,Y,KR) , {(X,Y,KR) : (4.31), (4.32), (4.33), X Â 0, Y Â 0}

Algorithm 4.4.1 For given Φy Â 0,

(1) Find an initial feasible solution (X0, Y 0) ∈ C(X,Y,KR). Set k = 0.

(2) Set V k = Y k, W k = Xk. Linearize the concave objective function of the problem

(4.35) at a given point (V k,W k) and define a linear function

fk(X, Y ) , trace(V kX + W kY ) (4.36)

(3) Find (Xk+1, Y k+1) by solving the following convex programming:

Minimize{X,Y,KR} fk(X, Y ) subject to (4.31), (4.32), (4.33)

(4) If fk+1(X
k+1, Y k+1) < ε, where ε is a pre-determined tolerance, is satisfied, then exit.

Otherwise, set k = k + 1, and return to Step 2.
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Theorem 4.4.2 (Ghaoui et al., 1997) The algorithm has the following properties:

(i) 2(nf + nd + nr) ≤ fk+1 ≤ fk.

(ii) lim
k→∞

fk = 2(nf + nd + nr) if and only if XY = I at the optimum.

The above theorem shows that Algorithm 4.4.1 can ensure the sequence fk converge
fopt ≥ 2(nf + nd + nr), and if fopt = 2(nf + nd + nr)), for a given Φy, a feasible solution
of the problem (4.32)-(4.34) is found, which implies LR(q−1) is obtained.

4.5 Selection of LR(q−1) structure and optimization
strategies

4.5.1 Selection of LR(q−1) structure

As shown in Section 4.4.1, by the full order synthesis using linearizing change of variables,
a full order LR(q−1) can be obtained from Theorem 4.4.1 if and only if the problem
is feasible. In this case, the order of LR(q−1) is nr = nf + nd. The reduced order
synthesis has also been dealt with in Section 4.4.2. A reduced order LR(q−1) can be
obtained by Algorithm 4.4.1. It is noted that both the order and the structure of LR(q−1)

can be specified a priori according to certain control requirements. In particular, the first
order or second order form is preferred in practice. The rationale is that most process
dynamic behavior may be approximated by either a first order or a second order dynamics.
Specifically, an underdamped dynamic response may be represented by a second order
dynamics. Therefore, for SISO systems, a typical LR(q−1) can be chosen as one of the
following formulations,

LR(q−1) =
α + βq−1

1 + λq−1
λ = −e−

∆T
τ (4.37)

where α and β are the unknown free parameters to be determined, λ is specified according
to the desired closed-loop time constant τ with the sampling period ∆T (Kozub, 1996). Or

LR(q−1) =
α0 + α1q

−1 + α2q
−2

1 + λ1q−1 + λ2q−2
(4.38)

where

λ1 =




−e−

ξ∆T
τ (e

√
ξ2−1∆T

τ + e
−
√

ξ2−1∆T
τ ) when ξ ≥ 1,

−2e−
ξ∆T

τ cos(

√
1−ξ2∆T

τ
) when 0 < ξ < 1.

λ2 = e−
2ξ∆T

τ
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ξ is the damping coefficient, τ is the natural period or the inverse natural frequency
(Ogunnaike and Ray, 1994), and α0, α1 and α2 are the decision variables to be determined.
Specifically, for the second order system, ξ and τ can be determined according to the
desired characteristic of the underdamped response, such as rise time, overshoot, decay
ratio, settling time, and so forth. In the following, we will take the second order form
(4.38) of LR(q−1) as an example and demonstrate that a feasible LR(q−1) can be obtained
by simply solving two LMIs.

The transfer function of LR(q−1) (4.38) is readily represented by its state space form

(
AR GR

CR FR

)
=



−λ1 1 α1 − λ1α0

−λ2 0 α2 − λ2α0

1 0 α0




Once λ1 and λ2 are assigned values, AR and CR become constant matrices, and the decision
variables α0, α1 and α2 remain in the matrices GR and FR. With the definition of the
following matrices

ḠS =




GF

0
0


 , F̄S = FF , KR =




α0

α1

α2




J1 =




0 0 0
0 0 GD

1 1 0


 , J2 =



−λ1 1 0
−λ2 0 1
1 0 0


 , J3 =

(
FD 0

)

then the inequalities (4.25) and (4.26) can be directly converted into the following two
LMIs:



−Σ ASΣ ḠS + J1J2KR

∗ −Σ 0
∗ ∗ −Ω−1


 ≺ 0,



−Φy CSΣ F̄S + J3KR

∗ −Σ 0
∗ ∗ −Ω−1


 ≺ 0 (4.39)

where AS and CS are constant matrices. Therefore, LR(q−1) can be selected as either a
full order one by Theorem 4.4.1 or a reduced order one by Algorithm 4.4.1. In particular,
when LR(q−1) is selected as a first order or a second order transfer function with a given
denominator but an unknown numerator, the feasibility problem can be solved directly by
the LMI formulation in (4.39).

In the case that LR(q−1) is selected as a first order transfer function (4.37), the following
matrices should be redefined in (4.39),

J1J2 =




0 0
GD 0
−λ 1


 , KR =

(
α
β

)
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4.5.2 Selection of optimization strategies

In Section 4.4, two synthesis approaches are provided to obtain a feasible solution of
LR(q−1). However, the results from feasibility problems are not unique and may not always
be practical in applications. In order to overcome this problem, further design strategies
need to be considered such that the resulting LR(q−1) is not only feasible but also practical.
In the following, the one that is closest to R̂cl(q

−1) will be suggested among those feasible
solutions.

With closed-loop time series models being identified from routine operating data, we can
take full advantage of the identified model information. Since R̂cl(q

−1) is available from
the identified closed-loop model and reflects part of the existing closed-loop dynamics, the
response of LR(q−1) should be chosen to be close to that of R̂cl(q

−1) such that less tuning
effort on the existing controller is required while still satisfying the variance/covariance
upper bound. Theoretically if the output variance/covariance upper bound is already
satisfied by the existing control, R̂cl(q

−1) will be the ideal solution of the structured closed-
loop response LR(q−1) in the sense that no effort needs to tune the existing controller.
On the other hand, if the existing controller does not result in a satisfactory response
R̂cl(q

−1), which means that the existing output (co-)variance is larger than the specified
upper bound, it is likely that the closer LR(q−1) is to R̂cl(q

−1), the less effort is needed
to tune the controller to satisfy the (co-)variance upper bound. This idea leads to the
model approximation or the closed-loop response matching problem, with given R̂cl(q

−1)

but unknown LR(q−1). Once the closed-loop time series model is identified, R̂cl(q
−1) is

fixed while LR(q−1) is flexible in either its order or its structure.
In the model reduction literature, the H∞ norm has been considered one of the most

meaningful measures (Xu et al., 2001; Zhang et al., 2003; Ebihara and Hagiwara, 2004).
In the following, the H∞ norm is introduced to our closed-loop response matching
problem. The objective of our problem is to obtain a practical LR(q−1) such that LR(q−1)

approximates R̂cl(q
−1) as close as possible in the sense of the H∞ norm, i.e.,

‖LR(q−1)− R̂cl(q
−1)‖∞ ≤ γ (4.40)

By the following state space realizations

LR(q−1) =

(
AR GR

CR FR

)
, R̂cl(q

−1) =

(
ÂR ĜR

ĈR F̂R

)
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We have

LR(q−1)− R̂cl(q
−1) =




AR 0 GR

0 ÂR ĜR

CR −ĈR FR − F̂R


 =

(
AM GM

CM FM

)

From the bounded real lemma (Gahinet and Apkarian, 1994), ‖LR(q−1)− R̂cl(q
−1)‖∞ ≤ γ

if and only if there exist a symmetric positive definite matrix Π ∈ R(nr+n̂r)×(nr+n̂r) and
LR(q−1) satisfying 



−Π−1 AM GM 0
∗ −Π 0 CT

M

∗ ∗ −γI F T
M

∗ ∗ ∗ −γI


 ≺ 0 (4.41)

For convenience, define P , Π−1 and Q , Π such that PQ = I . Also define the following
matrices

ĀM =

(
0 0

0 ÂR

)
, ḠM =

(
0

ĜM

)
, C̄M =

(
0 −ĈR

)
, F̄M = −F̂R,

H5 =

(
I 0
0 0

)
, H6 =

(
I 0
0 0

)
, H7 =

(
0 I

)

then the inequality (4.41) is converted into the following form



−P ĀM + H5KRH6 ḠM + H5KRH4 0
∗ −Q 0 (C̄M + H7KRH6)

T

∗ ∗ −γI (F̂M + H7KRH4)
T

∗ ∗ ∗ −γI


 ≺ 0 (4.42)

PQ = I (4.43)

This closed-loop response matching problem is readily combined with the problem (4.32)-
(4.34) for finding a practical solution LR(q−1) of a specified order n̂r. Hence a practical
LR(q−1) can be obtained by solving the following concave minimization problem:

Minimize{X,Y,P,Q,KR} trace(XY ) + trace(PQ) (4.44)

subject to

LMIs (4.31), (4.32), (4.33), (4.42) and
(

P I
I Q

)
º 0

Define a convex set by the set of LMIs as

C(X,Y,P,Q,KR) ,

{(X, Y, P, Q, KR) : (4.31), (4.32), (4.33), (4.42),

(
P I
I Q

)
º 0, X Â 0, Y Â 0, P Â 0, Q Â 0}
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Applying Algorithm 4.4.1 to the concave minimization problem leads to a practical solution
LR(q−1).

In particular, if LR(q−1) takes a second order form as in (4.38), then the inequality (4.41)
is directly converted into the following form




−Π−1 AMΠ−1 ḠM + K1KR 0
∗ −Π−1 0 Π−1CT

M

∗ ∗ −γI (F̄M + K2KR)T

∗ ∗ ∗ −γI


 ≺ 0 (4.45)

where

AM =



−λ1 1 0
−λ2 0 0

0 0 ÂR


 , CM =

(
1 0 −ĈR

)
, ḠM =




0
0

ĜR


 , F̄M = −F̂R,

K1 =



−λ1 1 0
−λ2 0 1
0 0 0


 , K2 =

(
1 0 0

)
, KR =




α0

α1

α2




This is exactly an LMI with the decision variables Π and KR. Therefore, in this special
case, a second order LR(q−1) that approximates a closed-loop time series model can be
obtained by solving LMIs as follows:

Minimize{Σ,Π,Q,KR} γ subject to (4.39), (4.45) (4.46)

In the case that LR(q−1) is selected as a first order transfer function (4.37), the following
matrices should be redefined in (4.45),

AM =

(−λ 0

0 ÂR

)
, CM =

(
1 −ĈR

)
, ḠM =

(
0

ĜR

)
, F̄M = −F̂R,

K1 =

(−λ 1
0 0

)
, K2 =

(
1 0

)
, KR =

(
α
β

)

4.5.3 Discussion of time delay mismatch

The structured closed-loop response is derived by minimizing the difference between the
impulse response of LR(q−1) and that of actual one while satisfying the variance/covariance
upper bound constraint which is specified by the user. Obviously if the specified
variance/covariance upper bound constraint is already satisfied by the existing control,
then the benchmark structured closed-loop response would be the same as the existing
closed-loop response. That means R̂cl(q

−1) is the right choice of LR(q−1). Note that the
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impulse response of the existing closed-loop system is calculated from the closed-loop
routine operating data without using any time delay information. In this special case,
the controller performance is not sensitive to the time delay mismatch at all and as a
result the performance indices will be equal to 1. In practice, if the concerned specified
variance/covariance upper bound constraint is satisfied, which is readily calculated directly
from the closed-loop routine operating data, then no further effort is worthwhile to calculate
the structured closed-loop response.

However, it is very often that the specified variance/covaraince upper bound constraint
is not satisfied and the structured closed-loop response is thus needed to be investigated.
In this case, the (co-)variance of the existing closed-loop response is larger than that of the
specified upper bound constraint and LR(q−1) is not the same as R̂cl(q

−1). As a result, the
obtained performance indices will be sensitive to time delay mismatch. Fortunately, this
sensitivity can be monitored and reduced by minimizing the H∞ norm of the difference
between LR(q−1) and R̂cl(q

−1). ThisH∞ norm gap is denoted as γ and is calculated by the
algorithms together with the benchmark structured closed-loop response. Therefore, the
resultant (co-)variance of the benchmark structured closed-loop response is always trying
to approach its specified upper bound even there is time delay mismatch. If the time delay
used is smaller than the real one, the estimated minimum variance becomes smaller and
its difference with corresponding upper bound is thus getting larger. This is equivalent
to relatively more degrees of freedom in the approximating of the structured closed-loop
response to the existing one and the γ value may become smaller. On the other hand, if the
time delay used is larger than the real one, the difference between the estimated minimum
variance and its upper bound will become smaller. As a consequence, some degrees of
freedom are lost in the calculation of the structured closed-loop response and the γ value
may become larger. Therefore, γ value is an indicator to show that gap between LR(q−1)

and R̂cl(q
−1) in the sense of H∞ norm. By the minimization of this H∞ norm gap, the

benchmark (co-)variance is always, more or less, close to its upper bound and thus the
solution of the benchmark (co-)variance may not be very sensitive to the delay mismatch.

It should be noted that, if there is time delay mismatch and the time delay is getting
too large, caution must be taken due to the inflation of the minimum variance part and the
optimization problem may become infeasible if this inflated minimum variance is greater
than the specified variance upper bound.
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4.6 Case studies

4.6.1 A dry process rotary cement kiln

Consider a dry process rotary cement kiln with a capacity of 1000 t of clinker a day, which
is taken from Westerlund (1981) and Mäkilä et al. (1984). The model was given as

yk +

(−0.914 −0.08
0.126 −0.917

)
yk−1 =

(
2.091 −0.0744
−0.211 −0.0156

)
uk−1 + ak +

(
0 0
0 0.715

)
ak−1

(4.47)

where E(aka
T
k ) =

(
0.0644 0.000257

0.000257 0.0214

)
and the sampling time is 5 min. It is required

that large variations in y
(1)
k should be avoided in order to ensure steady state operation of the

plant. Small variance of y
(2)
k will make it possible to operate the process closer to the limit

which specifies the maximum free lime content of the clinker. This will result in reduced
energy consumption.

The system (4.47) can be written into transfer matrix form as

yk =

(
2.091q−1 − 1.934q−2 −0.0744q−1 + 0.06698q−2

−0.211q−1 − 0.07061q−2 −0.0156q−1 + 0.02363q−2

)

1− 1.831q−1 + 0.8482q−2
uk

+

(
1− 0.917q−1 0.08q−1 + 0.0572q−2

−0.126q−1 1− 0.199q−1 − 0.6535q−2

)

1− 1.831q−1 + 0.8482q−2
ak

(4.48)

and the unitary interator matrix is calculated as D =

(
0 q
q 0

)
.

A state space realization of the model (4.47) is




xk+1 =

(
0.914 0.08
−0.126 0.917

)
xk +

(
2.091 −0.0744
−0.211 −0.0156

)
uk +

(
0.914 0.08
−0.126 1.632

)
ak

yk = xk + ak

(4.49)
In this example, we assume that the following output feedback controller has been

implemented to control the dry process rotary cement kiln (4.49).

uk =

(−0.177 0.125
1.84 2.09

)
yk

Four thousand routine operating output data points are collected for time series analysis
and the corresponding closed-loop time series model Ĝcl(q

−1) is identified as

Ĝcl(q
−1) =

(
1− 1.609q−1 + 0.6363q−2 + 0.0079q−3 0.1651q−1 + 0.05098q−2 − 0.1293q−3

−0.1132q−1 + 0.08767q−2 − 0.0067q−3 1− 0.4236q−1 − 0.524q−2 + 0.2173q−3

)

1− 2.025q−1 + 1.332q−2 − 0.2801q−3
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The output variances are calculated from Ĝcl(q
−1) as var(ŷ

(1)
k ) = 0.0969, var(ŷ

(2)
k ) =

0.2123, both of which are greater than the specified variance upper bounds. In addition,
the output variances of ŷ

(1)
k and ŷ

(2)
k under minimum variance control are verified as 0.0644

and 0.0214, respectively, by minimizing the sum of output variances according to Theorem
4.4.1.

Consider to find a second order closed-loop response LR(q−1) satisfying the user
specified output variance upper bounds, i.e., var(ŷ

∗(1)
k ) ≤ 0.0939, var(ŷ

∗(2)
k ) ≤ 0.193.

Solving the problem (4.44) using Algorithm 4.4.2, with γ = 0.87, we have

LR(q−1) =

(−0.1466 + 0.0383q−1 + 0.0038q−2 1.212 + 0.2015q−1 − 0.2592q−2

0.305− 0.4214q−1 + 0.1186q−2 0.07465 + 0.505q−1 − 0.2046q−2

)

1− 1.186q−1 + 0.3097q−2

(4.50)
and

var(ŷ
∗(1)
k ) = 0.092, var(ŷ

∗(2)
k ) = 0.1877

η̂1 = 0.9494, η̂2 = 0.8841, η̂o = 0.9046

If both ŷ
∗(1)
k and ŷ

∗(2)
k are required to have second order dynamics with the same time

constant τ as 5 sampling units and the same damping coefficient ξ as 0.707, then LR(q−1)

is solved by the LMI problem (4.46). With γ = 0.905, we have

LR(q−1) =

( −0.1088 + 0.0835q−1 + 0.0083q−2 1.622− 1.7q−1 + 0.3576q−2

0.1016− 0.0975q−1 − 0.0052q−2 0.2665− 0.0078q−1 − 0.1507q−2

)

1− 1.719q−1 + 0.7537q−2

(4.51)
var(ŷ

∗(1)
k ) = 0.0879, var(ŷ

∗(2)
k ) = 0.193

η̂1 = 0.9064, η̂2 = 0.9091, η̂o = 0.9083

It is noted that even though (4.50) and (4.51) are different in time constants and damping
coefficients, they are obtained under the same output variance upper bound constraints.
Actually, LR(q−1) (4.50) has the resultant τ = 1.7969 and ξ = 1.0656. However, for the
second LR(q−1), both τ and ξ are specified a priori and meet some dynamic characteristic
requirements as well. In particular, LR(q−1) of the latter case is obtained via LMIs without
iterations.

The impulse responses of the two resultant LR(q−1) and R̂cl(q
−1) are given in Figure

4.2. It is as expected that the impulse response of the first LR(q−1) is much closer to that
of R̂cl(q

−1) than the second one in the sense of H∞ norm. For the first LR(q−1), only
the order is specified while for the second LR(q−1), both the damping coefficient and the
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Figure 4.2: Impulse responses of two LR(q−1) and Rcl(q
−1)

time constant are fixed a priori. Therefore, some degrees of freedom are lost for the second
LR(q−1) and the resultant γ value is also larger than that of the first one. This can be readily
seen and verified from maximum singular values in the frequency domain (Figure 4.3).

In the following the impact of the benchmark to the time delay mistmatch is to be
investigated by taking the second case with fixed ξ and τ as an example. The order of the
unitary interactor matrix, d, is assumed to be an integer variable varying from 1 to 6. The
performance indices and the corresponding γ values are calculated for different interactor
orders (a measure of time delay of MIMO systems). The result is given in Table 4.1. The γ

values and performance indices versus interactor orders are also plotted in Figure 4.4 and
4.5, respectively. It can be seen that the performance index of the second control loop is not
sensitive to the changing of interactor order at all and this happens for the first control loop
when d ≥ 2. Even though there is a jump for the first control loop when d is changing from
1 to 2, the difference is rather small. For theH∞ norm gap, its value is smaller than 1 when
d ≤ 4. With approaching of the estimated minimum variance to the specified variance
upper bound, this gap reduction is more difficult and the γ value is significantly increased
when d is changing from 4 to 6. This verifies our remarks in Section 4.5.3.

4.6.2 A sulphur recovery unit process

A sulphur recovery unit (SRU) process was studied by Olaleye et al. (2004b) and Xu and
Huang (2006) for control loop performance assessment of linear time varying systems.
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Figure 4.3: Maximum singular values of two LR(q−1) and Rcl(q
−1)

Table 4.1: Impact of time delay mismatch
d γ η̂0 η̂1 η̂2

1 0.9050 0.9083 0.9064 0.9091
2 0.8778 0.9274 0.9678 0.9090
3 0.8836 0.9272 0.9675 0.9089
4 0.9045 0.9274 0.9678 0.9090
5 1.0035 0.9272 0.9671 0.9089
6 1.2879 0.9272 0.9669 0.9090

In this example, a PID controller is applied to control the difference, 2SO2 − H2S, by
manipulating the flowrate of the trim air. This real-time data set inludes 740 data points
with three data sections subject to three different disturbances (Figure 4.6) and the time
delay is 2 sampling units. The objective of this study is to find a linear time invariant
control (benchmark) that can be used to assess performance of the existing control in the
presence of time varying disturbance dynamics.

The time series analysis of the process output data for three different sections gives the
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Figure 4.4: H∞ norm gap between LR(q−1) and Rcl(q
−1) versus time delay

result of three closed-loop models,

Ĝ
(1)
cl (q−1) =

1 + 1.556q−1 + 0.6336q−2

1 + 1.062q−1 + 0.3564q−2

Ĝ
(2)
cl (q−1) =

1 + 0.06696q−1 − 0.6938q−2

1− 1.218q−1 + 0.2267q−2

Ĝ
(3)
cl (q−1) =

1− 0.1859q−1 − 0.7604q−2

1− 1.044q−1 + 0.04666q−2

It is known that the second section was subject to a major disturbance. By Diophantine
equation of Ĝ

(2)
cl (q−1) with process time delay 2, the feedback controller invariant part is

calculated as F̂ (2)(q−1) = 1 + 1.2846q−1, and R̂
(2)
cl (q−1) = 0.6438−0.2912q−1

1−1.218q−1+0.2267q−2 . The output
of the second section is required to follow the structured closed-loop response as

ŷ
∗(2)
k =

(
F̂ (2)(q−1) + q−2LR(q−1)

)
ak

According to Xu and Huang (2006), the closed-loop responses of three sections subject to
the user specified response in the second section can be formulated as the following,

Yk =




ŷ
∗(1)
k

ŷ
∗(2)
k

ŷ
∗(3)
k


 =




Ĝ
(1)
cl (q−1)

Ĝ
(2)
cl (q−1)

F̂ (2)(q−1)

F̂ (2)(q−1)
Ĝ

(3)
cl (q−1)

Ĝ
(2)
cl (q−1)

F̂ (2)(q−1)


 ak +




q−2 Ĝ
(1)
cl (q−1)

Ĝ
(2)
cl (q−1)

q−2

q−2 Ĝ
(3)
cl (q−1)

Ĝ
(2)
cl (q−1)


 LR(q−1)ak

,
(

AF GF

CF FF

)
ak +

(
AD GD

CD FD

)
LR(q−1)ak
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Figure 4.5: Performance indices versus time delay
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Figure 4.6: Time series plot of process output

If LR(q−1) takes a first order transfer function as (4.37) and let λ = −0.3679 with
Ω = 1, by replacing the user specified output covariance upper bound, Φy, which is a
constant matrix, with Φ being the decision variable in (4.39), the minimization of the sum
of the weighted output variances of the first and third sections can be formulated as

Minimize{Σ,Φ,KR} Φ(1, 1) + Φ(3, 3) subject to (4.39)

The solution of this optimization problem is exactly the same as that achieved in (Xu and
Huang, 2006), i.e.,

LR(q−1) =
0.6343 + 0.0802q−1

1− 0.3679q−1

and
var(ŷ

(1)∗
k ) = 1.4388, var(ŷ

(2)∗
k ) = 3.1662, var(ŷ

(3)∗
k ) = 1.9256
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η̂1 = 1.0933, η̂2 = 0.2695, η̂3 = 0.9052

If, however, we add the following variance upper bound constraints on the output of the
first and third sections respectively,

Φ(1, 1) ≤ 1.5, Φ(3, 3) ≤ 1.9

then we can get the following results,

LR(q−1) =
0.5222 + 0.0994q−1

1− 0.3679q−1

and
var(ŷ

∗(1)
k ) = 1.4962, var(ŷ

∗(2)
k ) = 3.0212, var(ŷ

∗(3)
k ) = 1.8997

η̂1 = 1.1369, η̂2 = 0.2561, η̂3 = 0.8930

It shows that by adding the output variance upper bound constraints, the structured
closed-loop response (benchmark) satisfies all of the user’s specifications in all sections
simultaneously. Thus, the solution proposed in this chapter shows a great advantage over
previous results in the sense that the variance upper bound of each output or each section
of the output can be explicitly specified simultaneously.

4.7 Conclusions

The controller performance monitoring problem has been studied from the perspective
of the structured closed-loop response subject to the user explicitly specified output
variance/covariance upper bound constraint in this chapter. The desired structured closed-
loop response can be solved via the approach of linearizing change of variables for a full
order formulation or via the Frank and Wolfe algorithm for a reduced order formulation.
With closed-loop routine operating data and a priori knowledge of process time delay
for SISO systems or unitary interactor matrix for MIMO systems, the desired structured
closed-loop response can be obtained with the user specified output variance/covariance
upper bound constraint satisfied. The gap with the existing closed-loop response is
measured by H∞ norm. The resultant feasible structured closed-loop response can be
served as a practical variance/covariance benchmark against which the existing controller
performance can be compared. The controller performance can be evaluated on its variance
performance index. The time delay mismatch is also discussed. The case studies illustrate
the solution of the structured closed-loop response that can be achieved by a linear time
invariant controller.



5
Performance assessment of model

predictive control for variability and
constraint tuning ∗

5.1 Introduction

Model predictive control (MPC) has found wide spread industrial applications in the last
few decades. It has been proven as one of the most effective advanced process control
(APC) strategies to deal with multivariable constraint control problems. There is a large
amount of literature on MPC research and applications, including some recent survey
articles (Morari and Lee, 1999; Rawlings, 2000; Qin and Badgwell, 2003) and books
(Camacho and Bordons, 1998; Maciejowski, 2002). However, less effort has been made on
the performance assessment of the existing MPC applications.

Since MPC technology is multivariate by nature, in this sense minimum variance
control (MVC) benchmark as a theoretical lower bound of variance for multivariate
controller performance assessment (Harris et al., 1996; Huang et al., 1997a; Ko and
Edgar, 2001b; Ko and Edgar, 2001a) may be applied to evaluate the performance of MPC
applications. The MVC benchmark has been proven useful for controller performance
assessment in practice (Qin, 1998; Huang and Shah, 1999; Harris and Seppala, 2001)

∗This chapter has been published in Xu, F., Huang, B. and Akande, S., Performance assessment of model
pedictive control for variability and constraint tuning, Ind. Eng. Chem. Res., 46, 1208-1219, 2007
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since Harris’ earlier work (Harris, 1989). The significance of the MVC benchmark lies
in the fact that it does give a theoretical absolute lower bound on variance. It has been
applied in process industry to evaluate the performance of MPC applications (Gao et

al., 2003; Schäfer and Cinar, 2004; Yang et al., 2004). Besides the MVC benchmark,
some alternative benchmarks have also been proposed, such as linear quadratic Gaussian
(LQG) benchmark (Huang and Shah, 1999), user specified benchmark (Kozub, 1996),
model validation (Huang et al., 2003a), designed versus achieved controller performance
(Patwardhan et al., 2002; Schäfer and Cinar, 2004), Normalized Multivariate Impulse
Response (NMIR) curve (Huang and Shah, 1999), NMIRwof curve (Shah et al., 2001),
tree mapping visualization (Shah et al., 2005), and so on. These alternative benchmarks
are more practical than the MVC benchmark to some extent. However, two key properties
of the MPC performance have not been considered in these methods. They are namely
economic performance and constraint handling.

According to Prett and Garcia(Prett and Garcia, 1988), modern decision making process
has different technology layers relating to control, optimization and logistics, respectively.
Logistics is the high level scheduling to respond to external market changes for profit
maximization. Optimization is the manipulation of process degrees of freedom for the
satisfaction of plant economic objectives. Control is the manipulation of process degrees
of freedom for the satisfaction of operating criteria. It is expected that most profit
improvement comes from the optimization layer where the economic target is received
from the logistics layer and the optimal operating target is solved and sent to the control
system for realization. The likely economic benefit that depends on the structure of
the on-line optimizer could be estimated by the method of the average deviation from
optimum (de Hennin et al., 1994; Loeblein and Perkins, 1998). A steady state back off
from the active constraints can be calculated for every structure with the consideration
of the measurement error, the parametric uncertainty and the structural modeling error.
However, the profit improvement will never be obtained without collaborative integration
of logistics, optimization and control. A dynamic back off could be estimated due to the
likely disturbances and uncertain parameters (Lear et al., 1995; Figueroa et al., 1996). This
leads directly to the studies of the back off approach to simultaneous design and control
(Loeblein and Perkins, 1999; Seferlis and Grievink, 2001; Kookos and Perkins, 2004). The
essence of back off approach is a move that is required in the operating point away from the
nominal optimal one, which is usually located on the constraint limit, in order to maintain
the feasibility and operability, due to the likely disturbances and uncertainty.

The idea of back off approach can be applied into the economic performance evaluation
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of the run-time applications (Zhou and Forbes, 2003). The steady state economic benefit
comes from operating mean shift (Muske, 2003). Just reducing the variability does not
always credit to the economic benefit, but it does result in some hidden intangible benefits
(Latour, 1992), such as improved product quality consistency (Shunta, 1995). It is claimed
that the variance can typically be reduced by at least 50% due to the advance process
control (Latour et al., 1986). Since the base case operation is to be compared for the
economic benefit quantification, it should be a period of typical closed-loop operation
with the existing control system. The target optimal steady state operation condition can
be calculated by specifying a reasonable back off away from the constraint limit. It is
obvious that the target operation is too conservative if the constraint limit is never violated
(Latour, 1992). There are many different rules in the literature for the allowable constraint
limit violation (Latour et al., 1986; Martin et al., 1991; Muske and Finegan, 2001). A
reasonable rule should be applied in terms of base case condition and desired specifications.
In the case of excessive violation of base case condition, the same limit rule can be used
to set a reasonable percentage of violation, such as 5%. If the base case violation is
acceptable, the same percentage rule is suggested. Once the base case operation and the
optimal operation condition are both identified, the economic benefit potential is readily
obtained when the economic objective function is explicitly established (Anderson, 1996).

For the latest generation of MPC products, MPC application itself can be further
divided into a steady state optimization driven by economics and a dynamic optimization
(Kassmann et al., 2000). The separate steady state optimization is performed at each
control cycle in order to drive steady state inputs and outputs as closely as possible
to their optimal economic targets (Qin and Badgwell, 2003). For example, Dynamic
Matrix Control (DMC) integrates a linear programming (LP) for the optimum economic
steady state (Sorensen and Cutler, 1998), and Robust Model Predictive Control Technology
(RMPCT) also includes a quadratic programming (QP) for profit optimization (Krishnan et

al., 1998). Since this LP or QP reflects economic objective explicitly, it can be utilized to
evaluate the economic performance of MPC applications.

This chapter aims at multivariate control performance assessment and tuning of model
predictive control by considering the relationship between economic performance and
process variance. The contributions of this chapter can be summarized as: (1) A systematic
approach is proposed to evaluate the economic performance of existing run-time MPC
applications; (2) The MVC benchmark is combined directly with benefit potential, which
leads to an optimal benefit potential that is achieved by MVC; (3) Variability and constraint
tuning guidelines are devised for better tuning settings of MPC applications.



Sec. 5.2 Problem description 84

The remainder of this chapter is organized as follows. In Section 5.2 several different
scenarios for MPC performance assessment are described in the form of constrained
quadratic optimization problems. Section 5.3 presents and explains a systematic approach
for MPC economic performance assessment. The minimum energy control is introduced
and the QP problem in the steady state optimization is formulated as LMIs in Section 5.4.
A simulation example of shell control problem and a pilot-scale experiment are provided to
demonstrate the feasibility of the proposed approach in Section 5.5, followed by concluding
remarks in Section 5.6.

5.2 Problem description

5.2.1 Benefit potential analysis

For illustration, assume a multivariable process that consists of two manipulated variables
(MVs) and two controlled variables (CVs), where y1 (i.e., CV1) is a quality variable that has
direct impact on profit and y2 (i.e., CV2) is a constrained variable. The base case operation
is shown in Figure 5.1. Because of the disturbances, there is variability on both y1 and y2.

1y

2y

Upper limit

Lower limit

Upper limit

Lower limit

Quality variable

Constrained variable

Optimal operating point

Actual operating point

Lost profit

Figure 5.1: Base case operation

Assume that the optimal operating point of y1 is located on its upper limit; thus the actual
operating point (dash line) is far away from its optimal operating point, which means lost
profit. The purpose of this study is to assess the possibility to move its operating point as
close as possible to its optimal operating point. In this chapter, the base case operation is
characterized by its current mean values and variances. The optimal operation condition is
obtained by solving the economic steady state optimization problem subject to the current
constraint limit settings and process variability. A reasonable percentage of constraint limit
violation, 5%, is allowed such that 95% of operation falls within the range of ±2 times
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standard deviation (Latour et al., 1986; Martin et al., 1991). Economic benefit potential
can be investigated by comparing optimal operation with base case operation. Since all the
scenarios are compared against the same base case operation, in the following we list the
problem formulations of optimal operations for different scenarios relative to the base case
operation.

For a general p ×m process G with steady state gain matrix K, controlled by an MPC
controller, it is assumed that {ȳi0, ūj0} is the current operating point and {ȳi, ūj} is the
optimal operating point for the i-th output and the j-th input, respectively. With a real-time
input/output data collection of length NL, the quadratic economic objective function may
be formulated as follows,

J =
1

NL

NL∑

k=1

Jk (5.1)

where

Jk =

p∑
i=1

[
bki × ȳi + a2

ki(ȳi − ydki)
2
]
+

m∑
j=1

[
bkj × ūj + a2

kj(ūj − udkj)
2
]

and aki (resp. akj) and bki (resp. bkj) are the quadratic and linear coefficients respectively
for the controlled variables (resp. the manipulated variables), ydki and udkj are the
corresponding target values.

Consider that the current operating point at [ȳi0, ūj0]. Moving the current operating point
by [∆ȳi, ∆ūj], the new optimal operating point is [ȳi, ūj]. Then [∆ȳi, ∆ūj] must satisfy the
steady state gain function described by the following equations:

m∑
j=1

[Kij ×∆ūj] = ∆ȳi, i = 1, · · · , p

ȳi = ȳi0 + ∆ȳi, ȳi0 =

∑NL

k=1 yki0

NL

, i = 1, · · · , p

ūj = ūj0 + ∆ūj, ūj0 =

∑NL

k=1 ukj0

NL

, j = 1, · · · ,m

(5.2)

Obviously the new operating point [ȳi, ūj] cannot be arbitrary. Considering allowable
5% violation of constraints, the following inequalities must be satisfied:

YLki−syi×Yholki+2×Ystdi0(1+ryi) ≤ ȳi ≤ YHki+syi×Yholki−2×Ystdi0(1+ryi) (5.3)

ULkj − suj × Uholkj + 2× Ustdj ≤ ūj ≤ UHkj + suj × Uholkj − 2× Ustdj (5.4)

where i = 1, · · · , p and j = 1, · · · ,m.
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In the above two inequalities, YLki (resp. ULkj) and YHki (resp. UHkj) are the low limit
and high limit of CVi (resp. MVj), Yholki (resp. Uholkj) is the half of the constraint range of
CVi (resp. MVj), Ystdi0 is the standard deviation of CVi which is calculated from routine
operating data of current operation, syi (resp. suj) is the percentage of constraint limit
change of CVi (resp. MVj), ryi is the percentage of variability change of CVi, and Ustdj

is the standard deviation of MVj . In this representation, YLki, YHki, ULkj and UHkj are
collected at time stamp k.

The actual constraint limits of both CVs and MVs are to be adjusted by the percentages
of constraint limit changes syi and suj , respectively. The magnitude of constraint limit
adjustment depends on syi and Yholki for the controlled variables (resp. suj and Uholkj

for the manipulated variables). Positive values of syi and suj lead to relaxation of the
constraint limits with increased operating ranges while negative ones result in reduction of
the constraint limits with decreased operating ranges. In addition, the size of the back off
due to disturbances is described by the standard deviations. For the controlled variables in
(5.3), the standard deviations are set to be adjusted by the percentage of variability change
ryi. This is due to the fact that the variability of the controlled variables may be further
reduced by tuning the cascaded regulatory control loops. For the manipulated variables
in (5.4), however, the standard deviations should be calculated according to the controller
transfer function. The calculation of the standard deviation Ustdj in (5.4) will be discussed
in detail in the next section.

Now the economic optimization problem for the benefit potential analysis of different
scenarios can be combined into the following form,

Minimize{ȳi,ūj} J subject to (5.2), (5.3) and (5.4) (5.5)

For the base case operation, the economic objective function value is readily calculated
by replacing {ȳi, ūj} with the current operating point {ȳi0, ūj0} in (5.1). This objective
function value is denoted as J0, which is a value to be compared in the calculation of
benefit potentials. In the sequel, we will discuss and explain benefit potential calculations
under different scenarios.

• Ideal operation scenario: ryi = −1, syi = 0, suj = 0

In this scenario, the disturbance influence is not considered and a strict steady state
operation is assumed. There is no back off due to the disturbances and the constraint
limits are kept unchanged. To illustrate this scenario, consider again the two-output
example. For the system with outputs shown in Figure 5.1, the trajectories of y1 and
y2 are now two straight lines in this scenario as shown in Figure 5.2. Therefore, it is
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possible to move the operating line of the quality variable y1 to its optimal operating
upper bound, only if the steady state operation condition (5.2) is satisfied and there

1y

2y

Upper limit

Lower limit

Upper limit

Lower limit

Quality variable

Constrained variable

Optimal operating point

Actual operating point

Ideal operating point

Figure 5.2: Optimal operation under ideal scenario

is no constraint violation of y2 and all manipulated variables. The solution of (5.5)
gives rise to an ideal optimal operating condition {ȳIi, ūIj} and the corresponding
objective function is denoted as JI . Then the ideal benefit potential ∆JI can be
calculated simply by

∆JI = JI − J0 (5.6)

• Existing variability scenario: ryi = 0, syi = 0, suj = 0

In this scenario, the present level of disturbance is taken into account. The purpose
is to move the operating point as close as possible to the ideal optimum.

1y

2y

Upper limit

Lower limit

Upper limit

Lower limit

Quality variable

Constrained variable

Optimal operating point

Average operating point
by mean shifting only

Lost profit

Figure 5.3: Optimal operation by mean shifting only

For the base case operation in Figure 5.1, the actual operating point of y1 can be
moved up closer to its ideal optimal operating point with the consideration of back off
caused by the present level of disturbance as shown in Figure 5.3. By shifting mean
only, the distance between the average operating point and the ideal operating point
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could be reduced, which means increased profit. The resultant optimal operating
point is denoted as {ȳEi, ūEj} and the corresponding objective function as JE . The

existing benefit potential ∆JE can be calculated as the following,

∆JE = JE − J0 (5.7)

• Reducing variability scenario: ryi = Ryi, syi = 0, suj = 0

In the existing operation scenario, no action is taken to reduce the variability of the
controlled variables and the existing benefit potential is obtained by shifting mean
values only. If the variability of one or some of the controlled variables can be
reduced to certain percentage by tuning the cascaded regulatory control loops, then
the back off can also be reduced, which will allow further mean values shifting in
the direction of ideal operating point. If a significant increase of the benefit potential
is observed by variability reduction on one or more of the controlled variables, it is
worth to tune the corresponding regulatory control loops. The variability reduction
percentage is denoted as Ryi and can be assigned a negative value but should never
be smaller than −1 by nature, i.e., −1 ≤ Ryi ≤ 0. Considering the case in Figure
5.3, if the variability of the quality variable y1 is to be reduced, its mean value can be
moved closer to the ideal optimal operating point as indicated in Figure 5.4 and thus
gives rise to increased benefit potential. If the optimal operating point by variability
reduction is denoted as {ȳV i, ūV j} with the corresponding objective function as JV ,
then the optimal benefit potential by reducing variability, ∆JV , can be obtained by

∆JV = JV − J0 (5.8)

1y

2y

Upper limit

Lower limit

Upper limit

Lower limit

Quality variable

Constrained variable

Optimal operating point

Average operating point
by mean shifting only

Lost profit
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Upper limit

Lower limit

Upper limit

Lower limit

Quality variable

Constrained variable

Optimal operating point

Average operating point
by mean shifting and 
reducing variability

Lost profit

Figure 5.4: Optimal operation by mean shifting and variability reduction
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It is noted that in general the reduced variability of one variable transfers to increased
variability of other variables. The variability of the quality variables is of main
concern since they have direct impact on profit, and their variability could be
considered to be reduced by transferring to the constrained variables. For the
constrained variables, their variability is typically not concerned as long as they stay
within their constraint limits.

• Relaxing constraint scenario: ryi = 0, syi = Syi, suj = Suj

The constraint limits of both controlled and manipulated variables are usually
determined in the design phase when an MPC application is commissioned, but
some of them may be allowed to adjust afterward. This leaves an alternative way to
improve the MPC economic performance. For the quality variables, the constraint
relaxation may allow their mean values to be moved closer to the ideal optimal
operating point even if there is no reduction of variability as indicated in Figure 5.5.
For the constrained variables, however, the increase on their operating ranges will

1y

2y

Upper limit

Lower limit

Upper limit (actual)

Lower limit

Quality variable

Constrained variable

Optimal operating point

Lost profit

Upper limit (new)

Actual operating point

Figure 5.5: Optimal operation by relaxing constraint

allow more variability to be transferred from the quality variables to them, which may
create a room for the quality variables to reduce their variability. In Figure 5.4, for
example, if a larger magnitude of variability is allowed with the constraint relaxation
on y2, then it is possible to move y1 closer to its optimum. The constraint percentage
change is denoted as Syi for the controlled variables and Suj for the manipulated
variables. Syi and Suj should usually be assigned positive values in order to increase
the profit. If the optimal result due to the constraint relaxation is represented by
{ȳCi, ūCj} and the corresponding objective function is JC , then the optimal benefit
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potential by relaxing constraint, ∆JC , is given by

∆JC = JC − J0 (5.9)

• Simultaneous reducing variability and relaxing constraint scenario: ryi =

Ryi, syi = Syi, suj = Suj

If both variability and constraint relaxation are considered simultaneously, additional
benefit potential may be achieved. Different combinations of Ryi, Syi and Suj

may result in different values on the objective function and also different benefit
potentials. For a given set of Ryi, Syi and Suj , we denote the optimal operating
point as {ȳBi, ūBj} and the corresponding objective function as JB. As a
consequence, the optimal benefit potential by reducing variability and relaxing

constraint simultaneously, ∆JB, is obtained by

∆JB = JB − J0 (5.10)

Notice that the benefit potentials ∆JV , ∆JC and ∆JB are all relative to the present
operating condition, but include the benefit potential of existing variability scenario, ∆JE .
Therefore, the contribution of any change that is due to variability reduction or constraint
relaxation should be obtained by subtracting the existing benefit potential, ∆JE .

5.2.2 Tuning guidelines to achieve the target benefit potential

The ideal benefit potential ∆JI can be achieved only when the variability of all variables
can be reduced to zero, which is rarely possible in practice. Therefore, by variability
reduction, ∆JI can not be reached in practice. However, it is the maximum benefit potential
by tuning the variability, against which the target benefit potential could be established
by assigning an appropriate percentage. The target benefit potential can be achieved by
either tuning variability or tuning constraint limits. The variability and the constraint tuning
problems are formulated in the following.

• Variability tuning problem: syi = suj = 0

In the benefit potential analysis, the percentages of variability change ryi are given
by the user as Ryi. If, instead, we use them as decision variables, the optimal ryi

can be found from the optimization problem accordingly for a given target benefit
potential. A target benefit potential ratio by tuning variability, RV , is defined as the
ratio between the targeted benefit potential and the ideal benefit potential, where RV
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should be within 0 and 1. With a given RV , ryi may be calculated but the solutions
may not be unique. To minimize tuning effort, we would want variability adjustment
percentages ryi as small as possible. If we define the maximum variability adjustment
percentage of ryi across all variables as r, then the optimal variability adjustment
percentages ryi, in the sense of minimizing the maximum variability adjustment
percentage r, may be found through the optimization of the following problem:

Minimize{ȳi,ūj ,ryi,r,ustdj} − r

subject to

ryi > r > −1

J − J0 = RV ×∆JI

syi = suj = 0

Equalities (5.2)

Inequalities (5.3) and (5.4)

Input-output relation through an optimal control (see Section 5.3.1)
(5.11)

It is noted that in the above formulation, the standard deviations of the manipulated
variables in the constraint inequalities (5.4) are set as decision variables, ustdj ,
rather than constant values, Ustdj . This is because the variabilities of the controlled
variables are related to the variabilities of the manipulated variables through the
controller. This controller should be an optimal controller as a benchmark. Thus the
standard deviations of the manipulated variables should also be decision variables
of a controller design problem. This means both the standard deviations of the
controlled variables and the standard deviations of the manipulated variables should
be determined simultaneously within two optimization problems. This will be
discussed in detail in the next section.

• Constraint tuning problem: ryi = 0

If the variability could not be reduced further, we may also achieve the target benefit
potential by tuning the constraint limits. Similarly, a target benefit potential ratio
by tuning constraint, RC , is defined as the target benefit potential against the ideal
benefit potential. We would also want the percentages of the constraint change, syi

and suj , to be as small as possible. If we define the maximum constraint change
percentage of syi and suj across all variables as s, then the optimal constraint tuning
percentages syi and suj , in the sense of minimizing the maximum tuning percentage,
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can be solved through

Minimize{ȳi,ūj ,syi,suj ,s} s

subject to

s ≥ syi ≥ 0

s ≥ suj ≥ 0

J − J0 = RC ×∆JI

ryi = 0

Equalities (5.2)

Inequalities (5.3) and (5.4)

(5.12)

5.3 Solution to the optimization problems

5.3.1 Calculation of standard deviations of the input variables due to
the variability change of the output variables

In this section, we consider the following problem: given the output variance upper bound
for each outputs, what are the minimum inputs variance? The objective is to identify a
benchmark control so that the increase of input variance is minimized when the output
variance is reduced.

Figure 5.6: General feedback control framework

Consider a discrete linear system

yk = T (q−1)uk + N(q−1)ak (5.13)

where T (q−1) is the process model and N(q−1) is the disturbance model, as shown in
Figure 5.6. For a typical industrial MPC application, the process model T (q−1) is known,
but the disturbance model N(q−1) is usually unknown and needs to be estimated.
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The state space realization of system (5.13) is given by:

xk+1 = Axk + Buk + Gak

yk = Cxk + Fak

(5.14)

where xk ∈ Rn is the state of the system, uk ∈ Rm the control signal, yk ∈ Rp the
measured output, and ak ∈ Rq(q = p) the external disturbance that is a zero mean white
noise sequence satisfying:

E(ak) = 0, E(aka
T
k ) = Ω

where, Ω Â 0, is the covariance matrix of ak.
Assume that the system (5.13) or (5.14) is controlled by a full order dynamic output

feedback controller Qc(q
−1), which is described as

xC
k+1 = Acx

C
k + Bcyk

uk = Ccx
C
k + Dcyk

(5.15)

where xC
k ∈ Rnc is the state of the controller and nc is a pre-assigned order of the controller.

For a full order controller, nc is equal to n. Then we have the following theorem.

Theorem 5.3.1 The minimum input variance (energy) control satisfying output variance

constraint via a full order dynamic output feedback control law (5.15) can be solved by the

following semi-definite programming problem:

Minimize{Σ1,M1,Âc,B̂c,Ĉc,D̂c,Φy,Φu} trace(Φu)

subject to
(5.16)




−Σ1 −I A + BD̂cC AΣ1 + BĈc G + BD̂cF

−I −M1 M1A + B̂cC Âc M1G + B̂cF

AT + CT D̂T
c BT AT M1 + CT B̂T

c −M1 −I 0

Σ1A
T + ĈT

c BT ÂT
c −I −Σ1 0

GT + CT D̂T
c BT GT M1 + F T B̂T

c 0 0 −Ω−1



≺ 0

(5.17)


Φy C CΣ1 F
CT M1 I 0

Σ1C
T I Σ1 0

F T 0 0 Ω−1


 Â 0 (5.18)




Φu D̂cC Ĉc D̂cF
∗ M1 I 0
∗ ∗ Σ1 0
∗ ∗ ∗ Ω−1


 Â 0 (5.19)
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Φy(i, i) ≤ σ2
Byi, i = 1, · · · , p (5.20)

where Φy is the output covariance matrix and Φu is the input covariance matrix, both

of them are decision variables, and σ2
Byi is the pre-specified i-th output variance upper

bound. If there exists a feasible solution, a full order dynamic output feedback controller

(5.15) can be parameterized as:




Dc = D̂c

Cc = (Ĉc − D̂cCΣ1)Σ
−T
2

Bc = M−1
2 (B̂c −M1BD̂c)

Ac = M−1
2 (Âc −M1AΣ1 −M1BDcCΣ1 −M2BcCΣ1 −M1BCcΣ

T
2 )Σ−T

2

(5.21)

where M2 ∈ Rn×n and Σ2 ∈ Rn×n are any matrices satisfying

Σ2M
T
2 = I − Σ1M1 (5.22)

Proof: The proof can be found in Huang(Huang, 2003) and Scherer et al.(Scherer et

al., 1997), and is omitted here.

¤

With Theorem 5.3.1, the optimal standard deviations of the manipulated variables can
be obtained via minimum energy control for the variability reduction related optimization
problems. When the variability reduction percentages of the controlled variables, ryi, are
specified a priori as Ryi, i.e., σByi = (1 + Ryi)Ystdi0, then the standard deviations of the
manipulated variables, ustdj , can be calculated according to Theorem 5.3.1, and the optimal
benefit potential can be obtained thereafter by solving the optimization problem (5.5).
This two-step procedure can be applied to solve the problems for two scenarios which are
reducing variability scenario, and simultaneous reducing variability and relaxing constraint
scenario, respectively. For the variability tuning problem (5.11), the variability tuning
guideline can not be obtained via this simple sequential two-step procedure since both
the variability reduction percentages, ryi, and the standard deviations of the manipulated
variables, ustdj , are decision variables and should be solved simultaneously. However, this
problem can be solved by several iterations of this two-step procedure until the constraints
in (5.11) and constraints (5.17), (5.18), (5.19) and (5.20) are satisfied simultaneously. The
corresponding algorithm for the tuning variability problem is given below:

Algorithm 5.3.1 For a discrete linear system (5.14), the variability tuning problem can

be solved by the following steps:
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(1) Set U
(0)
stdj = Ustdj0, j = 1, · · · ,m and k = 0, where Ustdj0 is the current standard

deviation of the j-th manipulated variable.

(2) Solve the variability tuning problem (5.11) with ustdj replaced by U
(k)
stdj in the constraint

inequalities (5.4).

(3) Solve the minimum energy control problem (5.16) and the solution gives the covariance

matrix Φu.

(4) If max(|U (k)
stdj −

√
Φu(j, j)|) < ε, where j = 1, 2, ..., m, and ε is a pre-determined

tolerance, is satisfied, then exit. Otherwise, set k = k + 1 and U
(k)
stdj =

√
Φu(j, j), go

to step 2.

5.3.2 Reformulation of the economic objective function

In Section 5.2, five problems for benefit potential analysis and two tuning problems for
variability and constraint have been presented. All of the these optimization problems can
be formulated as LMIs and thus solved efficiently. The key to these problems is to transform
the quadratic term in the economic objective function (5.1) into LMI. In the following we
will show this procedure.

It can be seen that the minimization of the objective function (5.1) can be further
formulated as

Minimize{ȳi,ūj} γ

subject to
(5.23)

NL∑

k=1

{
p∑

i=1

[
bki × ȳi + a2

ki(ȳi − ydki)
2
]
+

m∑
j=1

[
bkj × ūj + a2

kj(ūj − udkj)
2
]
}

< γ (5.24)

Apparently, the constraint is quadratic and nonlinear. For the first term on the controlled
variables, we can further derive as follows.

NL∑

k=1

{
p∑

i=1

[
bki × ȳi + a2

ki(ȳi − ydki)
2
]
}

=

p∑
i=1

{(
NL∑

k=1

bki

)
ȳi +

NL∑

k=1

[
a2

ki(ȳi − ydki)
2
]
}

=

p∑
i=1

{(
NL∑

k=1

bki

)
ȳi +

(
NL∑

k=1

a2
ki

)
ȳ2

i −
(

2

NL∑

k=1

(
a2

kiydki

)
)

ȳi +

NL∑

k=1

(
a2

kiy
2
dki

)
}
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= Ylin +

p∑
i=1







√√√√
NL∑

k=1

a2
ki


 ȳi




2

where

Ylin =

p∑
i=1

{
NL∑

k=1

(
bki − 2a2

kiydki

)
ȳi

}
+

p∑
i=1

{
NL∑

k=1

(
a2

kiy
2
dki

)
}

Similarly, for the second term of the manipulated variables, we have the following result:

NL∑

k=1

{
m∑

j=1

[
bkj × ūj + a2

kj(ūj − udkj)
2
]
}

= Ulin +
m∑

j=1







√√√√
NL∑

k=1

a2
kj


 ūj




2

where

Ulin =
m∑

j=1

{
NL∑

k=1

(
bkj − 2a2

kjydkj

)
ūj

}
+

m∑
j=1

{
NL∑

k=1

(
a2

kjy
2
dkj

)
}

Then the constraint (5.24) becomes

γ − Ylin − Ulin −
p∑

i=1







√√√√
NL∑

k=1

a2
ki


 ȳi




2

−
p∑

j=1







√√√√
NL∑

k=1

a2
kj


 ūj




2

> 0

According to Schur complement , the corresponding LMI can be obtained as the
following. (

γ − Ylin − Ulin XT
lin

Xlin I

)
Â 0 (5.25)

where Xlin =

[ (√∑NL

k=1 a2
k1

)
ȳ1 · · ·

(√∑NL

k=1 a2
kp

)
ȳp

(√∑NL

k=1 a2
k1

)
ū1 · · ·

(√∑NL

k=1 a2
km

)
ūm

]T

In addition, all the constraints are linear. Therefore, we can conveniently solve these
problems via LMI toolboxes, such as SeDuMi (Sturm, 1998-2001) together with YALMIP
interface (Löfberg, 2004). Actually, since the objective functions are all quadratic for the
original problems, we can also adopt some quadratic programming approaches, such as
quadprog function in Matlab optimization toolbox (Mathworks, 1990 - 2005).

5.4 A systematic approach

The economic performance assessment of MPC applications includes economic
performance assessment, sensitivity analysis and tuning guidelines, which is named as a
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systematic approach in this section. Two MPC economic performance indices are proposed
to reflect the benefit potential of any current run-time MPC application. Sensitivity analysis
is proposed to check the impact on the benefit potential by either variability reduction of
quality output/controlled variables or constraint relaxation of constrained variables. The
tuning guidelines give rise to suggested tuning operation on either variability or constraint
limits for the desired target benefit potential.

5.4.1 Economic performance assessment

In the ideal scenario, disturbances are not considered in the optimal benefit potential
calculation. The optimal operating point of the quality variables is expected to be pushed
directly towards the constraint bound subject to the constraints of other variables and there
is no back off due to variability. However, in the existing variability scenario, the present
disturbances are taken into account. The benefit potential is obtained by only shifting
the mean values of the quality variables in the direction of increasing benefit potential
without reducing variability and hence the back off from the constraint bound depends on
the magnitude of the present level of disturbances. By comparing these two scenarios, an
economic performance index without tuning can be defined as

ηwot =
∆JE

∆JI

It is obvious that 0 ≤ ηwot ≤ 1, which indicates the benefit potential ratio that could be
realized by just pushing the mean values without reducing the variability, while 1 − ηwot

indicates the benefit potential ratio that is due to no variability. If ηwot = 0, no benefit
potential could be obtained without reducing the variability, and it implies that sufficient
economic performance has arrived if the variability cannot be further reduced by the
existing control. If ηwot = 1, there is no disturbance and the economic performance can
be improved significantly by simply moving the operating point. If the economic objective
function (5.1) is only related to the output/controlled variables and all the coefficients, akj

and bkj , that are related to the input/manipulated variables, are assigned as zeros, the MVC
benchmark for variance performance assessment can be introduced. It gives a theoretical
absolute variance lower bound. A theoretical economic performance index with MVC as
the benchmark can thus be defined as

ηT =
∆JMV C

∆JI

where ∆JMV C is the theoretical benefit potential, ∆JT , that could be achieved by MVC.
∆JMV C can be calculated by employing variability reduction percentage Ryi based simply
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on the variance improvement potential from the MVC benchmark. It is in part due to
the mean value shifting and in part due to the variability reduction. It can be seen that
0 ≤ ηT ≤ 1. By comparing with the existing economic performance index, the following
inequality holds,

0 ≤ ηwot ≤ ηT ≤ 1

Therefore, if no variability could be reduced, ηwot (or ∆JE) could be adopted to evaluate
the economic performance of current MPC applications. ηwot = 0 (or ∆JE = 0) shows
that no benefit potential could be further obtained without reducing the variability. On the
other hand, if the MVC benchmark is available, ηT (or ∆JMV C) can be utilized instead,
which gives an optimal economic benefit potential that could be realized by reducing the
variability through the minimum variance control. The positive value of ηT (or ∆JMV C)
does not mean that this benefit potential could be surely achieved since MVC itself is rarely
implemented and there are always constraints on the manipulated variables in practice so
that MVC is not always realizable. However, the benefit potential given by a positive value
of ηwot (or ∆JE) could be actually achieved in practice by simply moving the operating
point to the optimal one.

5.4.2 Sensitivity analysis

Sensitivity analysis is used to investigate the impact of benefit potential to the variability
or constraint change of each individual variable. The result shows the importance
of variability reduction or constraint relaxation of different variables in terms of their
contributions to the benefit potential. In the variability sensitivity analysis, only one of
ryi is specified a small value (e.g., −1%) but all other ryi, syi and suj are set as 0, then
the benefit potential is observed to see the effect of variability reduction of this controlled
variable. Similarly, in the constraint sensitivity analysis, only one of syi or suj is specified
a small value (e.g., +1%) but all other syi, suj and ryi are set as 0, then the benefit potential
is calculated to see the impact of this small constraint relaxation of this variable. If a small
change on either variability reduction or constraint relaxation leads to a large change on
the benefit potential, we say that the benefit potential is sensitive to variability or constraint
change of this variable. It is worthwhile to reduce the variability or relax the constraints of
those variables that have great contributions to the benefit potentials.
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5.4.3 Tuning guidelines

As analyzed in the economic performance assessment, the benefit potential from the ideal
scenario or from the MVC benchmark may not be achieved in practice. Nevertheless,
∆JI or ∆JT can be regarded as a benchmark on the benefit potential against which other
scenarios could be compared. The desired target benefit potential that can be chosen by
users should never be greater than ∆JI by just tuning variability of the controlled variables.
Here a target benefit potential ratio by tuning variability, RV , has been defined as the ratio
between the target benefit potential and the one calculated from ideal scenario. It can be
seen that RV can never be greater than 1 because the variability can not be reduced more
than 100%. Likewise, the target benefit potential due to the constraint range change relative
to that of ideal scenario has been defined as the target benefit ratio by tuning constraint, RC .
Since constraint range of some variable may be increased to a great extent, the value of RC

may be specified as greater than 1. Once the desired target benefit potential ratio by tuning
variability RV or the target benefit potential ratio by tuning constraint RC is specified,
the corresponding optimization problem will result in the variability tuning guideline or
the constraint tuning guideline. The variability or constraint tuning guideline tells directly
which variables should be tuned on either variability or constraint, and how much should
be tuned for each of these variables in order to reach the desired target benefit potential.

5.5 Case studies

5.5.1 Simulation example
5.5.1.1 Process and controller description

Figure 5.7: Reduced Shell heavy oil fractionator (Ying and Joseph, 1999)
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The Shell control problem has been studied by many researchers (Prett et al., 1990).
It is a heavy oil fractionator control problem with 7 controlled variables, 3 manipulated
variables and 2 unmeasured disturbance variables (Ying and Joseph, 1999). Three key
controlled variables labeled y1,y2 and y3 are considered in this study (see Figure 5.7). They
are top end point (y1), side end point (y2) and bottom reflux temperature (y3). The process is
subject to the disturbances from upper reflux (l1) and lower reflux (l2) which are assumed
as white noises. The controlled variables are expected to remain within their respective
production specifications by adjusting the manipulated variables: top draw (u1), side draw
(u2) and bottom reflux (u3). The nominal process model and disturbance model are given
below in the form of continuous transfer matrices, respectively.

T (s) =




4.05
50s+1

e−27s 1.77
60s+1

e−28s 5.88
50s+1

e−27s

5.39
50s+1

e−18s 5.72
60s+1

e−14s 6.90
40s+1

e−15s

4.38
33s+1

e−20s 4.42
44s+1

e−22s 7.20
19s+1


 , N(s) =




1.20
45s+1

e−27s 1.44
40s+1

e−27s

1.52
25s+1

e−15s 1.83
20s+1

e−15s

1.14
27s+1

1.26
32s+1




The MPC design problem has the following formulation (Ying and Joseph, 1999)

Minimize{u1,k+j ,u2,k+j ,u3,k+j

j=0,··· ,Hu−1 }

Hp∑
i=1

[
w2

y1
(y1,k+i − y1sp)

2 + w2
y2

(y2,k+i − y2sp)
2]

+
Hu−1∑
j=0

w2
u3

(u3,k+j − u3sp)
2 (5.26)

subject to

− 0.5 6 y1,k+j 6 0.5, 1 6 j 6 Hp

− 10 6 y2,k+j 6 10, 1 6 j 6 Hp

− 0.5 6 y3,k+j 6 10, 1 6 j 6 Hp

− 0.5 6 u1,k+j 6 0.5, 0 6 j 6 Hu − 1

− 0.5 6 u2,k+j 6 0.5, 0 6 j 6 Hu − 1

− 0.5 6 u3,k+j 6 0.5, 0 6 j 6 Hu − 1

− 0.05 6 ∆u1,k+j 6 0.05, 0 6 j 6 Hu − 1

− 0.05 6 ∆u2,k+j 6 0.05, 0 6 j 6 Hu − 1

− 0.05 6 ∆u3,k+j 6 0.05, 0 6 j 6 Hu − 1

(5.27)

The Matlab MPC toolbox (Bemporad et al., 2005) is used to design MPC controller,
where control interval is set as Ts = 1 min, prediction horizon as Hp = 30, control
horizon as Hu = 2, weighting coefficients as wy1 = wy2 = 1.414 and wu3 = 1. With this
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MPC controller, the base case operation with given constraint limits is shown in Figure 5.8,
where we can see that all of the controlled variables and manipulated variables are located
within their corresponding constraint limits.
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Figure 5.8: Base case operation of Shell system

5.5.1.2 Economic performance evaluation and verification

The economic objective function is set as maximization of the top end point y1. It takes
the same form as (5.1), where Jk = −ȳ1 and the low/high limits (YLki, ULkj ,YHki, ULkj) in
(5.3) and (5.4) are set the same as those in (5.27). According to the systematic approach
discussed in the previous section, the benefit potentials and operating conditions of different
scenarios are calculated and verified respectively. The results are listed in Table 5.1. The
details will be further analyzed and discussed shortly.

Economic performance assessment
The benefit potentials of different scenarios are given in Figure 5.9. It shows that
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Table 5.1: Results of Shell system (Var.=Variability, Con.=Constraint,Tun.=Tuning)
Different optimal operating point Benefit potentials
scenarios ȳ1 ȳ2 ȳ3 ū1 ū2 ū3 Calculated Verified

Ideal 0.5000 2.3077 1.6614 0.0016 0.4721 -0.0635 0.5016 0.5016
Existing 0.1395 0.3187 0.2718 -0.0190 0.0458 0.0177 0.1411 0.1395
Var. Tun. 0.2994 2.9374 2.1153 -0.1675 0.7391 -0.0615 0.3010 0.2879
Con. Tun. 0.2994 0.5442 0.4776 -0.0053 0.0538 0.0331 0.3010 0.2994
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Figure 5.9: Benefit potentials of Shell system

∆JI = 0.5016 and ∆JE = 0.1411. With MVC as the benchmark, the variance
performance is calculated according to Huang and Shah (Huang and Shah, 1999) and
the performance indices of different control loops are shown in Figure 5.10. Since
the economic objective function is only related to the output/controlled variable, if the
constraints of the input/manipulated variables can be relaxed sufficiently the variance
potential resulting from the MVC benchmark can be applied to calculate the benefit
potential and the result, ∆JMV C , can be served as the theoretical one, ∆JT . Therefore,
∆JT = ∆JMV C = 0.4193 and this is the benefit potential that could be achieved if
MVC is implemented. The economic performance index without tuning is calculated as
ηwot = 28% and the theoretical economic performance index as ηT = 84%. This means
that: (1) 28% of the ideal benefit potential (ηwot) can be achieved by mean shifting only
without any other controller tuning effort; (2) 56% of the ideal benefit potential (ηT − ηwot)
is possibly achieved by further tuning variability of the output/controlled variables. Thus
one can conclude that the economic performance of this MPC application can be improved
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Figure 5.10: Variance performance assessment result of Shell system

significantly by shifting mean values as well as reducing variability.

Optimal tuning guidelines for desired benefit potential
The desired target benefit potential ratios by tuning variability and by tuning constraint
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Figure 5.11: Suggested CV variability tuning guideline for desired benefit potential

respectively, are both specified as RV = RC = 60% and the desired target benefit
potential is equal to 0.3010 which is smaller than ∆JT (i.e., 0.4193) and larger than
∆JE(i.e., 0.1411) (Figure 5.9). This target benefit potential is expected to be achieved by
either tuning variability or relaxing constraints. The variability tuning guideline suggests
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Figure 5.12: Suggested constraint tuning guideline for desired benefit potential

to reduce the standard deviation of y1 by 44.34% (Figure 5.11), and the constraint tuning
guideline tells that the present constraints of y1, y3 and u2 could be relaxed by 31.96%,
16.21% and 2.72%, respectively (Figure 5.12) to achieve the same desired target benefit
potential.

The calculated benefit potentials, ∆JI , ∆JE and the desired benefit potentials are
verified by setting the setpoint as the corresponding optimal operating point in the MPC.
When there is no disturbance, the operating point of the MPC is pushed to the one as
suggested in Table 5.1 for the ideal potential scenario, the achieved benefit potential is
exactly the same as the calculated one. By only moving the operating point in the presence
of present level of disturbance, the existing benefit potential is verified as 0.1395, which is
very close to the calculated one (i.e., 0.1411). This implies that the existing benefit potential
is indeed achievable by simply changing the operating point without any controller tuning
effort. In terms of variability or constraint tuning guideline, the achieved benefit potentials
are verified as 0.2879 by variability reduction and 0.2994 by constraint relaxation. Both of
them are very close to the desired target benefit potential (i.e., 0.3010). This shows that the
calculated benefit potentials agree well with the actually achieved ones through the tuning
and demonstrates the feasibility of the proposed systematic approach for MPC economic
performance assessment.
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5.5.2 Multi-tank experiment
5.5.2.1 Experimental setup and controller design

The Multi-tank system consists of upper, middle, and lower tanks each equipped with drain
valves, as illustrated in Figure 5.13. A variable speed pump fills the upper tank. The liquid
outflows the tanks due to gravity. The control goal is to keep the desired liquid levels in
each of the tanks. The level sensors mounted in the tanks measure these levels. There
are manual and automatic valves (that act as flow resistors) to stabilize the desired levels.
Through Real-Time Workshop (RTW) and Real-Time Windows Target (RTWT), MATLAB
and Simulink are used to develop and run real-time control. The setup can be used to verify
and validate performance assessment strategies for model predictive control.

 

Figure 5.13: Experimental system configuration

The pilot experiment is designed and performed when all of the three drain valves are
fully open with appropriate inflow q. The three tank levels, H1, H2 and H3, are controlled
variables and the three automatic valves, C1, C2 and C3, are manipulated variables. The
disturbance comes from inflow q due to the non-steadiness of the feeding pump. In
addition, noises are directly added on the output measurements, H1, H2 and H3, through
the computer.
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At first, the following process model is identified through identification experiment:

T (s) =




−0.1971
48.22s+1

e−4.58s 0 0
10.82s+0.02552

2434s2+72.81s+1
−0.2105
33.82s+1

e−1.14s 0
12.54s+0.03078

8960s2+92.52s+1
e−10.1s 12.01s+0.01055

1622s2+157.9s+1
e−6.04s −0.3558

94.49s+1
e−3s




This process model is employed for the MPC controller design. The constraints are set
as 0.5 ≤ Ci ≤ 1.0, −0.1 ≤ 4Ci ≤ 0.1 and 0.05 ≤ Hi ≤ 0.25, where i = 1, 2, 3.
The input rate weights are given as [0.5, 0.5, 0.5] and the output weights [1, 0.8, 0.9]. The
control interval is 2 second, the prediction and control horizons are designed as 15 and 2,
respectively.
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Figure 5.14: Base case operation of Multi-Tank system

5.5.2.2 Data collection and analysis

By applying the designed MPC controller, the real time data are collected and regarded
as base case operation in this study, as shown in Figure 5.14. It is observed that all of
the controlled variables and manipulated variables are running within their corresponding
constraints.

If the economic objective function is set, for example, as the maximization of the
third tank level subject to its constraint, say, max(100H3) or min(−100H3), and all the
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conditions are kept unchanged except specified otherwise, then the benefit potentials and
optimal operating conditions of different scenarios are calculated on the basis of the base
case operation data set. For the existing scenario or constraint tuning guideline scenario,
the MPC controller is adjusted of operating point or tuned in terms of its optimal operating
condition and the experiment is conducted again using the new controller to see whether
the corresponding estimated benefit potential can be realized. The main results are shown
in Table 5.2. The calculated and realized benefit potentials of different scenarios are also
shown in Figure 5.15. The details are explained next.

Table 5.2: Results of Multi-Tank system ( Con.=Constraint,Tun.=Tuning)
Different operating point Benefit
scenarios H̄1 H̄2 H̄3 C̄1 C̄2 C̄3 potentials

Ideal Calculated 0.0977 0.1189 0.2500 0.9882 0.9189 0.5013 7.0874
Existing Calculated 0.1174 0.1281 0.1833 0.8881 0.8632 0.6786 0.4152
scenario Realized 0.1334 0.1469 0.1835 0.7841 0.9907 0.7098 0.4374

Con. Tun. Calculated 0.0984 0.1102 0.2217 0.9847 0.9599 0.5819 4.2524
scenario Realized 0.1039 0.1120 0.2208 0.9462 0.9155 0.6387 4.1700
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Figure 5.15: Benefit potentials of Multi-Tank system

For the base case operation, the MVC benchmark shows that this MPC controller
performs very well in the sense of output variance. With minimum variance as the
benchmark, its multivariate performance index is calculated as 0.9887 and its individual
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control loop performance indices are 0.9634, 1.0087 and 0.9755, for the three tanks
respectively. Thus, improvement through variance reduction is unlikely. The further
calculation shows that ∆JI = 7.0874 and ∆JE = 0.4152. The economic performance
without tuning is thus 5.8%, which means that the MPC controller has also good economic
performance if no tuning on the variance or the constraints is considered. This is because
the benefit potential by mean shifting is rather small.

For the existing scenario, the realized benefit potential is very close to that of the
calculated one. This indicates that the calculated existing benefit potential is indeed
achievable in practice. For the constraint tuning guidelines, the target benefit potentials
are set as 60% of the calculated ideal benefit potential (7.0874), i.e., 4.2524. The constraint
tuning guideline shows that the target benefit potential (4.2524) can be achieved if the
constraints of the controlled variables could be relaxed by 11.68%, 15.50%, 26.06% and
all of the constraints of the manipulated variables by 38.65%. This means 0.0383 ≤ H1 ≤
0.2617, 0.0345 ≤ H2 ≤ 0.2655, 0.0239 ≤ H3 ≤ 0.2761 and 0.3067 ≤ Ci ≤ 1.0, where
i = 1, 2, 3. The result shows, once again, that the realized benefit potential (4.1700) is very
close to the target benefit potential (4.2524).

5.6 Conclusion

The MPC performance assessment with considerations of economic benefit and constraint
is studied. Performance assessment algorithms are developed, which can be used to
evaluate the benefit potentials by either reducing variability or relaxing constraints. Case
studies on a simulated industrial process and a laboratory Multi-Tank experiment show
the feasibility of the proposed algorithms and demonstrate that the proposed systematic
approach is beneficial for process control engineers in their routine maintenance of MPC
applications, especially on the evaluation of economic performance and providing variance
or constraint tuning guidelines. The proposed approach is also integrated with multivariate
controller performance assessment (MVPA) which is based on the MVC benchmark and
gives the relationship between variance based performance assessment and MPC economic
performance assessment. Part of the proposed algorithms has been integrated into a plant-
oriented solution package for MPC performance monitoring and they are scalable to larger
MPC applications.



6
APC Performance Monitoring: Industrial

Practice and Application ∗

6.1 Introduction

During the last few years, a software package, which is called Performance Analysis
Technology and Solutions (PATS), has been developed under collaboration with process
industries. Many algorithms developed from this thesis have been integrated into the
software. It includes many independent components and each of them has its own
initiative from industries. All of these components of this software can be classified into
three different categories in terms of overall functionality, namely: interface components,
assistant components and application components (Figure 6.1). The interface components
were designed for retrieving raw process data from different sources, such as data historian
with historical data (1 component), OPC (OLE for Process Control, where OLE is referred
to as Object Linking and Embedding technique) server with real-time data (2 components),
and virtual plant with simulated data (1 component). The assistant components are
used to deal with these raw data and then provide the application components with
consistent and cleaned data. Some routine works of these assistant components include

∗Part of this chapter has been published in Xu, F. , Huang, B. and Tamayo, E.C., Assessment
of variance/constraint induced economic performance for model predictive control, IFAC International
Symposium on Advanced Control of Chemical Processes (ADCHEM2006), Gramado, Brazil, April 2-5,
899-904, 2006
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data preparation, data preprocessing, etc.. The main task of process data analysis is carried
out by different application components with different design objectives driven by process
industries. They cover the most state-of-the-art technologies which have been transferred
directly from recent research work in the fields of controller performance monitoring (3
components), process model identification (2 components), fault detection and isolation (1
component), and controller design (1 component). PATS bridges the gap between academia
and industries, and make it possible to apply the research outcome directly into process
industries.

Controller Performance Assessment & Tuning (3)Controller Performance Assessment & Tuning (3)

Controller Design (1)Controller Design (1)Model Identification (2)Model Identification (2)

Fault Detection & Isolation (1)Fault Detection & Isolation (1)

ODBC Client (1)OPC Client (2)

DCS ODBC Server

Real-time data Historical data

Simulink Data Collector (1)

Virtual Plants

Simulated data

Assistant Components

Figure 6.1: An overview of the PATS package

One of the main purposes of PATS is to perform controller performance monitoring
in the process industries, especially on the widely used model predictive control (MPC)
applications. MPC has been proven as one of the most effective advanced process
control (APC) strategies to deal with multivariable constraint control problems (Qin and
Badgwell, 2003). Even though the rewards of MPC applications can be great, most
of them are not used to their full capacity in practice due to lack of maintenance and
conservative/tight operations on the CV/MV limits (Singh and Seto, 2002). In many cases,
only a small portion of the available benefits has been realized and half of the refineries
have captured about only 40% of the benefits (King, 1999). Unfortunately, less effort has
been made on the performance evaluation of existing MPC applications, especially on the
economic performance. Therefore, a systematic and standardized approach is demanded
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by the process industries to monitor the performance of MPC applications and facilitate the
task of MPC maintenance.

The outline of this chapter is as follows. Section 6.2 gives a summary of the algorithms
for multivariate controller performance assessment and MPC economic performance
assessment, which are utilized by the PATS. A plant-oriented solution for APC performance
monitoring is then proposed on the basis of industrial implementation background in
Section 6.3. An industrial MPC application is described thereafter in Section 6.4, and
its performance is analyzed by using the PATS with routine operating data in Section 6.5.
It is ended with concluding remarks in Section 6.6.

6.2 Algorithms for APC performance assessment

6.2.1 FCOR algorithm for multivariate controller performance
assessment

A standard multivariate process can be represented by

yk = T (q−1)uk + N(q−1)ak (6.1)

where T (q−1) is a proper, rational p×m transfer function matrix, N(q−1) is a disturbance
model, yk, uk and ak are output, input and white noise vectors of appropriate dimensions.
The difficulty in multivariate controller performance assessment is the factorization of the
time delay matrix, which is known as the interactor matrix. The interactor matrix is an
equivalent form or generalization of the time delay in multivariate systems. It needs process
model (or at least the first few Markov Matrices) to capture the delay terms. The interactor
matrix can be factored out by using QR factorization (Rogozinski et al., 1987; Peng and
Kinnaert, 1992), or SVD (Singular Value Decomposition) (Huang et al., 1997b), or direct
definition (Lu, 2005). Once the interactor matrix is known, the minimum variance control
benchmark can be readily extended to evaluate the performance of multivariable control
systems. The overall and individual performance indices can be calculated by multivariate
FCOR (filtering and correlation analysis) algorithm (Huang and Shah, 1999).

Algorithm 6.2.1 The FCOR algorithm (Huang and Shah, 1999) can be summarized as

the following steps:

(1) Estimate the unitary interactor matrix D with delay order d that satisfies

DT (q−1)D(q) = I and D(q) = D0q
d + D1q

d−1 + D2q
d−2 + · · ·+ Dd−1q.
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(2) Identify and filter the time series model Ĝcl(q
−1) from closed-loop routine operating

output data, calculate the covariance matrix of the whitened sequence, Σ̂a.

ŷk = Ĝcl(q
−1)âk, q−dDĜcl(q

−1) = F̂ (q−1) + q−dR̂cl(q
−1), Σ̂a = E(âkâ

T
k )

(3) Calculate the benchmark output covariance matrix as

E(ŷkŷ
T
k )|mv = Ê0Σ̂aÊ

T
0 + Ê1Σ̂aÊ

T
1 + · · ·+ Êd−1Σ̂aÊ

T
d−1

where

(Ê0, Ê1, · · · , Êd−1) = (DT
0 , DT

1 , · · · , DT
d−1)




F̂0 F̂1 · · · F̂d−1

F̂1 F̂2 · · ·
...

...
... F̂d−1

F̂d−1




and

F̂ (q−1) = F̂0 + F̂1q
−1 + · · ·+ F̂d−1q

d−1

(4) Obtain the overall and individual performance indices as the following,

η̂o =
trace(E(ŷkŷ

T
k )|mv)

trace(E(ŷkŷT
k ))

=
trace(Ê0Σ̂aÊ

T
0 + Ê1Σ̂aÊ

T
1 + · · ·+ Êd−1Σ̂aÊ

T
d−1)

trace(E(ŷkŷT
k ))

and

η̂i =
diag(E(ŷkŷ

T
k )|mv)

diag(E(ŷkŷT
k ))

=
diag(Ê0Σ̂aÊ

T
0 + Ê1Σ̂aÊ

T
1 + · · ·+ Êd−1Σ̂aÊ

T
d−1)

diag(E(ŷkŷT
k ))

6.2.2 MPC economic performance assessment and tuning guidelines

The algorithms for MPC economic performance assessment and tuning guidelines have
been introduced with given process model and disturbance model in the previous chapter.
The back-offs of the controlled variables are directly calculated on the basis of their
standard deviations of the existing operation. For the manipulated variables, their back-
offs are optimized as their standard deviations are minimized in terms of minimum energy
control such that the range of optimal operation is expanded to the greatest extent. The
variability relation between the controlled variables and the manipulated variables is thus
explicitly established.

However, the disturbance model from the white noise to the process output, N(q−1),
is usually not available in practice, and thus the input standard deviation, Ustdj , can not
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be calculated based on the process model and disturbance model with the output variance
constraint. From the observation of the distinction between the controlled variables and
the manipulated variables, it is found that for most control problems the output variance
is of greater concern in terms of product quality. This is due to the fact that the key
quality variables are usually selected from the controlled variables. On the other hand, the
operating ranges of the manipulated variables are often strictly limited by some physical
hard constraints. Therefore, it is reasonable to calculate their back-offs on the basis of the
existing operating ranges instead of the standard deviations.

By considering practical implementation, the algorithms for the MPC economic
performance assessment can be further simplified in that there is no need to calculate
the standard deviations of the input variables and their back-offs are directly based on
the operating ranges of the existing operation. Therefore, for practical implementation
algorithms, the variability changes of the controlled variables are performed in terms of
their existing standard deviations while the variability changes of the manipulated variables
are established in terms of their existing operating ranges.

It must be noted that since the relation between the variability changes of the controlled
variables based on the existing standard deviations and the variability changes of the
manipulated variables based on the existing operating ranges is not well established, unless
the disturbance models are exactly known. They are dealt with independently in the
practical implementation algorithms. Thus, for one specific component of the software that
deals with variability tuning guideline, the results obtained from a specific component for
the variability tuning are only a guideline for the targeted distributions of variances among
the controlled variables if certain benefit potential is desired. The variance distribution
serves as a tuning direction or an ideal benchmark for control tuning, but depending on
the process dynamics and tuning methods, this ideal target may or may not be practically
achieved.

Therefore, the main difference between the practical implementation algorithms and the
ones proposed in the previous chapter lies in the simplification of input/output inequality
descriptions. These distinct inequality descriptions of the input/output variables were first
presented by Xu et al. (2006) and are summarized below for different scenarios. In the
following, i = 1, · · · , p, j = 1, · · · , m, and Uqorj0 is referred to as a quarter of moving
range of the j-th input variable in the existing operation.

• Ideal operation scenario:

YLki ≤ ȳi ≤ YHki

ULkj ≤ ūj ≤ UHkj

(6.2)
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The disturbance is not considered and thus a strict steady state optimum can be
calculated subject to the constraints. The obtained benefit potential is the maximum
one that can be ideally achieved without constraint violations. This ideal benefit

potential is denoted as ∆JI .

• Existing variability scenario:

YLki + 2× Ystdi0 ≤ ȳi ≤ YHki − 2× Ystdi0

ULkj + 2× Uqorj0 ≤ ūj ≤ UHkj − 2× Uqorj0

(6.3)

The present level of disturbance is considered. The purpose is to investigate whether
there is benefit potential by moving mean values only. This benefit potential is called
as the existing benefit potential, ∆JE .

• Reducing variability scenario:

YLki + 2× Ystdi0(1 + Ryi) ≤ ȳi ≤ YHki − 2× Ystdi0(1 + Ryi)

ULkj + 2× Uqorj0(1 + Ruj) ≤ ūj ≤ UHkj − 2× Uqorj0(1 + Ruj)
(6.4)

where Ryi and Ruj are specified a priori. If the variability can be reduced, then the
mean values can be moved closer to their ideal optimal ones. This benefit potential
is defined as the optimal benefit potential by reducing variability, ∆JV .

• Relaxing constraint scenario:

YLki − Syi × Yholki + 2× Ystdi0 ≤ ȳi ≤ YHki + Syi × Yholki − 2× Ystdi0

ULkj − Suj × Uholkj + 2× Uqorj0 ≤ ūj ≤ UHkj + Suj × Uholkj − 2× Uqorj0

(6.5)

where Syi and Suj are specified a priori. The constraint relaxation also creates
opportunities for the quality variables to approach their ideal optimal values. This
potential is defined as the optimal benefit potential by relaxing constraint, ∆JC .

• Simultaneous reducing variability and relaxing constraint scenario:

YLki − Syi × Yholki + 2× Ystdi0(1 + Ryi) ≤ ȳi ≤
YHki + Syi × Yholki − 2× Ystdi0(1 + Ryi)

ULkj − Suj × Uholkj + 2× Uqorj0(1 + Ruj) ≤ ūj ≤
UHkj + Suj × Uholkj − 2× Uqorj0(1 + Ruj)

(6.6)

where Ryi, Ruj , Syi and Suj are specified a priori. This scenario considers both the
variability reduction and constraint relaxation. The corresponding benefit potential
is thus called as the optimal benefit potential by reducing variability and relaxing

constraint simultaneously. It is denoted as ∆JB.
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• Variability tuning problem:

YLki + 2× Ystdi0(1 + ryi) ≤ ȳi ≤ YHki − 2× Ystdi0(1 + ryi)

ULkj + 2× Uqorj0(1 + ruj) ≤ ūj ≤ UHkj − 2× Uqorj0(1 + ruj)
(6.7)

where ryi and ruj are unknown variability tuning rates. This is to solve the variables
and how much should be reduced on their variability in order to achieve the target
benefit potential.

• Constraint tuning problem:

YLki − syi × Yholki + 2× Ystdi0 ≤ ȳi ≤ YHki + syi × Yholki − 2× Ystdi0

ULkj − suj × Uholkj + 2× Uqorj0 ≤ ūj ≤ UHkj + suj × Uholkj − 2× Uqorj0

(6.8)

where syi and suj are unknown constraint tuning rates. This is to find the variables
and how much should be relaxed on their constraint limits such as to achieve the
target benefit potential.

For the economic performance assessment, we have the following two indices.

ηwot =
∆JE

∆JI

and ηT =
∆JMV C

∆JI

where ηwot is the economic performance index without tuning, ηT is the theoretical
economic performance index with MVC as the benchmark, and ∆JMV C is the theoretical

benefit potential, ∆JT , that could be achieved by MVC. For these two economic
performance indices, the following inequality relation holds.

0 ≤ ηwot ≤ ηT ≤ 1

6.3 Industrial APC performance monitoring framework

This section will introduce our industrial practice and experience for APC performance
monitoring. The PATS software package has been tested and implemented in industry in
particular, for APC performance monitoring. Up-to-date there are more than 10 MPC
applications implemented in different plants of this industry. Unfortunately it’s rather
hard for the process control engineers to routinely monitor the performance of these MPC
applications. By PATS implementation, a practical plant-oriented solution has been carried
out for APC performance monitoring which is based directly on the existing distributed
control systems (DCS). It tells not only the output variance performance but also the
economic performance and MPC tuning guidelines, by taking full advantage of existing
available process data information.
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6.3.1 Implementation background

LAN Desktop

DCS

PMN

Corporate LAN

HMI Data Collection

RDBMS Server

Application Station

A Dedicated Development Computer

Figure 6.2: Implementation framework for APC performance monitoring

The overall implementation framework is illustrated in Figure 6.2. There are three
network layers, including DCS network at the bottom, process management network
(PMN) in the middle and corporate local area network (LAN) on the top. The distributed
controllers running regulatory control loops are all connected to the DCS network via
network interfaces. There are human-machine interface (HMI), application station, OPC
server and data collection between DCS and PMN, and relational database management
system (RDBMS) server and data historian between PMN and LAN. The APC applications
are implemented and running on the application station. The real-time data can be collected
from the OPC server via OPC client. The data collection collects the real-time data from
DCS with the background supported by the RDBMS server and at the same time transfers
the collected data to the data historian in a batch mode. The data historian keeps the
historical data information with compression option, which can be accessed from any
corporate LAN desktop computers.

The PATS package includes two interface components, one is an OPC client which is
also named as real-time data collector, and the other one is ODBC client, where ODBC
stands for open database connectivity protocol. The PATS package can be loaded in any
LAN desktop computers with ODBC client as the data interface and data historian as the
data source. Note that by this way the historical data could be retrieved for analysis. For
the real-time data, the OPC client is installed on a dedicated development computer which
has a direct connection with PMN such that the OPC client could have access to the OPC
server. Therefore, the PATS package can also be implemented for real-time data analysis.

It should be mentioned that this framework is built on the basis of existing control system
infrastructure, but it is readily transplanted to and integrated with other control systems.
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6.3.2 A plant-oriented solution for APC performance monitoring

PATS
Assistant

DCS

Data

Tag

Data and model

Data and model/gain

Variability
potential

Historical data

Data
Historian

Real-time data

Figure 6.3: Structure of plant-oriented solution for APC performance monitoring

With the implementation background in Figure 6.2, a plant-oriented solution (Figure
6.3) has been proposed, especially for APC performance monitoring. It is composed of two
main application components, two interface components and some assistant components of
the PATS package.

The historical process data can be retrieved from data historian by ODBC client and
the real-time process data from DCS by real-time data collector via OPC technique.
Both of historical data and real-time data are then transferred and supplied by the
assistant components to the application components. The assistant components serve as
a process information bridge or hub between the interface components and the application
components. On the one hand, they provide convenient utilities to enter process tag names
for the interface components and process model information for the application components
if it is required. On the other hand, the collected process data are preprocessed, such as
detecting and removing outliers, and then standardized in the format such that the data set
is guaranteed to be consistent with the application components.

There are two main application components in this solution for APC performance
monitoring, which are namely briefed as MVPA and LMIPA. MVPA is referred to as
multivariate controller performance assessment component with MVC as the benchmark. It
employs FCOR algorithm (Huang and Shah, 1999) to calculate the individual and overall
variance performance indices. The variance performance indices quantify how good the
existing controller is compared with the MVC benchmark, and give rise to the improvement
potential in the sense of output variance. By the FCOR algorithm, both process model
and routine operating output data are required. LMIPA stands for linear matrix inequality



Sec. 6.4 Process description and data collection 118

approach for performance assessment with an objective for providing APC economic
performance assessment and tuning guidelines. It takes process gain, process input/output
data and the relevant control parameters such as hard constraints as the input and then
calculates the benefit potentials of different scenarios, economic performance indices,
suggested MPC variability and constraint tuning guidelines. The variability improvement
potential from the MVPA component can be provided to the LMIPA component for a
theoretical benefit potential estimation with MVC as the benchmark. This bridges the
MVPA component and the LMIPA component within this plant-oriented solution.

Therefore, this integrated solution provides not only the variance performance result
with MVC as the benchmark, but also the economic performance information and
MPC tuning guidelines, and hence facilitates the task of APC application performance
monitoring and maintenance.

6.4 Process description and data collection

6.4.1 Process description

The gas oil hydrotreating unit (GOHTU) is designed to produce high quality treated gas oil
product. It receives a blend of raw gas oil and then treats it with hydrogen at high pressure
and moderate temperature in fixed catalyst beds. Olefinic chemical bonds are saturated to
a more stable form and the sulphur and nitrogen contents are reduced. The reactor effluent
is fractionated into product gas oil and partially treated naphtha. The simplified schematic
process diagram is shown in Figure 6.4.

The main parts of the GOHTU are feed section, reactor section, reactor effluent section
and fractionator section. In the feed section, the raw gas oil is filtered in feed filters to
remove particulate matter and flows into the surge drum C-1, from where it is pumped to
the reactor section. In the reactor section, the raw gas oil is preheated and combined with
treat gas before it is sent to the reactors. The treat gas is composed of recycle gas and fresh
makeup hydrogen. The hydrogenation reactions occur in the reactors with catalyst. The
reactor effluent is then cooled and separated into a liquid stream and a vapour stream in the
hot high pressure separator, C-6. The liquid stream is sent to the fractionator section.
The recycle gas is compressed after the removal of light oils, NH3 and H2S. In the
fractionator section, the liquid stream from the reactor section is fractionated into product
gas oil (fractionator bottoms) and the partially treated naphtha (fractionator overhead).

An MPC controller has been designed and applied in the reactor section with the
following objectives: (1) optimize reactor equivalent isothermal temperatures (EITs) to
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maintain nitrogen and sulphur specifications, extend the catalyst run length, and reduce
hydrogen consumption; (2) optimize hydrogen partial pressure to extend the catalyst run
length by adjusting treat gas ratio and recycle gas purity; (3) minimize hydrogen and fuel
gas consumption; (4) improve operation safety. This controller includes 41 controlled
variables (CVs), 15 manipulated variables (MVs) and 5 disturbance variables (DVs).

6.4.2 Process data collection
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Figure 6.5: Time series plot of CV2

The real-time data collected for this analysis include controlled variables, manipulated
variables and their related parameter variables, such as high/low limits, linear coefficients,
quadratic coefficients and resting values. The data collection lasted for approximately 26.5
hours with sampling time 15 second and totally 6350 data points. There is a significant
operating condition transition between data point number 2570 and 2600. This can be seen
clearly from CV2 (Figure 6.5). For proprietary reason, data shown in the figure have been
normalized. Owing to two different operating conditions, it is necessary to divide it into
two data sections. The first section includes 2570 data points (about 10.71 hours) and the
second section includes 3750 data points (about 15.63 hours). From these two data sets, the
total variances were calculated as 206.6849 and 81.8848, respectively. The data analysis
will be carried out with respect to these two data sections respectively.
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6.5 Data analysis for APC performance assessment

6.5.1 Variance performance assessment using the MVC benchmark

The FCOR algorithm employs the process model to factorize the interactor matrix and
the closed-loop routine operating data to calculate the performance indices. With the given
process model, the unitary interactor matrix was obtained as a 41×41 anti-diagonal matrix.




0 0 0 · · · 0 q
0 0 0 · · · q 0
...

...
...

...
...

...
0 0 q · · · 0 0
0 q 0 · · · 0 0
q 0 0 · · · 0 0




(6.9)
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Figure 6.6: Variance performance of data section 1

By using the FCOR algorithm, the variance performance indices from MVPA with MVC
as the benchmark were calculated as shown in Figure 6.6 for the first data section and Figure
6.7 for the second data section. The overall variance performance indices were obtained
as η̂MV C(y1) = 0.1310 for data section 1 and η̂MV C(y2) = 0.3682 for data section 2. For
both sections, they have similar relative performance among different control loops. CV3-
CV15, CV22-CV30, CV31, CV36-CV39 and CV41 have relatively higher performance
index values than those of other control loops. CV1, CV2, CV16, CV17, CV19, CV21 and
CV40 show poor performance. In general, this MPC application performed much better in
section 2 and most of performance index values of section 2 are significantly larger than
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Figure 6.7: Variance performance of data section 2

the corresponding ones of section 1 except a few control loops like CV16 and CV17. The
individual control loop CV29 of the data section 1, and the individual control loops CV14,
CV15, CV28, CV29, CV38, CV39 of the data section 2, performed very well, and their
performance indices are very close to 1. However, the variance performance index values
of CV1 and CV2 in both data sections are small, which may imply possibility of large
economic benefit potential of the existing control if we are able to reduce their variability.
This is because the gas oil nitrogen content (CV1) and sulphur content (CV2) are both
quality variables that have great impact on the economic performance.

6.5.2 Variance performance assessment using the LTVD benchmark

From the time series of two data sections, the total variance of data section 1 is significantly
larger than that of data section 2. It is considered that the first data section was subject to a
major disturbance and the second data section was affected by another but more common
disturbance. The second data section is thus considered as more representative one while
the first data section needs to satisfy some pre-specified requirement. Note that in this case
the regular, the weighted and the generalized LTVD benchmarks are the same. The LTVD
benchmarks have not been included in the current version of PATS. We apply the algorithms
developed in Chapter 3 to this industrial problem in this subsection. For computational
tractability, the 8 controlled variables with the first priority control settings in DCS are
selected as an example of applying the LTVD benchmark. Thus we only consider a subset
(8CVs) of the original system that has 41 CVs. The aim is to investigate the achievable
minimum total variance on the second data section under the condition of meeting the pre-
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specified requirement on the first data section. From the given data set, the closed-loop time
series model was identified for each section. The unitary interactor matrix was calculated
as an 8× 8 diagonal matrix. 



q 0 · · · 0 0
0 q · · · 0 0
...

...
...

...
...

0 0 · · · q 0
0 0 · · · 0 q




(6.10)

The disturbance affecting the first data section is required to be regulated to follow a pre-
specified closed-loop response for each individual output. This closed-loop response of
GR(i, j) takes the form of a first order transfer function and lead-lag system as

GR(i, j) =
αij

1− λiq−1
and GR(i, j) =

αij + βijq
−1

1− λiq−1
(6.11)

respectively, where λi is the pre-specified response requirement for the i-th output, αij

and βij are the ij-th elements of the corresponding unknown decision matrix variables.
By using the LTVD benchmark, λi for the 8 outputs take the same value, i.e., λi = λ,
i = 1, 2, · · · , 8. The results are shown in Table 6.1, Figure 6.8 and Figure 6.9, where
σ̂2

opt(y1) and σ̂2
opt(y2) are referred to as the optimal total variances of the section 1 and 2

Table 6.1: Performance assessment results based on the LTVD benchmark
GR λ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

σ̂2
opt(y1) 0.1760 0.1761 0.1764 0.1767 0.1771 0.1776 0.1785 0.1806

First- σ̂2
opt(y2) 0.1804 0.1802 0.1800 0.1796 0.1792 0.1787 0.1780 0.1768

order η̂(y1) 0.1424 0.1425 0.1426 0.1428 0.1430 0.1433 0.1439 0.1454
η̂(y2) 0.2907 0.2905 0.2902 0.2899 0.2895 0.2889 0.2879 0.2857

σ̂2
opt(y1) 0.1788 0.1789 0.1791 0.1793 0.1795 0.1800 0.1808 0.1830

Lead- σ̂2
opt(y2) 0.1773 0.1772 0.1770 0.1768 0.1766 0.1763 0.1759 0.1753

lag η̂(y1) 0.1441 0.1442 0.1442 0.1443 0.1445 0.1448 0.1454 0.1470
η̂(y2) 0.2867 0.2866 0.2865 0.2862 0.2860 0.2855 0.2847 0.2829

respectively. It is clear that with the increasing of λ value, the optimal total variance of the
first data section is gradually relaxed (Figure 6.8). This simultaneously leaves opportunities
for the second data section to improve its variance performance with gradually decreasing
optimal total variance. Therefore, The variance reduction on the second data section is
achieved at the sacrifice of the variance inflation on the first data section. It is also observed
that the optimal total variance of the second data section with lead-lag GR(q−1) is less
than the corresponding one with first order GR(q−1), while for the first data section its
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optimal total variance with lead-lag GR(q−1) is larger than the corresponding one with first
order GR(q−1). This is due to the fact that the lead-lag system has one more degrees of
freedom than the first order transfer function in the optimization problem. For the variance
performance indices, the trends are exactly the same as the trends of the corresponding
optimal total variances (Figure 6.9).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.175

0.176

0.177

0.178

0.179

0.180 

0.181

0.182

0.183

λ

O
pt

im
al

 to
ta

l v
ar

ia
nc

e

 

 

Data section 1 (first order)
Data section 2 (first order)
Data section 1 (lead−lag)
Data section 2 (lead−lag)

Figure 6.8: The trend of optimal total variance vs user chosen λ value
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Figure 6.9: The trend of performance index vs user chosen λ value

For the selected 8 controlled variables, the actual total variances from the given data
set are 1.6812 for the first data section and 0.8010 for the second data section. By using
the MVC benchmark, the minimum total variances were solved as 0.1750 and 0.1723,
respectively. The actual total variances and the minimum total variances give rise to the
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minimum variance performance indices for the given two data sections as η̂MV C(y1) =

0.1416 and η̂MV C(y2) = 0.2769. By comparison, the optimal total variances from the
LTVD benchmark are all greater than their corresponding minimum total variances from
the MVC benchmark, and so do their performance indices. Even though the differences
are relatively small, the resultant optimal total variances from the LTVD benchmark
are practically achievable, while the results from the MVC benchmark are usually not
achievable in practice.

6.5.3 Economic performance assessment
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Figure 6.10: Benefit potentials of different scenarios for both data sections

The benefit potentials under different scenarios for both data sections were calculated
and illustrated in Figure 6.10, including the results of ideal scenario, existing variability
scenario and MVC benchmark by FCOR algorithm.

For the first data section, ∆JI1 = 134.4663, ∆JE1 = −57.9664 and ∆JMV C1 = 127.88.
The economic performance index without tuning was calculated as ηwot1 = −43.11%, and
the theoretical economic performance indices based on the MVC benchmark by FCOR
algorithm was ηT1 = 95.10%. Since the ideal benefit potential ∆JI1 is greater than 0, it
implies that the current operating point (mean value) is within the range of the constraint
limits. However, the existing benefit potential ∆JE1 is smaller than 0, which means loss
potential of benefit. This is mainly due to the fact that the constraint violation percentage
of the key quality variable CV1 has exceeded 5%, and in fact it reaches 12.45%. This kind
of excessive constraint violation is apparently detrimental since it would directly degrade
the product quality. The optimal solution of the existing scenario is to reduce the constraint
violation to the tolerance percentage by shifting mean value away from the constraint, and
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thus causes benefit lost. However, there are still opportunities to gain benefit potential
because the optimal theoretical benefit potential (127.88) based on the MVC benchmark is
large enough and very close to the ideal one (134.4663). This is achievable by reducing
variability if there is sufficient operating range for the manipulated variables. Therefore,
with existing constraint limit settings, tuning variability is the key to gain improved benefit
for the first data section.

For the second data section corresponding to different operating condition, the optimal
benefit potentials were calculated as ∆JI2 = 238.7971, ∆JE2 = 135.0416, ∆JMV C2 =

229.98, and thus the resultant economic performance indices are ηwot2 = 56.55% and
ηT2 = 96.31%. The existing benefit potential value is as large as 135.0416 and shows that
the economic performance of this MPC application could be improved given the existing
variability and constraint limit settings. This potential for improved benefit is readily
achievable by only moving the operating point for the current operation without any other
tuning effort. The economic performance index without tuning is also relatively large,
indicating that 56.55% of the ideal benefit potential should have been achieved relative
to the current operation. According to the variance improvement potential based on the
MVC benchmark, the theoretical benefit potential (229.98) is very close to the ideal one
(238.7971). This means, even though the ideal benefit potential is never achievable in
practice, if the minimum variance control is implementable, then 96.31% of the ideal
benefit potential is expected to be achieved. This is resulted partially from mean value
shifting (135.0416) and partially from variability reduction (94.9384).

By comparing the results of the two data sections for the two different operating
conditions, it can be observed that the benefit potentials from the second data section
are much larger than the corresponding ones from the first data section. This implies
that the current operating point of the second data section is much farther away from its
ideal optimal operating point than that of the first data section. Therefore, even the MVC
benchmark shows that the second data section has better performance in the sense of output
variance, the economic performance of the first data section is better than the second data
section. This example indicates that better variance control does not necessarily imply
better economic performance if the operating point is not optimal. As a matter of fact, the
extra amount of benefit potential from the second data section has actually been achieved
by the first data section.
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6.5.4 Optimal tuning guidelines

The first step for solving the optimal tuning problems is to determine the desired target
benefit potential on the basis of the optimal benefit potentials calculated in the previous
subsection. For the variability tuning problem, the ideal benefit potential, ∆JI , is the
maximum upper limit that can not be achieved practically because of the inevitable
disturbance, and the theoretical benefit potential based on the MVC benchmark, ∆JT , is
the maximum benefit potential that can be achieved if MVC is implementable and input
constraint limits are sufficiently large. If the existing benefit potential, ∆JE , is greater than
0, then it should be achievable without any tuning effort. Therefore, it is reasonable to set
the target benefit potential as a value which is greater than ∆JE and not larger than ∆JT .
For the constraint tuning problem, however, there is no explicit maximum upper limit for
the target benefit potential, ∆JI and ∆JT can still serve as references in establishing the
target benefit potential. In addition, this target should be at least greater than ∆JE . As a
consequence, the target benefit potential can be set as a value between 0 and 127.88 for the
first data section, and a value between 135.0416 and 229.98 for the second data section.

Assume that the desired target benefit potential ratios by tuning variability and by tuning
constraint respectively are both specified as RV = RC = 70% for the two data sections.
Thus the target benefit potential is equal to 94.13 for the first data section and 167.16 for
the second data section. Both values are within their corresponding reasonable ranges.

For the first data section, the solutions show that the target benefit potential 94.13 could
be achieved by either tuning variability (Figure 6.11) or tuning constraint (Figure 6.12).
The variability tuning guideline suggests to reduce the variability of CV1, CV10, CV11,
CV22, CV32, CV33, CV38 by 78.43%, CV39 by 52.26%, CV41 by 57.97% relative to their
current standard deviations (Figure 6.11). Alternatively, the constraint tuning guideline
suggests to relax the constraints of CV1, CV18, CV19, CV22, CV32, CV33, CV41, MV9,
MV10, MV15 by 4.91%, and CV10 by 3.88%, CV11 by 4.63%, CV31 by 0.38%, CV38
by 3.2%,CV39 by 1.81%,MV1 by 1.51% relative to their current constraint limit settings
(Figure 6.12).

Similarly, for the second data section, the target benefit potential 167.16 could be also
realized in terms of variability or constraint tuning. If the variability tuning is preferred,
then the following controlled variables should be selected to reduce their variability relative
to their current standard deviations: CV1 (30.91%), CV10 (30.91%), CV11 (30.91%),
CV22 (30.91%), CV32 (30.91%), CV33 (30.91%), CV38 (30.91%), CV39 (14.22%), CV41
(3.75%) (Figure 6.13). Note that the percentage values in the brackets are the extent
of the corresponding variability reduction. On the other hand, if the constraint limits
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Figure 6.11: Suggested variability tuning guideline for the first data section
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Figure 6.12: Suggested constraint tuning guideline for the first data section

are preferred to be tuned, then the following variables should be taken into account by
relaxing their constraint ranges: CV1 (0.92%), CV10 (0.92%), CV11 (0.92%), CV18
(0.02%), CV22 (0.92%), CV32 (0.92%), CV33 (0.92%), CV38 (0.87%), CV39 (0.49%),
CV41 (0.92%), MV2 (0.68%), MV9 (0.92%), MV10 (0.92%), MV13 (0.92%) and MV15
(0.92%) (Figure 6.14). Here the bracketed percentages are the extent of the corresponding
constraint relaxation.

The variability and constraint tuning guidelines give two optional approaches that would
make it possible to tune the control towards the desired benefit potential. Note that the
above tuning solutions are only unique in the sense that the maximum tuning percentage
change is minimized. In addition, practical process knowledge and experience should
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Figure 6.13: Suggested variability tuning guideline for the second data section
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Figure 6.14: Suggested constraint tuning guideline for the second data section

be utilized to decide which one is preferred and whether it is allowed to do such kind
of tuning in the real applications. In the case that some variables can not be tuned on
either variability or constraint, these variables should be excluded from the corresponding
objective functions by setting their coefficients to 0.

6.5.5 Sensitivity analysis

The sensitivity analysis is done by specifying the variability or constraint change
percentage of only one variable at a time and all the other variables are kept unchanged.
For the sensitivity analysis with respect to variability reduction, the variability of chosen
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variable is reduced by 1% and then the corresponding increased benefit potential beyond
the existing benefit potential is observed and recorded. Similarly, for the sensitivity analysis
with respect to constraint relaxation, the constraint range of chosen variable is increased by
1% to see the change of resultant benefit potential.
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Figure 6.15: Variability sensitivity analysis for the first data section
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Figure 6.16: Constraint sensitivity analysis for the first data section

For simplicity, only the first data section is illustrated. The variability sensitivity analysis
result (Figure 6.15) shows that the benefit potential would be increased by individual
variability reduction on CV1 (1.7399), CV10 (0.0151), CV11 (0.0137), CV22 (0.0203),
CV32 (0.0450), CV33 (0.0296) and CV41 (0.1305) based on their current standard
deviation by 1%. It can be seen that the benefit potential is much more sensitive to
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reducing variability of CV1 than other variables, CV1 should be the first choice to reduce
its variability if it is possible in order to improve the economic performance of this MPC
application. Figure 6.16 gives the constraint sensitivity analysis result. The individual 1%

constraint relaxation based on the current constraint limit settings of CV1, CV10, CV11,
CV22, CV32, CV33, CV41, MV9, MV10, MV13 and MV15 will result in the increase
of benefit potential at the amount of 25.6908, 2.2250, 2.5825, 0.7082, 0.2618, 0.2617,
0.3679, 0.1417, 0.1415, 0.1195 and 0.1764, respectively. Therefore, the benefit potential is
also most sensitive to the constraint limit change on CV1.

Therefore, from the study of the two given data sections controlled by the investigated
MPC application, CV1 is worthwhile to pay more attention than any other variables to both
its variability and constraint limit settings. As a consequence, the results of variability
and constraint sensitivity analysis show the importance of different variables on their
contribution to the increased benefit potential and serve as a reference for MPC tuning
on the variability and constraint of each individual variable.

6.6 Conclusion

This chapter focuses on the implementation aspect of APC performance monitoring. The
PATS software package has been introduced briefly with its industrial implementation
background and framework. A plant-oriented solution for APC performance monitoring
was proposed on the basis of the two main application components from the PATS package:
MVPA and LMIPA. Their algorithms were summarized as the FCOR algorithm for the
variance performance assessment, and benefit potential analysis, optimal tuning guidelines
and sensitivity analysis for the economic performance monitoring. The study of a real
MPC application shows that a better variance performance does not always imply a better
economic performance if the operating points are not optimized. The optimal benefit
potentials indicate how much more economic performance can be achieved and the tuning
guidelines tell how to achieve the target benefit potential by tuning either variability or
constraint. The feasible results from the data analysis of the investigated MPC application
denote that this MPC application has potential to have better variance and economic
performance.



7
Conclusions and Future Work

7.1 Conclusions

In this thesis, we developed algorithms and tools for monitoring advanced control
applications, including performance monitoring of control loops subject to LTV
disturbance dynamics, control performance monitoring via structured closed-loop response
subject to output variance/covariance upper bound, economic performance analysis and
variability/constraint tuning guidelines of MPC applications, and implementation in the
process industries. The major contributions are listed below.

• The regular, weighted and generalized LTVD benchmarks are given respectively as
three options to solve the performance limit and performance assessment problems
of control loops in the processes subject to a special class of LTV disturbances.
With different objective functions, the weighted and generalized LTVD benchmarks
can always lead to a better trade-off than the regular one in regulating different
disturbances in the sense of variance. This applies to both SISO and MIMO systems.

• Necessary and sufficient conditions are derived for the feasibility of full order and
reduced order structured closed-loop response subject to output variance/covariance
upper bound constraint. It is shown that the full order solution can be obtained in
terms of a set of LMIs while the reduced order solution can be generally formulated
as a set of BMIs. In particular, when the structured closed-loop response is chosen as

132
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a first order or second order system with time constant specified, the reduced order
feasibility problem can also be solved via a set of LMIs.

• A practical solution of the structured closed-loop response is provided as solving an
H∞ norm minimization problem such that it is as close to the existing closed-loop
response as possible in the sense of H∞ norm and the output variance/covariance
upper bound constraint is satisfied simultaneously.

• A systematic approach is proposed to evaluate the performance of MPC applications
with consideration of variability and constraint settings, which is carried out by
employing the back off approach and steady state economic optimization of the
existing MPC applications. It includes economic performance assessment, sensitivity
analysis and variability/constraint tuning guidelines.

• It is shown that the variance based performance assessment may be transferred to
economic performance assessment of MPC applications. A theoretical maximum
benefit potential is calculated on the basis of the variance based performance
improvement potential. The result can be utilized as a reference of target benefit
potential for the variability/constraint tuning guidelines.

• A new software package is developed for the process industries and a plant-oriented
solution is put forward to monitor the performance of MPC applications. It integrates
the real-time data collector, MVPA for variance performance assessment, LMIPA for
economic performance analysis and variability/constraint tuning guidelines into the
same one platform. This package can be directly applied to process industries.

7.2 Directions for future work

At the end of each individual chapter we summarized the work that we have done. Some
relevant issues of this thesis are discussed below that could be conducted in the future.

• When the structured closed-loop response is required to meet some user specified
specification and the controller structure is fixed, i.e., PID in most situations, what
should be the tuning parameters? This would help tune the controller into the right
parameters such that the user specified structured closed-loop response is satisfied.

• The variability/constraint tuning guidelines for the same target benefit potential
may not be unique in the MPC performance analysis due to the optional objective
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functions. In this thesis, we tried to minimize the maximum tuning rate for given
target benefit potential. Some other objective functions can also be selected.

• In the variability/constraint sensitivity analysis of MPC applications, the results are
simply calculated by a small change on the variability/constraint of one variable only
in a sequence. However, the sensitivity of changes on a set of variables is not tried.
This may be done by introducing integer programming.

• Even though part of MPC performance monitoring results has been verified on a
pilot-scale multi-tank system, the results of MPC performance monitoring in the
reactor section of GOHTU should be further verified in the real process.
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