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1. Introduction 

A plant in process industries such as 

petroleum refineries, petrochemical industries, 

polymer industries, pulp and paper industries, 

power plants, base metal refineries, pesticides 

industries, pharmaceuticals etc. has hundreds 

of control loops maintaining key process 

variables at their respective desired set points. 

Desborough1 conducted an extensive survey 

over twenty six thousand PID control loops of 

varied process industries, and reported that 

only 16% of the loops exhibit excellent 

performance, among the remaining loops, 38% 

are categorized into fairly or poorly 

performing controllers and 32% work in open 

loop. Poorly performing or oscillating control 

loops can induce detrimental issues in 

processing plants, which disrupt normal plant 

operations, increase variability in product 

quality, quicken equipment (control valve) 

wear, and result in excessive energy and raw 

materials consumption. The reverberations 

associated with oscillations will eventually 

lead to reduction in plant profits, and emission 

of increased amounts of volatile organic 

compounds, hence, boost environmental 

footprint. The oscillations in control loops can 

result from multiple sources such as improper 

controller tuning, multi-loop interactions, 

sensor faults, external oscillatory disturbances, 

and control valve problems. Control valve is 

responsible for implementing decisions made 

by controller and plays a crucial role in 

ensuring safe and efficient plant operation. 

Control valve problems like stiction, backlash, 

deadband, deadzone, hysteresis and saturation 

often ensue from continuous movements of 

valve stem. Among all causes of loop 

oscillations, the control valve problems, 

especially, valve stiction appears to be the 

main cause of oscillations in 20-30% of all 

oscillating control loops.2-5 Stiction is an 

equipment problem and its origin in valves is 

static friction. Stiction offers resistance to 

proper valve movement, and introduces delay 

between controller output and valve stem 
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position. When a control valve suffers from 

stiction, its stem may not move even though 

the controller output keeps changing, hence, 

the relationship between controller output and 

valve stem position is nonlinear.6 The valve 

stiction is known to exist in process industries 

for quite a long time, and introduces 

oscillations in terms of limit cycles in control 

loops, posing a great impact on control 

performance and safe operation of process. 

The early detection of valve stiction facilitates 

to lessen the negative impact on loop 

performance in order to operate plants 

efficiently and safely, increase the life-

expectancy of control valves and decrease 

maintenance cost.  

Existing stiction detection methods can be 

broadly categorized into manual and automatic 

methods (Figure 1). An industry plant contains 

hundreds of control valves, and manually 

inspecting each valve is time consuming and 

not possible. Moreover, the condition of 

valves needs to be checked periodically. 

Therefore, automatic methods receive greater 

importance. A collection of automatic 

methods (Kano’s shape based methods7,8 and 

Yamashita’s shape based method,9 cross-

correlation method (CORR),10 histogram based 

method (HIST),11 curve fitting method 

(CURVE),12 relay technique (RELAY),13 area 

peak method (AREA),14 Hammerstein system 

based methods (HAMM1, HAMM2 and 

HAMM3) (Chapters 10-12 in Jelali and 

Huang15), surrogate analysis based method,16 

bicoherence method (BIC)17) reported up to 

2009 was provided and discussed in an edited 

book published by Jelali and Huang.15 In 

Chapter 13 of Jelali and Huang,15 BIC, CORR, 

HIST, CURVE, RELAY, AREA, HAMM2 

and HAMM3 were applied to twenty industrial 

control loops, in which the actual root causes 

of oscillations are known, and the comparison 

made among the results of all methods 

revealed that BIC and HAMM2 provide less 

number of false alarms than the remaining 

methods. 



 4 

 

Figure 1. Classification of stiction detection methods.

1.1. Review of methods reported from 

2015 to date  

Some of the abovementioned methods have 

limitations restricting their applicability to 

some types of control loops. Following 

discussion highlights such limitations, and 

explains how these were overcome by recently 

developed methods. In spite of the fact that the 

methods such as CURVE, AREA, CORR, 

HIST, Kano’s method,8 Yamashita’s method 

and higher order statistics based method18 work 

well for control loops with constant reference 

(setpoint) signal, they exhibit declining 

performance when reference signal keeps 

varying. To identify the cause of oscillations in 

control loops when reference signal is varying, 

Dambros et al.19 proposed two methods based 

on the slope of signal peaks or valleys 

(SLOPE), and zone segmentation (ZONE), 

respectively. Note that both these methods 

depend on waveform shapes such as triangular 

and sinusoidal. Brásio et al.20 pointed out that 

Yamashita’s shape based method performs 

well in flow control loops only, and fails in 

level control loops as the method assumes that 

controlled variable (process output) is directly 

proportional to real valve position, which is 

not valid in level control loops. So the authors 

(Brásio et al.20) proposed the use of a 

transformation function (first order finite 

difference) to relate PV directly to MV, and 

then applied the Yamashita’s method to the 

transformed PV, and MV. However, this 

method requires the measurements of valve 
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position which are not always available in 

most plants, which is a potential drawback. All 

shape based methods depend on the 

identification of triangular, sinusoidal or 

square shapes in oscillating OP and/or PV. 

When long sampling time (i.e. slow rate 

sampling) is used, OP and PV may have 

obvious oscillations but may not have perfect 

triangular, square or sinusoidal shapes due to a 

few data points sampled per cycle. In this case, 

shape based methods may not be able to detect 

stiction. Therefore, Dambros et al.21 conducted 

a study to investigate the effect of long 

sampling time on the stiction detection 

capability of CORR, CURVE, Yamashita’s 

method, SLOPE and ZONE, and provided 

minimum number of data points required per 

cycle for each of five methods. In addition to 

long sampling time, other data features such as 

mean-nonstionarity, oscillation persistency 

and noise may weaken the stiction detection 

ability of data-driven methods, and also 

shaped based methods may issue uncertain or 

wrong verdicts when waveform shapes or limit 

cycle patters are not clearly noticeable in OP 

and/or PV. Therefore, data quality and features 

have great impact on the performance of data-

driven stiction detection methods. To obtain 

more reliable results, Garcia et al.22 developed 

an integrated stiction detection system which 

fuses the results of CURVE, CORR, HIST, 

AREA and exponential fitting method and 

provides a final decision which more 

accurately indicates the presence or absence of 

stiction.  

Apart from waveform shape based, and limit 

cycle patterns based stiction detection 

methods, there is another class of methods that 

identify sticky valve by finding the cause of 

oscillations in OP and PV. Thornhill et al.23 

reported that if oscillations in a control loop 

are induced by a nonlinear problem such as 

valve stiction, then OP and PV contain odd 

harmonics. 
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Figure 2. Control loop with stiction.26 SP-setpoint, OP-controller output, MV-manipulated 

variable, PV-process output, e(t)-noise.

Centered on this idea, Aftab et al.24 

formulated an adaptive nonlinearity detection 

algorithm by using Hilbert Huang Transform 

and intra-wave frequency modulation to detect 

the presence of harmonics in oscillatory signal 

(OP or PV) to indicate the presence of valve 

stiction. However, the adaptive nonlinearity 

detection method suffers from inherent mode 

mixing limitation of empirical mode 

decomposition which may result in false 

reporting of nonlinearity in the presence of 

noise and multiple oscillations. This 

shortcoming was overcome in Aftab et al.25 by 

exploiting the dyadic filter bank property of 

multivariate empirical mode decomposition to 

reveal the harmonic content of oscillatory 

signal. 

The fourth class of stiction detection 

methods relies on Hammerstein system 

framework, depicted in Figure 2, where the 

non-linear component is usually modelled by 

any of the existing data-drive stiction models 

whereas the linear component is identified by 

a linear process model.26 Many stiction 

detection methods based on the Hammerstein 

system have been reported. Srinivasan et al.27 

pointed out that Hammerstein model based 

stiction detection approaches yield ambiguous 

results, and fail to detect stiction in integrating 

level control loops. They also claimed that 

results obtained from Hammerstein model 
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based approaches are sensitive to the choice of 

search space for the parameters of the linear 

dynamic model component. So, the authors 

(Srinivasan et al.27) proposed a reliability 

measure algorithm which validates results 

(verdicts) acquired from Hammerstein model 

based approaches, and also determines an 

optimal search space for linear dynamic 

process model. In contrast to the most 

Hammerstein model based methods using time 

domain criterion (mean squared error), Li et 

al.28 argued that more reliable and accurate 

stiction quantification may be obtained if both 

time domain criterion and frequency domain 

criterion (absolute error between real and 

estimated frequency) are considered in the 

joint estimation of stiction as well as process 

model parameters. The authors (Li et al.28) 

formulated a two-stage stiction quantification 

method based on two domains criterions, and 

obtained better estimations for S (deadband + 

stick band) and J (slip jump) than the 

quantification methods based on time domain 

criterion only. In di Capaci et al.,29 a 

comparative study of five linear models (ARX, 

ARMAX, state space, extended ARX 

(EARX), extended ARMAX (EARMAX)) for 

the controlled process (linear block), and two 

nonlinear models (Kano’s model & He’s 

model) for the sticky valve of the 

Hammerstein system was carried out to 

investigate the effect of external unmeasured 

disturbance and improper controller tuning on 

the estimation of stiction parameters (S and J), 

and the linear model identification. The 

authors (di Capaci et al.29) concluded that the 

non-extended models (ARX, ARMAX and 

SS) provide a more accurate stiction 

estimation and better linear model 

identification when stiction is the only source 

of control loop oscillations (i.e. the absence of 

external disturbance), but the extended models 

are more appropriate to manage the additional 

presence of external disturbances. The effect 

of improper controller tuning on stiction 

estimation and linear model identification was 
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found to be not particularly significant. In 

addition to the above examination, the authors 

also addressed a commonly overlooked aspect: 

Kano’s stiction model initialization which can 

have noteworthy impact on stiction estimation, 

and provided guidelines to initialize the 

Kano’s model parameters. In di Capaci et al.,30 

a similar comparative study was performed in 

the presence of nonstationary disturbances. A 

bootstrap Hammerstein system identification 

procedure was developed by Yan et al.31 to 

derive control limits for stiction parameters. 

Hutabarat et al.32 claimed that the cause of 

control loop oscillations can be found to be 

either external oscillatory disturbances or poor 

controller tuning if PV is normally distributed. 

Authors (Hutabarat et al.32) used Hammerstein 

system based approach to detect and quantify 

stiction if PV is not normally distributed. In all 

the Hammerstein model based methods 

discussed so far, sticky valve was modelled by 

a data-driven model which was derived based 

on the input-output behavior shown in Figure 

3. Fang and Wang33 showed that the existing 

data driven stiction models fail to capture more 

complex behaviors observed in practice, 

hence, proposed the use of Preisach model for 

the nonlinear block of Hammerstein system.  

Unsupervised and supervised learning 

algorithms have also been employed to detect 

stiction in control loops. Daneshwar and Noh34 

developed a data based stiction detection 

method using fuzzy c-means clustering to 

detect stiction in flow control loops. This 

method detects the cause of oscillation 

(stiction or external disturbances) in flow 

control loop in two stages. In the first stage, 

data (OP and MV or OP and PV) is grouped 

into four clusters, and a linear equation is fitted 

to the centers of four clusters. If R2 statistic of 

the fit is above 0.9, no oscillations are 

detected, hence, further investigation is not 

carried out. Otherwise (R2<0.9), the cause of 

oscillations such as stiction or disturbances is 

identified by using a stiction index. A popular 

multivariate statistical technique, principal 
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component analysis (PCA), finds applications 

in valve stiction detection. Miskin et al.35 

identified valve faults such as valve wear and 

stiction in base metals refinery by using 

principal component analysis (PCA). A 

nonlinear version of PCA, and autocovariance 

were employed in Teh et al.36 to develop 

stiction detection method (NLPCA-AC) which 

shows better performance on benchmark 

industrial control loops than BIC, CORR, 

HIST, CURVE, RELAY, AREA, HAMM2, 

HAMM3, SLOPE and ZONE. Dambros et al.37 

formulated waveform shapes-based oscillation 

detection and diagnosis method using feed 

forward neural network, in which the shape of 

PV-OP plot is transformed into an 8×8 pixel 

image which is used as training data to train 

the network. Likewise, Mohd Amiruddin et 

al.38 adopted deep ANNs to develop stiction 

detection network (SDN) to determine 

whether loop oscillations are induced by 

stiction or non-stiction conditions. Contrary to 

the most stiction detection methods depending 

on the elliptical shape of PV-OP phase plot, 

Kamaruddin et al.39 derived a butterfly shape 

from manipulated OP and PV data to detect the 

presence of stiction and this method is termed 

butterfly shape detection (BSD) method. The 

authors (Kamaruddin et al.39) also developed 

stiction quantification method by using 

butterfly shapes as input to deep convolutional 

neural network. Aksornsri and Wongsa40 

employed particle swarm optimization 

technique to estimate the parameters of Kano’s 

stiction model being used in a framework 

similar to Hammerstein system. An extensive 

review of stiction models, stiction detection 

and quantification methods was provided in di 

Capaci and Scali41. Readers can consult di 

Capaci and Scali41 for additional information 

on automatic methods reported up to 2018. A 

novel cross limit control method was 

developed by Sun et al.42 to handle process or 

mechanic issues such as valve stiction in 

furnace operation. During valve stiction in 

furnace control loop, controller output gets 
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changed too much, which exceeds maximum 

allowed change (OPmax) in OP over an n 

sampling time period, but change in controlled 

variable is very small and less than possible 

minimum change in PV (PVmin), leading to 

furnace trip. This method prevents furnace trip 

by choosing OPmax and PVmin in such way 

that change in PV during stiction is at least 

greater than PVmin. Hence, this method 

avoids operational issues by taking necessary 

action prior to the occurrence of valve stiction. 

1.2. Motivation and contributions 

It can be understood from the literature 

reviewed above that majority of methods 

depend on either waveform shapes (triangular, 

square or sinusoidal) or limit cycle patterns 

(elliptical shape). The waveform shapes or 

elliptical shape may get modified by process 

noise, multi-loop interactions or simultaneous 

presence of valve stiction and any one or more 

of non-stiction conditions etc. In this scenario, 

the shape based methods may issue wrong 

verdicts. Even Hammerstein system based 

methods possess one disadvantage. They 

depend on data-driven stiction models which 

sometimes fail to capture complex behavior of 

sticky valves as reported in Fang and Wang.33 

If stiction model cannot describe the true 

behavior of sticky valve, then verdict issued by 

Hammerstein system based method is likely to 

be wrong. Moreover, the issue of monitoring 

of valve fault other than stiction has not been 

addressed yet. In some cases, it is difficult to 

move the valve due to changes in working 

environment. For example, a valve is frozen 

due to cold weather. In such situation, the 

valve requires a larger-than-normal controller 

output to make a move. But when the valve 

moves, it usually leads to an abrupt change in 

a process input, i.e. a suddenly increased gas 

flow into a furnace, threatening safe operation 

of the process. Hence, to prevent unexpected 

process shut down and performance loss, it is 

desirable to monitor valve condition and raise 

necessary alarms when valve abnormalities are 

detected. The identified research gaps 
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motivated the authors of the present work to 

develop a new valve stiction detection method. 

Some features of the proposed method are 

provided below: 

• It completely works in unsupervised way, 

and does not involve extensive training 

• It does not depend on either waveform 

shapes or limit cycle patterns, and does 

not require modelling valve stiction and 

process 

• It uses routine operation data (OP and PV) 

only 

• It is applicable to control loops with 

constant (stationary) or varying reference 

(non-stationary) signal (or set point) 

• It does not issue uncertain verdicts 

• As byproducts, in addition to providing an 

estimation for stiction band (S), it also 

detects valve abnormality (for e.g. 

unexpected valve closure) 

The remaining part of the manuscript is 

structured as in the following. The proposed 

valve stiction detection method is described in 

Section 2. Estimating stiction band from the 

results of the proposed stiction detection 

method is explained in Section 3. In Section 4, 

the proposed stiction detection and the 

quantification method are applied to 

benchmark as well as Syncrude control loops. 

Conclusions drawn from the present work are 

provided in Section 5. 

2. Stiction detection  

Relationship between controller output (OP) 

and actual valve position (valve output) of a 

control valve suffering from stiction is shown 

in Figure 3. If valve stiction does not occur, OP 

and MV are exactly the same. Under stiction, 

linear relationship between OP and MV is no 

longer valid, and valve behaves as depicted in 

Figure 3. The input-output behavior of sticky 

valve is composed of deadband, stickband, slip 

jump (J) and moving phase. When a valve 

sticks, MV does not change while OP keeps on 

changing. The valve overcomes stiction when 

cumulative change in OP equals stiction band 

(S), and at this point, MV abruptly changes 
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(this is characterized by slip jump). Once the 

valve stem gets released from stiction, it 

continuously moves in upward or downward 

direction (this is termed moving phase). When 

OP alters its movement direction, the valve 

sticks again, and the valve stem stops moving. 

The valve may stick multiple times, and each 

time, stiction band as well as slip jump may 

vary. Hence, stiction is perhaps not static but 

more likely to be dynamic. 

 

Figure 3. Behavior of sticky control valve.6 

 

 

Figure 4. Time trend of OP and PV of flow 

control loop (top plot), and distribution of 

corresponding d  (bottom plot). 

 

Figure 5. Time trend of OP and PV of pressure 

control loop (CHEM 1615) oscillating due to 

interactions (top plot), and distribution of 

corresponding d  (bottom plot).  

Brief introduction of the proposed method 
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The present work proposes a new method for 

detecting sticky valves in industrial control 

loops. Following furnishes alluring 

characteristics of the method to help readers 

determine the suitability of it to their needs  

• Slowly changing behavior of PV, in 

relation to OP change, during valve 

stiction is the basis for the proposed 

method. 

• The proposed method needs a simple 

clustering algorithm; K-means clustering, 

and relies on PV and OP, which are 

available in every process industry. 

Hence, no additional hardware or 

commercial software is needed to 

implement it.  

• Besides stiction detection, it quantifies 

stiction, and identify faulty valves such as 

frozen valves, clogged valves and valves 

with severe stiction. 

• It can work with stationary and non-

stationary signals.  

• The method can detect stiction in loops 

exhibiting multiple oscillations.  

• Low level of noise in PV or OP does not 

hamper performance of the method. 

However, signals with moderate to high 

level of noise need to be denoised before 

being tested with the method.  

• The method is applicable to flow loop, 

temperature loop, pressure loop and 

concentration loop. 

• The method does not involve complex 

training and needs no supervision.  

• The method can work with signals with 

different lengths. As the readers will 

notice in Subsection 4.2, PV and OP 

signals of flow loop contain only 60 

samples. Yet, the method provided correct 

diagnosis in this loop.  

• The method is applicable to constant and 

varying reference (setpoint) signal. 

From here onwards, theory of the proposed 

method is discussed.  
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The top plot of Figure 4 shows oscillatory 

OP and PV of a flow control loop (CHEM 32) 

in a refinery.15 The flow control loop, CHEM 

32, is said to be suffering from valve stiction. 

It can be seen from the figure that PV starts 

slowly changing when OP changes its 

movement direction. When a change in OP is 

sufficiently large to move the valve stem, the 

valve stem begins to move, and continues to 

move until OP stops changing or alters its 

direction. PV more quickly changes during the 

continuous movements of valve stem than 

during stiction. Therefore, the ratio of OPD  to 

PVD  is much larger during stiction than 

during moving phase. 

i t i
i

i t i

OP OP
PV PV

d +D

+D

-
=

-
, 1,2,...,i N= ,  (1) 

where N  is the number of samples of OP or 

PV and tD  is the step size. 

By investigating the distribution of { } 1

N
i i

d d
=

=

, it is possible to verify whether control valve 

is sticky or not. The bottom plot of Figure 4 

shows three groups in the distribution of d . 

The total number of id  in the first and third 

group is larger than that in the second group 

for a sticky valve, and the other way around for 

a healthy valve as shown in Figure 5. Hence, 

the determination of stiction in a control loop 

reduces to the identification of three clusters in 

the distribution of d .  

2.1. Finding clusters and thresholds 

Let d  be a set of one-dimensional 

observations that is to be partitioned into three 

clusters ( 3K = ) by an unsupervised K-means 

algorithm. The K-means algorithm assigns the 

given set of observations into K clusters in 

such a way that the average measure of 

dissimilarity (intra-cluster variance) of 

observations assigned to each of K clusters is 

minimized. Hence, the K-means algorithm 

minimizes total cluster variance  

( )
( )

2

2
1

K

i j
j C i j

J C d µ
= =

= -å å
,  (2) 

where jµ  is the center of cluster j , C  is an 

encoder (many-to-one mapper) which assigns 

to cluster j  all of the observations in d  that 
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are closest to center jµ , 2

2
×  denotes squared 

Euclidean distance.  

The K-means algorithm finds K  clusters in 

d  according to the procedure described in the 

following steps. 

Step 1. The centers of three clusters are 

randomly initialized, i.e. the encoder C  is 

initially chosen. 

Step 2. For the given encoder or cluster 

centers, the cost function in Equation (2) is 

minimized 

{ } ( )

2

2
11

min K

K i j
j C i jj j

d µ
µ = ==

-å å , for a given C .  (3) 

Step 3. Once the cluster centers are 

optimized, then the encoder is optimized as 

follows. 

( ) 2

2

min
arg  

1 i jC i
j K

d µ= -
£ £ . (4) 

The K-means algorithm iterates between 

Step 2 and 3 until the convergence criterion is 

met or the cluster assignments do not change. 

Though the K-means algorithm is simple to 

implement, its performance is sensitive to the 

initial choice of cluster centers or encoder. One 

way to start the algorithm with the best initial 

values is to select different sets of cluster 

centers randomly, and evaluate the cost 

function ( )J C  using each initial guess. The 

set of initial cluster centers that provides the 

least value of ( )J C  is selected as an optimal 

initial set.  

Once d  is partitioned into 3 three clusters, 

the next step is to determine thresholds i.e. the 

minimum and maximum of cluster 2 to 

identify the members of cluster 1 and 3. Let the 

identified clusters have centers 1µ , 2µ  and ,

3µ , respectively. Center 2µ  is always greater 

than 1µ , and less than 3µ . The thresholds are 

determined as 

{ } 2

1 21
min ,  N

i ii
Ca d d

=
= Î ,   (5) 

{ } 2

2 21
max ,  N

i ii
Ca d d

=
= Î ,  (6) 

where 2C  represents the second cluster and 

2N  is the total number of samples in the 

second cluster. 
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The rate of stiction is computed in the next 

equation to determine if the control valve is 

sticky.  

1 100

N

i
i

N

f
q == ´
å

   (7) 

where 

2

2

1, f ,
0,

i
i

i

i C
C

d
f

d
Ïì

= í Îî  

A large value of q  indicates the likelihood 

of valve stiction. The procedure described 

above holds good for any value of step size (

tD ), hence, distinct thresholds can be obtained 

for different values of tD . 

2.2. Moving window based stiction 

detection  

Although a large value of q  highly indicates 

the presence of valve stiction, it may not be a 

reliable indicator because PVD  calculated 

using the step size of 1 is really small in a slow 

control loop such as temperature loop or 

concentration loop. To improve the reliability 

of stiction detection, a moving window based 

stiction detection method (MWSD), whose 

schematic diagram is displayed in Figure 6, is 

proposed.  

 

Figure 6. Moving window approach with window size of 4.
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Suppose that the data is defined as 

[ ],X OP PV= , and the size of initial window 

( sw ) is considered to be 4. The step size ( tD ) 

accepts integer values in the range [ ]1, 1sw - . 

The first or initial window contains the first 

four sample of OP and PV: 

1 1

2 2
1

3 3

4 4

OP PV
OP PV

X
OP PV
OP PV

é ù
ê ú
ê ú=
ê ú
ê ú
ë û    (8) 

For the step size of 1, 11d  is calculated.  

2 1
11

2 1

OP OP
PV PV

d -
=

-    (9) 

Similarly, the following can be computed for 

the reaming step sizes. 

3 1
12

3 1

OP OP
PV PV

d -
=

-    (10) 

4 1
13

4 1

OP OP
PV PV

d -
=

-    (11) 

The following index is calculated in the first 

window. 

1

1
1

1 1

sw

p
p

s

N

w
h

-

==
-

å

    (12) 

where  

1 2
1

1 2

1 if 
0 f 

p
p

p

C
N

i C
d
d

Ïì
= í Îî  

Note that the thresholds 1pa  and 2 pa  can be 

determined using the procedure described in 

the previous subsection. The window moves 

forward by taking the next sample (sample 5), 

and forgetting the oldest sample (sample 1): 

2 2

3 3
2

4 4

5 5

OP PV
OP PV

X
OP PV
OP PV

é ù
ê ú
ê ú=
ê ú
ê ú
ë û    (13) 

In the second window, the following are 

determined. 

3 2
21

3 2

OP OP
PV PV

d -
=

-    (14) 

4 2
22

4 2

OP OP
PV PV

d -
=

-    (15) 

5 2
23

5 2

OP OP
PV PV

d -
=

-    (16) 

2h  is calculated in the second window. The 

window keeps moving forward by forgetting 

the oldest sample and accepting the next new 

sample as explained in Figure 6. h  is 

computed in the remaining windows. Once the 

window reaches the last four samples of OP 
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and PV, and the corresponding h  is 

determined, the following stiction index is 

computed to determine the presence of stiction 

in a control loop.  

( )

( 1)

1 100
1

sN w

i
i

s

s

N w
b

- -

== ´
- -

å

  (17) 

where  

1 f  
0 f 

i th
i

i th

i
s

i
h h
h h
³ì

= í <î  

The control valve is considered to be sticky 

if b  is greater than zero. 

Main steps involved in the development of 

the proposed method, which are necessary for 

implementation, are summarized below. The 

pictorial description of those steps is provided 

in Figure S1, which is available in supporting 

information.  

Step 1: PV and OP signals of a control loop 

are acquired and denoised using noise 

attenuation techniques.  

Step 2: Size of moving window sw  is 

selected. The step size tD  takes integer values 

in the range [ ]0, 1sw - . A threshold for h  is 

chosen.  

Step 3: For the first value of tD , a vector of 

d  is computed. Three clusters in this set are 

identified using K-means clustering technique. 

The thresholds ( 1a  and 2a ) of cluster 2 are 

determined and stored. 

This step is repeated for the remaining 

values of tD . Different thresholds of cluster 2 

are obtained for different values of tD .  

Step 4: The first sw  number of samples of 

the data matrix X , where [ ],X OP PV= , are 

considered in the first or initial window. The 

index 1h  is calculated using Eq. (12). The 

( )1 thsw +  sample of X  is taken into the 

window and the oldest sample (i.e. first sample 

[ ]1 1,OP PV ) in the window is removed. In this 

second window, 2h  is computed. The window 

keeps moving forward by forgetting the oldest 

sample and including the next new sample, and 

in each window, h  is calculated and stored.  
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Step 5: The stiction index b  in Eq. (17) is 

calculated. If b  is greater than zero, then the 

cause of oscillations in the control loop under 

consideration is identified as stiction. 

Otherwise, any of the non-stiction conditions 

can be the source of oscillations.  

3. Moving window based stiction 

quantification (MWSQ) 

Stiction quantification allows to line up 

sticky valves according to their extent of 

stiction in order to determine which valves 

need immediate service. As a byproduct, the 

proposed stiction detection method provides 

an estimation of stiction band ( S ). Figure 7 

demonstrates how stiction band is estimated. It 

can be observed from Fig. 7 that when the 

valve stops moving, PV starts to change slowly 

(or stops varying) and the stiction signal ( is ) 

becomes 1. As long as the valve position does 

not change, PV either experiences very small 

changes or remains unchanged, so the stiction 

signal stays at 1. When the valve overcomes 

stiction, the stiction signal abruptly drops to 

zero, and remains at zero until the valve sticks 

again.  

 

Figure 7. Stiction detection in temperature 

control loop with sticky valve (PV and OP 

were provided by Syncrude Canada Limited). 

According to the stiction detection results 

shown in Figure 7, the stiction signal in 

windows 82 through 105 is 1. The size of 

moving window is taken to be 4, so the step 

size accepts integer values like 1, 2 and 3. The 

threshold thh  is taken to be 30%.  

Window 82 includes four samples of OP and 

PV, and the ratios 82 1d - , 82 2d -  and 82 3d -  are 

calculated using step size of 1, 2 and 3, 

respectively, according to Equation (9) 

through (11). 
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82 82

82 83
82

84 84

85 85

OP PV
OP PV

X
OP PV
OP PV

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

, [ ]82 82 1 82 2 82 3, ,d d d- - -W =

     (18) 

Similarly, windows 83 through 104 contain 

the subsequent samples of OP and PV, and id

’s are computed.  

The following can be obtained in window 

105.  

105 105

106 106
105

107 107

108 108

OP PV
OP PV

X
OP PV
OP PV

é ù
ê ú
ê ú=
ê ú
ê ú
ë û , 
[ ]105 105 1 105 2 105 3, ,d d d- - -W =   (19) 

Since 105s  in window 105 is 1, at least one 

element of 105W does not obey the 

corresponding thresholds 1pa  and 2 pa . 

Suppose that 105 3d -  is not in cluster 2 and both 

105 1d -  and 105 2d -  may be or may not be in 

cluster 2. In this case, the samples 82PV  

through 108PV  change very slowly because of 

stiction, and the corresponding samples of OP 

will provide an approximation for the stiction 

band:  

1 82 108OP OPY = - , if 105 3 2Cd - Ï , 

[ ]105 1 105 2 2, Cd d- - Ï  or [ ]105 1 105 2 2, Cd d- - Î     (20) 

Similarly different cases can arise and the 

stiction band can be estimated as explained 

below. 

1 82 107OP OPY = - , if 105 2 2Cd - Ï , 105 3 2Cd - Î , 

105 1 2Cd - Ï  (or 105 1 2Cd - Î )                (21) 

1 82 106OP OPY = - , if 105 1 2Cd - Ï  and 

[ ]105 2 105 3 2, Cd d- - Î          (22) 

Only one of the three cases explained above 

can occur in the same time. The stiction signal 

immediately drops to zero in window 108, and 

goes to 1 in window 109. In this case, there is 

only one window in which the stiction signal 

is 1. Similar to Equation (20) through (22), the 

stiction band estimated in one of the cases is 

described below.  

2 109 112OP OPY = - , if 109 3 2Cd - Ï , 

[ ]109 1 109 2 2, Cd d- - Ï  or [ ]109 1 109 2 2, Cd d- - Î    (23) 

2 109 111OP OPY = - , if 105 2 2Cd - Ï , 105 3 2Cd - Î , 

105 1 2Cd - Ï  (or 105 1 2Cd - Î )                        (24) 

2 109 110OP OPY = - , if 105 1 2Cd - Ï  and 

[ ]105 2 105 3 2, Cd d- - Î          (25) 
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In this fashion, the stiction band is estimated 

every time valve gets stuck. The following 

equation provides final approximation for the 

stiction band.  

{ } 1
max M

k k
S

=
= Y!

          (26) 

where M  is the number of times valve gets 

stuck. 

4. Case studies 

The applicability of MWSD to industrial 

control loops is investigated in this section. 

The size of moving window ( sw ) is selected to 

be 7 in order to detect sticky valves having 

varied degrees of stiction. As mentioned 

above, PVD ’s calculated with the step size of 

1 are sometimes very small not because of 

stiction but because of slow process dynamics, 

hence, 30thh =  is selected to avoid false 

alarms.  

Valve stiction detection and quantification 

4.1. Benchmark industrial control loops 

Jelali and Huang15 created an international 

stiction data base (ISDB) consisting of 

operation data of control loops taken from 

chemical industries, pulp and paper industry, 

power plant, mineral industry, commercial 

buildings and metal processing industry. The 

control loops include flow, level, temperature, 

pressure, concentration, gauge and analyzer 

control loops. Among 96 control loops 

available in ISDB, the real root causes of 20 

oscillating control loops (given in Table 13.7 

in Chapter 13 of Jelali and Huang15) are known. 

These twenty control loops are adopted in this 

work.  

The industrial control loop CHEM 1 is 

selected to carry out in-depth analysis of the 

proposed method. It is observed from Figure 8 

that this control loop tries to track varying 

reference signal (non-stationary signal). Both 

OP and PV were denoised using Symlet 

wavelet. As discussed in Section 1, 

parallelogram is not always clearly noticeable 

in phase plot (PV versus OP plot) of practical 

data, which is the case here (Figure 9). For 

various values of step size tD , d ’s were 

computed and plotted in Figure S2 (available 
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in supporting information). The distribution 

within each of the three groups varies with 

increasing step size. At a first glimpse of these 

distributions, predictions about the presence of 

stiction in CHEM 1 can be made before diving 

deep into other aspects of the proposed 

method. Irrespective of value of tD , group 2 

holds more samples than groups 1 and 3. 

Therefore, it may be said that stiction is either 

absent or negligible.  

To confirm forecasts made by visual 

inspection, K-means clustering was applied to 

each set of d  values. Analysis of obtained 

clusters from each set is provided in Table S1 

(given in supporting information). The center 

of clusters 1 and 3 are rapidly changing 

whereas the center of cluster 2 is slightly 

oscillating around 0.4. The boundaries of 

cluster 2 are experiencing slight variations. 

The moving window approach was applied, 

and as the window was moving forward, the 

index h  was computed as shown in Figure 10. 

As mentioned earlier, d ’s calculated using the 

step size of 1 are always large. If window size 

of 2 is used, then the method detects stiction in 

every control loop regardless of the actual 

cause of oscillations. That is why window size 

of seven is chosen. This choice allows for fair 

detection of the presence or absence of 

stiction. According to the results shown in 

Figure 11 and Table 1, the proposed method 

detected the existence of low stiction in 

CHEM 1. In practice, stiction band less than 

0.5 is considered to be less detrimental. This 

result is close to the prediction made by visual 

examination.  

 

Figure 8. Time trend of OP, PV and SP of 

CHEM 1.  
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Figure 9. Phase plot of CHEM 1 loop. 

 

Figure 10. Results of moving window 

approach. 

The stiction index (via MWSD) and the 

estimated stiction band (via MWSQ) for the 

remaining control loops are shown in Table 1. 

Figures 12 to 14 display the stiction signal of 

control loops representing stiction and non-

stiction cases and three types of process 

industries. For CHEM 23, the results are 

shown only for few samples but the stiction 

index as well as the stiction band were 

 

Figure 11. Results for CHEM 1.  

calculated using whole datasets. In Table 1, the 

non-zero value of the stiction index ( b ) 

indicates the presence of stiction whereas the 

absence of stiction is denoted by 0b = . In 

Figures 12 through 14, the line in blue color 

corresponds to PV, and the stiction signal ( s ) 

is represented by vertical or horizontal red line. 
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Table 1. Stiction Detection Results 

Loop name Actual 
malfunction 

Stiction 
index, b  

Correct diagnosis? Estimated 
S  (%) 

CHEM 1 

CHEM 2 

CHEM 3 

CHEM 6 

CHEM 10 

CHEM 11 

CHEM 12 

CHEM 13 

CHEM 14 

CHEM 16 

CHEM 23 

CHEM 24 

CHEM 29 

CHEM 32 

PAP 2 

PAP 4 

PAP 5 

PAP 7 

PAP 9 

MIN 1 

Stiction  

Stiction 

Non-stiction 

Stiction 

Stiction 

Stiction 

Stiction 

Non-stiction 

Non-stiction 

Non-stiction 

Stiction 

Stiction 

Stiction 

Stiction 

Stiction 

Non-stiction 

Stiction 

Non-stiction 

Non-stiction 

Stiction 

0.55 

4.62 

55.06 

27.46 

1.30 

0.50 

1.95 

0 

1.74 

0.13 

82.12 

6.42 

1.40 

14.65 

1.76 

0 

16.42 

1.07 

0 

4.25 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

0.18 

2.49 

1.47 

0.15 

0.24 

0.19 

0.10 

0 

2.44 

0.31 

26.96 

20.42 

7.97 

12.09 

1.34 

0 

0.21 

0.15 

0 

0.25 

 

The proposed MWSD correctly identified 

stiction in 13 control loops which are actually 

having sticky valve. However, the method 

issued wrong verdict (false positive) for 
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CHEM 3, CHEM 14, CHEM 16 and PAP 7. 

The results for CHEM 3 revealed that the 

proposed MWSD cannot provide correct 

diagnosis in control loops suffering from 

quantization issue. For CHEM 6, CHEM 10, 

CHEM 11, CHEM 12, CHEM 14 and CHEM 

16, normalized PV and OP signals are only 

available in ISDB, hence, the estimated 

stiction band in those loops is not very 

accurate. If those signals are in their actual 

ranges, more accurate estimation for stiction 

band can be obtained. In Table 2, the 

performance of the proposed MWSD is 

compared with that of the stiction detection 

methods reviewed in Section 1. Excluding BIC 

and BSD, all the remaining methods produced 

more false alarms than the proposed method. 

Both the proposed MWSD and BIC show 

similar performance whereas BSD yielded 

incorrect diagnosis in three loops only.  

 

 

Figure 12. Result for CHEM 23. 

 

Figure 13. Result for PAP 2. 
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Figure 14. Result for MIN 1. 

 

4.2. Oil sands industry control loops 

Aside from the benchmark industrial datasets, 

the routine operation data of control loops 

from an oil sands industry were also 

considered to further examine the stiction 

detection ability of MWSD. Figure 15 through 

20 show the time trend of OP and PV of flow, 

temperature and pressure control loop, 

respectively, exhibiting oscillations. Due to 

proprietary reasons, PV signals were rescaled 

to the range [0, 100%] from their real ranges. 

The sampling time of 1 minute was used in 

three loops to collected data. Results are 

provided in Table 3 and Figure 21 through 23. 

Stiction in three control loops was successfully 

detected and estimated by MWSD and 

MWSQ, respectively. 

Table 2. Comparison Analysis 

Stiction detection 
Method 

Number of correct 
diagnosis 

BSD 

proposed method 

BIC 

SDN 

HAMM2 

HAMM3 

CORR 

HIST 

RELAY 

ZONE 

CURVE 

SLOPE 

NLPCA-AC 

AREA 

17 

16 

16 

15 

15 

14 

13 

13 

13 

13 

12 

12 

11 

10 
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Figure 15. PV and OP of flow control loop. 

 

Figure 16. PV-OP phase plot. 

Table 3. Results for Syncrude Control Loops 

Data 

Type of loop b  Verdict 
issued 

S 

Flow control 

Temp. control 

Pressure control 

35.71 

44.15 

20.38 

Stiction 

Stiction 

Stiction 

3.82 

21.31 

1.17 

 

 

 

 

Figure 17. PV and OP of temperature control 

loop. 

 

Figure 18. PV-OP phase plot. 

 

Figure 19. PV and OP of pressure control 

loop. 
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Figure 20. PV-OP phase plot. 

 

Figure 21. Stiction detection results for 

Syncrude flow control loop. 

 

Figure 22. Stiction detection results for 

Syncrude temperature control loop. 

 

Figure 23. Stiction detection results for 

Syncrude pressure control loop. 

Valve fault detection 

4.3. Simulation case study 

A healthy control valve, which often works 

properly during normal weather condition, 

may get frozen due to severe cold weather. As 

a result, stiction sets in, therefore, valve 

position does not change in response to 

changing controller output. In this situation, 

the valve may not be able to overcome stiction. 

Valve fault, such as severe stiction as 

explained above, may severely disrupt normal 

plant operations. So it is extremely important 

to monitor control valves to detect such fault. 

By virtue of the proposed method, it is possible 

to detect the valve fault. To simulate the 
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behavior of a frozen valve, a concentration 

control loop was adopted from Choudhury et 

al..5 Figure 24 shows the closed loop block 

diagram of concentration control loop.  

 

Figure 24. Concentration control loop. 

Valve stiction model proposed by 

Choudhury et al.5 was considered to create 

valve fault. A PI controller was used to control 

the process. The process model as well as the 

controller transfer function is given in the 

following equations. 

103
10 1

s

P
eG
s

-

=
+

,   (27) 

10 10.2
10C
sG
s
+æ ö= ç ÷

è ø
.   (28) 

Simulation was carried out for 1000 seconds 

with sampling time of 1 second. During the 

simulation, the valve was forcefully closed 

after 700 seconds, and the valve position 

remained at zero for the rest of the simulation. 

Simulation results are shown in Figures 25 and 

26. The control loop performance is 

satisfactory as long as the control valve 

behaves well. When unexpected valve closure 

occurs, PV starts declining, and the control 

error (E) slowly increases. PV and E gradually 

reaches zero and one, respectively, and 

remains at these values for the rest of the 

operation. As PV is away from SP, the 

controller tries to increase its output to bring 

PV back to one (set point). The results of the 

proposed method are shown in Figure 27. 

When the valve closure takes place, the ratio 

𝛿" becomes very large, hence, the second 

cluster contains all samples measured after the 

valve closure. This is why the proposed 

method is able to detect valve abnormality. 

The stiction index and stiction band were 

computed as provided in Table 4. 
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Figure 25. Concentration control loop signals. 

 

Figure 26. Concentration control loop signals. 

 

Figure 27. Stiction detection results for 

simulation case study 4.3. 

Table 4. Results for Case Studies 4.3 and 4.4 

Type of loop b  Verdict 
issued 

Estimated 
stiction 
band 

Conc. control  

Flow control  

24.28 

6.56 

Stiction  

Stiction  

4.88 

17.14 

 

4.4.Industrial case study 

Consider a steam flow control loop taken 

from the same oil sands industry adopted in 

Subsection 4.2. The PV and OP signals of the 

steam flow control loop are displayed in 

Figure 28, and Figure 29 displays the 

respective phase plot. The steam combines 

with treated feed gas, which is the bottom 

product of a packed bed reactor, in mixed tee 

to form a mixed stream. It is important to 

maintain steam to carbon ratio in the mixed 

stream at a desired value. From Figure 28, it is 

noticed that PV follows SP until 63rd sample, 

and then both PV and SP change in opposite 

direction for some time due to process 

disturbances. At around the 64th sample, the 
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steam controller starts closing steam control 

valve slowly, as a result, OP keeps decreasing, 

but PV didn’t follow the OP change due to 

severe valve stiction. When OP dropped large 

enough, it caused the steam valve suddenly 

moving, and thus steam flow reduced below to 

its trip setpoint, which resulted in plant trip. 

When such valve closures came about, the 

proposed method (MWSD) detected it as 

shown in Figure 30 and Table 4. Therefore, the 

proposed method can successfully detect 

severe valve stiction and be leveraged to 

prevent potential plant trips.  

 

Figure 28. Steam flow control loop (industrial 

case study 4.4). 

 

Figure 29. Steam flow control loop (industrial 

case study 4.4). 

 

Figure 30. Stiction detection results for 

industrial case study 4.4. 

4.5.Comparison between MWSD and 

existing methods 

Stiction detection  

In this subsection, the advantages of the 

proposed method (MWSD) are discussed with 

respect to the existing methods.  

a) As reported in Dambros et al.,19 

methods like CURVE, AREA, CORR, 
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HIST, Kano’s method,8 Yamashita’s 

method and BIC may not perform well 

when setpoint keeps changing i.e. these 

methods may issue wrong verdicts in 

control loops with non-stationary PV and 

OP signal. As observed from Figure 12 

and Figure 21, the proposed method is 

applicable to stationary and non-

stationary signals, which is a significant 

advantage over those methods, 

particularly, BIC. 

b) The lower performance of CORR, 

CURVE, SLOPE and ZONE can be 

attributed to their dependency on the 

waveform shapes, which is a major 

drawback of these methods. The proposed 

method does not possess this limitation.  

c) In Fang and Wang,33 it was shown that 

the existing data-driven stiction models 

cannot approximate more complex 

relationship between the input and output 

of a sticky valve than that was shown in 

Figure 3. If stiction model cannot describe 

the true behavior of the sticky valve, then 

verdict issued by a Hammerstein system 

based method (HAMM) may not be valid. 

Also, HAMMs need analytical or 

numerical optimization methods to 

estimate the parameters of stiction model 

and process model. Compared to 

HAMM2 and HAMM3, the proposed 

method is relatively simple to interpret, 

develop and implement, and does not 

depend on the stiction models.  

d) Unlike NLPCA-AC and SDN, the 

proposed method does not require training 

algorithms, and produces results in a 

single pass. 

e) In Mohd Amiruddin et al.,38 the authors 

claimed that if a control loop exhibits 

oscillations due to valve stiction, then a 

butterfly shape appears in Y (𝑌 =

|𝑂𝑃(𝑘) − 𝑃𝑉(𝑘 − 1)|) versus 𝑃𝑉(𝑘) 

phase plot. However, as observed from 

Figures 31 and 32, the shape is sometimes 

not clearly noticeable in the phase plot 

even if the valve is sticky. The 
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performance of shape dependent methods 

is likely to be hampered by noise in PV or 

OP signals, multi-loop interactions, the 

effect of simultaneous occurrence of 

stiction and one or more of non-stiction 

conditions, etc.  

 

Figure 31. BSD plot for flow control loop in 

Subsection 4.2 (oil sands industry control 

loops).  

 

Figure 32. BSD plot for temperature control 

loop (right subplot) in Subsection 4.2 (oil 

sands industry control loops).  

Valve fault detection 

In view of detecting valve fault (severe 

stiction) discussed in Subsection 4.3, the 

following observations are worthy to be taken 

into consideration.  

a) It is noticed in Figure 28 that when the 

valve fault occurs, the waveform shapes 

do not appear in either PV or OP, hence, 

the waveform shapes based methods, like 

SLOPE, ZONE, CORR, CURVE and 

Yamashita’s method, cannot be applied to 

detect the fault.  

b) When the valve fault takes place, the 

behaviour of the sticky valve, shown in 

Figures 33 and 34, is different from the 

one illustrated in Figure 3 i.e. complete 

parallelogram does not exist in MV versus 

OP plot. The data-driven stiction model 

based methods like HAMMs may not be 

able to detect the valve fault. 
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c) In addition to stiction and non-stiction 

examples, SDN also needs to be trained 

with several PV and OP signals 

corresponding to control loop with faulty 

valve in order to detect the fault, which 

necessitates SDN to have more hidden 

layers or hidden neurons, thus, increasing 

training time.  

d) Even BSD method fails to identify the 

valve fault because |𝑂𝑃(𝑘) − 𝑃𝑉(𝑘 − 1)| 

versus 𝑃𝑉(𝑘) phase plot (Figure 35) of 

simulation case study 4.3 does not have 

butterfly shape. 

e) The results reported in Tables 1 

through 4 and Figures 11 through 35, and 

the discussion held in this subsection 

emphasize that the proposed method is 

competitive with the existing methods.  

 

Figure 33. Phase plots for simulation case 

study 4.3. 

 

Figure 34. Phase plots for simulation case 

study 4.3. 
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Figure 35. BSD plot for simulation case study 

4.3. 

5. Conclusions 

Process industries often experience production 

loss and reduced profits, and produces 

inferior-quality products because of stiction in 

control valves. Stiction is more likely to be 

cause of oscillations in industrial control 

loops. The present work addresses this 

industrial problem from a different 

perspective. Slow dynamics of PV during 

valve stiction is the basis of proposed stiction 

detection method (MWSD). MWSD paved 

way for the estimation of stiction band ( S ) in 

sticky control valves. In the loops studied, 

MWSD achieved success rate of 80% in 

benchmark industrial loops, and 100% in 

Syncrude control loops. MWSD outperformed 

waveform shape based methods, limit cycle 

patterns (elliptical shape) based methods, 

model based methods, and even supervised 

learning based method such as SDN. MWSD 

and MWSQ, respectively and can detect and 

quantify low, moderate and high stiction. 

MWSD allows to monitor control valves in a 

real time manner for the detection of valve 

abnormality, an issue not addressed by any of 

the stiction detection methods reviewed in 

Section 1.  

The discussion of recent publications in 

stiction detection and quantification, which 

was carried out in Section 1, reveals that 

research in the first four categories of 

automatic methods (classification is sown in 

Figure 1) is gradually declining. All the 

methods reported from 2018 to till date are 

based on either PCA or ANNs, indicating that 

the future research efforts in stiction detection 

will be oriented toward chemometric 

techniques or machine learning (ML) 

algorithms. Many ML algorithms and 

chemometric techniques are yet to be 

explored, and efforts in this direction will 

hopefully yield fruitful results.  
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