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Abstract—Industrial data are often high-dimensional, 
nonlinear and multiple-modal. This paper develops a soft 
sensor model based on Gaussian mixture Variational 
Autoencoder (GMVAE) under the just-in-time learning (JITL) 
framework. To extract latent representations with multimode 
characteristics, GMVAE as a deep neural network model is 
utilized by considering Gaussian mixture models (GMM) in the 
latent space. After training the GMVAE model, each latent (or 
feature) variable can be described through a Gaussian mixture 
distribution. Subsequently, when a new sample arrives, a 
mixture symmetric Kullback-Leibler (MSKL) divergence is 
utilized to measure its similarity with historical data samples. 
MSKL divergence can measure similarity between two 
Gaussian mixture probability density functions. Based on the 
MSKL divergence, weighted input and output historical data 
are obtained, and then a local model is established. The 
effectiveness of the proposed soft sensor modeling method is 
validated through a numerical example along with simulation 
on the Tennessee Eastman benchmark process.  

Keywords—Gaussian mixture variational autoencoder; 
Mixture symmetric Kullback-Leibler divergence; Mixture 
probabilistic principal component regression; Just-in-time 
learning. 

1. INTRODUCTION

Soft sensor modeling includes the first principle modeling
and data-driven modeling (Kadlec et al., 2009; Khatibisepehr et 
al., 2013). This work focuses on the latter, considering 
availability of a large amount of data and flexibility of 
data-driven approaches to describing complex industrial 
process. Data-driven approaches have been studied extensively 
in the literature, such as partial least squares, principal 
component regression, artificial neural networks, support 
vector regression, and Gaussian process regression (Kaneko 
and Funatsu, 2014; Daemia et al., 2019; Jiang et al., 2020).  
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Generally, data selection plays a crucial role in constructing 
effective data-based soft sensors. Especially in industrial 
process, process characteristics may change with the changes of 
operating environment, raw material, and catalyst, etc. 
Correspondingly, the stored historical data record many kinds 
of possible changes, including both incipient and abrupt 
changes. Although a global modeling approach can construct a 
single complex model by utilizing entire historical data, it is 
usually difficult and even impossible to employ one model to 
obtain satisfactory prediction performance under all possible 
different operating conditions. Consequently, adaptive soft 
sensor modeling methods, such as recursive method, moving 
window method, and Just-in-time learning (JITL)-based 
method, are developed to solve the aforementioned issues (Qin 
, 1998; Kaneko and Funatsu, 2015; Kadlec and Gabrys, 2011; 
Ge and Song, 2010). However, the recursive or 
moving-window strategy is not suitable for abrupt or quick 
changes of the process. As a local modeling method, on the 
other hand, JITL has attracted a lot of attention in soft sensor 
modeling (Kadlec and Gabrys, 2011; Ge and Song, 2010). The 
core of the JITL is to build a local model using the most 
relevant data consistent with current operating conditions. In 
JITL, determination of data relevancy is the most important 
factor for building a high-quality soft sensor model. Various 
deterministic point-to-point methods have been proposed in 
literatures (Cheng and Chiu, 2004; Fujiwara et al., 2009; Chan 
et al., 2018) to evaluate data similarity. A probabilistic 
similarity measurement is also presented to compute data 
similarity with consideration of data uncertainties through 
comparison between two Gaussian distributions (Yuan et al., 
2017a; Guo et al., 2020b). Subsequently, to build a predictive 
model, the relevant historical data samples are selected based 
on the results of similarity measurement. Those selected 
modeling samples are most relevant to the given query sample, 
which usually can improve the performance of soft senor 
models.  

Extracting features from collected historical dataset is a key 
step, due to high-dimensionality and redundancy of the data. To 
capture the latent representations, traditional unsupervised 
learning methods, like principal component analysis (PCA), 
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probabilistic PCA (PPCA), and kernel PCA etc. (Yuan et al., 
2017b; Schölkopf et al., 1977) map the observed 
high-dimensional data into lower-dimensional space based on a 
latent space model. Being a neural network, autoencoder 
belongs to an unsupervised learning method, which has been 
employed to extract features from the given dataset especially 
for image preprocessing and pattern recognition (Bengio et al., 
2013). As a deep generative model, Variational Autoencoder 
(VAE) is proposed based on variational Bayesian inference and 
deep learning methodologies by Kingma and Welling (2013). It 
has attracted increasing attention, and has also been 
successfully applied to natural language processing, static 
images forecast, automatic speech recognition, and process 
monitoring etc. (de-la-Calle-Silos and Stern, 2017; Collobert et 
al., 2011; Walker et al., 2016; Wu and Zhao, 2020). Compared 
to autoencoder, VAE models the probability distribution of data 
in the latent space through variational inference. In the VAE 
model, the latent variables have a predefined probability 
distribution, also known as the prior. Commonly, this prior is 
considered to follow a multivariate Gaussian distribution. This 
choice of prior induces learned latent representations that are 
structured. Additionally, under the Gaussian prior assumption, 
those learnt representations are only suitable to describing 
unimodal data properties. However, if the observed data is of 
multiple mode, the Gaussian prior assumption will not be valid. 

Recently, for extracting features from multiple-mode 
dataset, several extensions have been developed based on the 
traditional VAE (Abbasnejad et al., 2016; Dilokthanakul et al., 
2017; Jiang et al., 2017; Liu et al., 2019; Shi et al., 2019; 
Varolgunes et al., 2019; Zhao et al., 2019). Considering that a 
single VAE model cannot describe the multimode data, an 
infinite mixture VAE was proposed by Abbasnejad et al. 
(2016). Dilokthanakul et al. (2017) introduced a variant of the 
regular VAE by considering a GMM as a prior distribution 
instead of an isotropic Gaussian distribution. Jiang et al. (2017) 
proposed a variational deep embedding method, which embeds 
GMM in the data generative process through a deep neural 
network under the regular VAE framework. Liu et al. (2019) 
considered a GMM as the posterior distribution to approximate 
the real multimodal posterior in the original VAE. For 
enhancing the interpretability of text generation, Shi et al. 
(2019) introduced a dispersed-GMVAE (Gaussian mixture 
VAE) to alleviate mode-collapse problem by utilizing Gaussian 
mixture distribution as the prior in the vanilla VAE. Those 
extensions consider GMM as a prior distribution or a posterior 
distribution in the VAE latent space. Varolgunes et al. (2019) 
developed a GMVAE, which considers the prior and posterior 
distribution to follow Gaussian mixture distribution in the 
latent space simultaneously.  Zhao et al. (2019) considered the 
truncated GMM in the traditional VAE to deal with the 
problems of outlier detection and clustering simultaneously.  

Furthermore, considering that industrial process has 
nonlinearities by nature, nonlinear modeling methods have 
been presented (Kaneko and Funatsu, 2014; Daemia et al., 
2019; Jiang et al., 2020; Shao et al., 2019). Note that most 
JITL-based soft sensors consider single-modal data only. They 
cannot effectively express the multimode data characteristics. 

Thus, this work proposes a JITL-based multimodal soft sensor 
modeling method based on GMVAE. For building a local 
model, a mixture probabilistic principal component regression 
(MPPCR) model is utilized, which has been successfully 
employed to deal with multimode modeling problems (Ge et 
al., 2011; Sedghi et al., 2017). 

 The main contributions of the present work are summarized 
as below. (i) Under the JITL framework, the observed input 
dataset is first preprocessed by utilizing the GMVAE. The 
features of the observed input data are then extracted. 
Correspondingly, each feature follows a Gaussian mixture 
distribution. (ii) Mixture symmetric Kullback-Leibler (MSKL) 
divergence is used for calculating relevance between historical 
data samples and the query sample, which is calculated based 
on two Gaussian mixture probability distributions. (iii) The 
input-output data samples for local modeling are determined by 
first calculating the MSKL divergence, and then weights are 
assigned to each input-output sample based on the computed 
MSKL values. Finally, based on these weighted input-output 
data, a MPPCR model is applied to establish a local model. 

The rest of this paper is organized as follows. The proposed 
JITL-based soft sensor model is presented in section 2,  
GMVAE model is introduced in subsection 2.1, assignment of 
weights to input-output samples based on the MSKL 
divergence is presented in subsection 2.2, and then MPPCR as a 
local multi-mode modeling method is applied in subsection 2.3. 
The simulation results through a numerical example and a 
Tennessee Eastman (TE) process are shown in Section 3. 
Conclusions are provided in Section 4. 

2.    PROPOSED JITL-BASED SOFT SENSOR MODEL  
Generally, JITL has the following procedure: 1) similarity 

measurement; 2) building a local model; 3) making a 
prediction. Most of JITL-based soft sensors focus on a 
unimodal data and conduct similarity measurement in the 
original data space. This paper considers multimode data and 
conducts the similarity measurement in the latent space. The 
flowchart of the proposed JITL-based multimode soft sensor 
modeling approach is provided in Fig. 1. 

 
Historical dataset

(1) Feature extraction through GMVAE;
(2) Similarity measurement through 

MSKL divergence;
(3) Weight calculation through

 equation (9).

Build a local model

Make a prediction

Query dataset

  
Fig. 1. Proposed JITL-based soft sensor framework.  

2.1.  Feature Extraction Based on GMVAE 
The GMVAE model is developed to describe industrial data 

with high-dimension and multiple-modal. It can capture the 
latent representations or features within the latent space 
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(Varolgunes et al., 2019). Moreover, these extracted multimode 
features can be utilized to construct or generate multiple-modal 
data. The advantage of GMVAE is that it can perform 
dimensionality reduction and unsupervised clustering 
simultaneously. In the GMVAE model, the prior distribution of 
latent variable ( )p Z  and the approximate posterior 
distribution ( ,C | )q Z Xf  with parameters f  are both assumed 
to be GMM. Note that categorical variable C  is introduced, 
which is utilized to represent the probability of each data 
sample belonging to each individual Gaussian model. GMVAE 
consists of an encoder and a decoder. The encoder model can be 
written as 
                      ( ,C | ) (C | ) ( | ,C)q q qZ X X Z Xf f f=                     (1) 
where (C | )qf X  represents probabilities of M Gaussian 
components. Assume that the GMM model in the latent space 
includes M individual Gaussian components, which then 
indicates ( | , )mq cf Z X  to be a single Gaussian distribution for 

a given C mc= ， where 1,2,...,m M= . Therefore, the posterior 
( ,C | )q Z Xf  follows a Gaussian mixture.  
The Evidence Lower Bound (ELBO) is expressed by 

                      ( ,C| )
( , ,C)

ELBO=E log .
( ,C | )q
p
qZ X
X Z
Z Xf

q

f

é ù
ê ú
ê úë û

                 (2) 

where the joint probability distribution ( , ,C)p X Zq  with 
parameters q  can be decomposed as follows,  
               ( , ,C) ( | ,C) ( | C) (C).p p p pX Z X Z Zq q q q=             (3) 
where 

( )2( | ,C) ( ,C), ( ,C) .p X ZX Z Z Zq µ s= N  

( )2( | C) (C), (C) .p Z ZZq µ s= N  

( )(C) Uniform 1 .p Mq =  
The approximate posterior probability distribution 
( ,C | )q Z Xf  with parameters f  is written as 

                     ( ,C | ) ( | ,C) (C | )q q qZ X Z X Xf f f=                  (4) 
where 

( )2( | ,C) ( ,C), ( ,C)q Z ZZ X X Xf µ s= N  

(C | ) Multinomial( ( )).q rf =X X  
Further, equation (2) can be decomposed as 

       ( ,C| )
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log ( | )

q

p p
q q
p

Z X

Z
X Z X
X Z

f

q q

f f

q

é ù+ê ú
ê ú
ê ú+ë û

      (5) 

In (5), the first term is entropy between the prior (C)pq  and the 
posterior (C | )q Xf . The second term represents the 

regularization between the actual posterior ( | C)p Zq  and 
approximate posterior ( | ,C)q Z Xf . The last term is the 
reconstruction term. For more details regarding the calculation, 
the readers can refer to (Varolgunes et al., 2019).  Fig. 2 shows 
the model structure of the GMVAE model. 
 

2.2.  Calculating Weights of Data Samples for Local Modeling 
Based on MSKL Divergence 

After the GMVAE model is trained, each latent variable can 
be described through a Gaussian mixture probability density. 
Given a new data sample, by inputting the data to the GMVAE 
model, the Gaussian mixture distribution of each latent variable 
can be obtained. Then, calculating divergence between two 
latent variables is equivalent to measuring the distance between 
two Gaussian mixture probability densities. The KL divergence 
between two Gaussian mixture probability densities np  and 

jp  is upper-bounded by (Liu et al., 2019) 

						 1
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where 
1

M
n n

n m m
m

p gp
=

=å 	and	
1

M
j j

j m m
m

p gp
=

=å . n
mp  and j

mp  represent 

the component coefficients of two Gaussian mixtures, 
respectively. n

mg  and j
mg  are individual Gaussian distributions. 

...
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Encoder layer
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Decoder layer

...
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XInput      

Reconstruction  X'

...

...

Latent layer

 
Fig. 2. GMVAE structure. 
 

Subsequently, considering that the KL divergence is 
non-symmetric, which cannot strictly satisfy the property of 
distance measure, we utilize symmetric KL to measure the 
distance between two Gaussian mixture probability densities,  
namely np  and jp  as below (denoted by MSKL), 

   
1 1

MSKL || ln SKL || .
nM M

n n n jm
n j m m m mj

m mm

p p g g
p

p p
p= =

é ùé ù = +ë û ë ûå å     (7) 
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Fig. 3. Similarity measurement between two samples 
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In (8), ( )( ), ( )n n
m mg gµ sN  and ( )( ), ( )j j

m mg gµ sN  represent 

the Gaussian distributions of n
mg  with mean ( )nmgµ  and 

variance ( )nmgs , and j
mg  with mean ( )jmgµ  and variance

( )jmgs , respectively. Fig. 3 provides the similarity calculation 
between two Gaussian mixture probability densities based on 
the MSKL divergence. 

Furthermore, the MSKL divergence as the similarity 
measure is computed between a query sample and all of the 
historical samples. Afterwards, a weight jw  is calculated as 
below, and then assigned to each historical input-output sample  
                      ( )2 2(exp .) /jj MSKLw s-=                             (9) 

where 2s  is a parameter used for adjusting the changes of the 
weight with changes of similarity. Subsequently, the weighted 
historical input-output samples are utilized to establish a local 
model to predict the output corresponding to the query input. 

2.3.  Local Modeling and Prediction through MPPCR 
According to the calculated similarities, the historical 

input-output samples have been assigned with the 
corresponding weights as shown in subsection 2.2. This 
subsection will briefly introduce the local modeling method 
based on MPPCR model. The mathematical expression of 
MPPCR model is provided as follows (Ge et al., 2011; Sedghi 
et al., 2017), 
                      , , , , .j m m j m m j mP xx t µ n= + +                              (10) 

                      , , , , .j m m j m y m j my C t µ e= + +                             (11) 

where ,
xH

j mx !Î  represents the j -th sample of input variable 

corresponding to the m -th sub-model, 1,...,j J= . xH  

represents the input variable dimension. 1,...,m M=  denotes 

the sub-model identity. In the m -th sub-model, x tH H
mP !

´Î  

denotes the loading matrix, y tH H
mC !

´Î denotes the regression 
matrix, tH  represents the principal component dimension, and 

yH  is the output variable dimension. Principal component or 

latent variable of the m -th local model ,
tH

j mt !Î follows 

Gaussian distribution, i.e. , ~ (0, )j mt IN  . ,mxµ  is the mean of 

the input, and ,y mµ denotes the mean of the output of the m -th 

sub-model. ,
yH

j my !Î denotes the output of the m -th 

sub-model. ,
xH

j m !n Î  and ,
yH

j m !e Î  denote input noise and 
output noise of the m -th sub-model, respectively, which 
follow Gaussian distribution, i.e. 2

, ~ (0, )j m Inn sN , and 
2

, ~ (0, )j m Iee sN .  
In the MPPCR model, the predicted j -th input and output 

data can be expressed as ,
1

( )
M

j j m
m
p mx x

=

=å and 

,
1

( )
M

j j m
m

y p m y
=

=å , respectively, where ( )p m  is the 

probability of m -th local model taking effect. Parameters 

{ }2 2
, y,, , , , ,m m m mP C x n eµ µ s sW =  can be estimated by employing 

the Expectation Maximization (EM) algorithm. The EM 
algorithm is performed by iteratively updating parameters 
between the E step and M step until convergence (Guo et al., 
2020a). The Appendix provides the updated equations of the 
MPPCR model parameters through the EM algorithm. The 
complete details can be found in references (Ge et al., 2011; 
Sedghi et al., 2017).  

After determining the parameter set W , given the query 
input queryx , the posterior probability of each mode 

( | , )queryp m x W  can be computed by 

               ( | , ) ( | )
( | , ) .

( | )
query

query
query

p m p m
p m

p
x

x
x

W W
W =

W
             (12) 

Correspondingly, the principal component of the m -th local 
model can be calculated by 
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            ( ) ( )12
, , ,

T T
m query m m m m query mt P P P xI xns µ

-
= + -             (13) 

The predicted output of the m -th local model is then 
                       , , , .m query m m query y my C t µ= +                              (14) 

Finally, the overall predicted output can be calculated as 
below, 

                    ,
1

( | , ) .
M

query query m query
m

y p m yx
=

= Wå                     (15) 

3. SIMULATIONS  
A numerical example and a TE benchmark process are 

employed to validate the proposed JITL-based soft sensor 
modeling method. The following three error criteria are 
considered to evaluate the prediction performance, i.e. 
root-mean-squared error (RMSE), mean-relative error (MRE) 
and mean-absolute error (MAE),  

                      ( )2
1

ˆRMSE .
J

j j
j
y y J

=

= -å                          (16) 

                        
1

ˆMRE .
J

j j j
j
y y y

=

= -å                              (17) 

                         
1

ˆMAE .
J

j j
j
y y J

=

= -å                                (18) 

where ˆ jy  represents the j -th predicted output. 

3.1.  Numerical Example 
A multimode model as shown below is utilized to validate 

the proposed soft sensor. This multimode model includes 
five-dimensional input variables X  and one-dimensional 
output variable y . The following input noise g  is added to the 
input data. The output measurement is corrupted by Gaussian 
noise h  as below,  

                 , ~ (0,0.1).TX B Z g g= + N                       (19) 
             1 2 3[ , , ] . ~ (0,0.02)y y y y h h= + N                 (20) 

where Z  is the latent variable, 2 1RZ ´Î , which consists of 
three different components 1z , 2z , and 3z .  In this simulation, 
mixture coefficients are 1 0.4441w = , 2 0.3333w = , and 

3 0.2226w = , respectively. Fig. 4 shows the multimodal latent 
data. In Fig. 4, each mode corresponds to a single Gaussian 
distribution, that is, 1 1 1~ ( , )z µ SN , 2 2 2~ ( , )z µ SN , and 

3 3 3~ ( , )z µ SN , 

where              [ ]1 1

6.3 1.5
17 15 , .

1.5 2.5
µ

-é ù
= S = ê ú-ë û

 

                       [ ]2 2

3.3 1.2
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1.2 5.7
µ

é ù
= S = ê ú
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  [ ]3 3
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14 23 , .

1.3 4.2
µ

-é ù
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and                  
0.2 0.1 0.2 0.2 0.3

.
0.1 0.3 0.5 0.3 0.3

B é ù
= ê ú
ë û

 

Furthermore, 1z , 2z , and 3z  can also be written as 

1 11 12[z ,z ]z = , 2 21 22[z ,z ]z = , 3 31 32[z ,z ]z = . Noise-free output 
data is generated by the following three different nonlinear 
functions,                     

                  

1/2
1 11 12 12

1/3
2 22 21 12

1/2
3 32 31 32

0.01sin( )cos( ) 0.3( ) .

0.03 sin( ) ( ) .

0.05 cos(3 ) 0.15( ) .

y z z z
y z z z
y z z z

= +

= +

= +

              (21) 

In this simulation, 4500 data samples are collected, in which the 
first component has 2000 data samples, the second component 
has 1500 data samples, and the rest 1000 data samples are form 
the third component. For extracting multimode features, 
GMVAE is designed with three mixture components, 
five-dimensional input variables and two-dimensional latent 
variables. The number of epochs is 50, the batch size is 10 
samples, the learning rate is set as 0.001, and the activation 
function is Relu. Each neural network in the GMVAE 
possesses the same structure, which includes two hidden layers, 
and each of them has four neurons. In addition, by searching 
from a range [0.01 0.1 0.3 0.5 1 5 10], tuning parameter 2s  for 
the weighting function is determined as 0.1 based on the 
prediction error criterion. Fig. 5 provides comparison of the 
predictions between the observed output and predicted output, 
which shows that the observed output can be tracked well. 

 
Fig. 4. Multimode dataset ( 1Z  is the first latent variable, 2Z  denotes the 
second latent variable). 

 
Fig. 5. Prediction results of the proposed method. 
 
Fig. 6 draws the predictions of different JITL-based soft sensor 
models with the same GMVAE feature extraction method and 
MPPCR local modeling method by employing different 
methods for latent space construction and similarity 
measurement. These methods include maximum posterior 
(MAP) JITL-based, average JITL-based, and the proposed 
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JITL-based soft sensors (named as MAP-based, 
Average-based, and proposed method, respectively). As 
introduced in subsection 2.1, after training GMVAE, the latent 
features follow Gaussian mixture distributions. Based on these 
extracted latent features, MAP-based method determines latent 
space according to the maximum value of the mixture 
coefficients, which means that each latent data is obtained from 
the Gaussian component corresponding to the largest mixture 
coefficient. Afterwards, a point-to-point relevance calculation 
method based on Euclidean distance is employed to measure 
similarity between the query sample and each historical sample. 
Average-based method is conducted by averaging the mean 
value of each Gaussian component according to the 
corresponding mixture coefficient to form a single-mode 
averaged Gaussian distribution from which latent samples are 
drawn. Then, the same similarity measurement method as used 
in the MAP-based is used to calculate similarity between two 
samples.  

 
Fig. 6. Prediction results for the three models. 
 

As shown by Fig. 6, the proposed model shows a better 
prediction performance than the others. Additionally, Table 1 
provides the values of prediction errors by calculating three 
error criteria to quantify the prediction performance over six 
different JITL-based soft senor modeling methods. The first 
three JITL-based methods have been introduced as 
aforementioned, and the remaining JITL-based methods are 
explained next. The local modeling of the six methods is the 
same, namely the MPPCR model. The fourth method measures 
similarity by leveraging the SKL divergence in the latent space 
of the traditional VAE model (Guo et al., 2020b) (denoted by 
VAE-based). The fifth method performs similarity 
measurement by utilizing SKL divergence in the latent space of 
PPCA model (denoted by PPCA-based). The sixth method 
directly conducts relevance calculation based on Euclidean 
distance in the original input space without extracting features 
(followed by Distance-based). As shown in Table 1, the 
proposed soft sensor model has the smallest prediction errors, 
which indicates that the proposed similarity measurement 
method based on MSKL divergence assigns the most 
appropriate weights to local data samples.  
 

TABLE 1 
PREDICTION RESULTS FOR THE DIFFERENT JITL-BASED SOFT SENSOR MODELS 

 
        RMSE        MAE     MRE 
Distance-based         0.1571      0.1263 0.1249 
PPCA-based         0.1392      0.1074 0.1052 
VAE-based          0.1366      0.1013 0.1006 
MAP-based         0.1184      0.0698 0.0673 
Average-based         0.1089      0.0736 0.0697 
Proposed method         0.0813      0.0504 0.0498 

3.2. TE process 
The TE process as a benchmark process has been widely 

used for testing soft senor models (Downs and Vogel, 1993). 
There are six different operating modes, which can be obtained 
by designing the different G/H ratios. This process totally 
includes 41 observed variables along with 12 manipulated 
variables. 41 observed variables consist of 22 easy-to-measure 
variables and the rest are the difficult-to-measure composition 
variables. In this work, 16 out of the 22 easy-to-measure 
variables are selected as input variables for soft sensor 
modeling, which are listed in Table 2. The output variable is 
Component C from the purge (Yuan et al., 2014). In this 
simulation, two of the six operating modes are considered to 
establish a multimode JITL-based soft sensor. 1440 samples are 
generated, where 720 samples are collected from the first 
operation mode and 720 samples are obtained from the third 
operation mode, respectively. In each mode, the first 500 
samples are used to train the model, and the remaining 220 
samples are used to test the prediction performance. 
 
                      TABLE 2 

INPUT VARIABLES IN TE PROCESS (YUAN ET AL., 2014) 
 

Number Variable description 
1 A feed 
2 D feed 
3 E feed 
4 A and C feed 
5 Recycle flow 
6 Reactor feed rate 
7 Reactor temperature 
8 Purge rate 
9 Separator temperature 

10 Separator pressure 
11 Separator underflow 
12 Stripper pressure 
13 Stripper temperature 
14 Stripper steam flow 
15 Reactor cooling water outlet temperature 
16 Separator cooling water outlet temperature 

 
The architecture for the GMVAE model is: 16 input 

dimensions, 2 components, and various latent dimensions, i.e., 
five, eight, ten, twelve, thirteen and fourteen. The learning rate 
is 0.001, the epoch number is 40, the batch size is 10 samples, 
and the activation function is Relu. The structure of each neural 
network is designed with two hidden layers, and each hidden 
layer has ten neurons. According to the prediction errors, the 
weighting function parameter is determined as 0.1. Fig. 7 as an 
illustration of multimode case shows the relationship between 
the fourth input and the output. Several different dimensions of 
latent variables are considered to check the variation. As 
displayed by Table 3, when the number of latent variables is 
equal to twelve, the corresponding prediction errors are the 
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smallest. Hence, twelve can be determined as a suitable 
dimension, which is also utilized to subsequently verify the 
proposed method.  

 
Fig. 7. Relationship between the fourth input variable and output variable. 

 
     TABLE 3 

PREDICTION RESULTS OF VARIOUS LATENT DIMENSIONS ON TE PROCESS 
 
   RMSE       MAE     MRE 

Five          0.1130     0.1006 0.0953 
Eight          0.1015     0.0924 0.0937 
Ten          0.0927     0.0797 0.0768 

Twelve         0.0726     0.0580 0.0574 
Thirteen         0.0809     0.0741 0.0708 
Fourteen         0.1142     0.0953 0.0910 

 
Additionally, six different soft sensor methods as mentioned 

in subsection 3.1 are applied and compared. The prediction 
errors are provided in Table 4. As shown in Table 4, the 
prediction accuracy of the proposed method is consistently 
better than the others due to its relevance of feature extraction 
and most appropriate similarity measurement. Fig. 8 provides 
the prediction performance of the proposed method by 
considering twelve-dimensional latent variables. As 
demonstrated, the proposed method indeed works well. 

 
TABLE 4 
PREDICTION RESULTS FOR THE DIFFERENT JITL-BASED SOFT SENSOR MODELS 
ON TE PROCESS 
 
        RMSE        MAE     MRE 
Distance-based         0.1739      0.1418 0.1406 
PPCA-based         0.1497      0.1402 0.1223 
VAE-based          0.1461      0.1327 0.1185 
MAP-based         0.1337      0.1135 0.1079 
Average-based         0.1232      0.1011 0.0983 
Proposed method         0.0726      0.0580 0.0574 

 

 

Fig. 8. Predicted output of the proposed model on TE process. 

4.  CONCLUSION 
In this paper, JITL-based soft sensor development based on 

GMVAE was established for the multimode processes. To 
achieve the objective, the GMVAE model is introduced for 
extracting multimodal latent representations. Each latent 
variable can be described through a Gaussian mixture 
probability density function. Furthermore, MSKL divergence 
as a similarity criterion is used to calculate the similarity 
between the Gaussian mixture distribution of the given query 
data and that of the historical data. After completing similarity 
calculation, the input-output data are assigned with weights 
calculated according to the MSKL divergence. Based on the 
weighted data, a MPPCR local model is constructed. The 
simulation results through a numerical example and a TE 
benchmark process demonstrated the effectiveness of the 
proposed JITL-based soft sensor modeling method. 

APPENDIX 
In the E step, the posterior probabilities ( | , , )j j oldp m yx W  

and ( | , , , )j j j oldp y mt x W  are determined as below, 
respectively, 
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( | , , ) .
( , | )

j j old old
j j old

j j old

p y m p m
p m y

p y
x

x
x

W W
W =

W
         (22) 
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Considering that each term of the numerator in (23) follows 
Gaussian distribution, ( | , , , )j j j oldp y mt x W   is also of 
Gaussian distribution with mean ( )jtµ  and variance ( )jtS  as 
below, 
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     ( ) 12 2
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In the M step, model parameters can be updated by the 
following equations, respectively,  
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