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2.6.2 Optimal Prediction

Prediction error is defined by

ε(t, θ) = yt − ŷ(t|t− 1)

where ŷ(t|t − 1) now denotes a prediction of yt given all data up to and
including time t− 1 (i.e., yt−1, ut−1, yt−2, ut−2, . . .).

Consider the general model structure

yt = Gp(z−1; θ)ut + Gl(z−1; θ)et

with the assumption that Gp(0; θ) = 0. A general linear one-step ahead pre-
dictor is described as [10]:

ŷ(t|t− 1) = L1(z−1; θ)yt + L2(z−1; θ)ut (2.15)

which is a function of past data if the filters L1(z−1; θ) and L2(z−1; θ) are
constrained by

L1(0; θ) = 0 (2.16)
L2(0; θ) = 0 (2.17)

Thus, the prediction error can be further written as

ε(t, θ) = Gp(z−1; θ)ut + Gl(z−1; θ)et − L1(z−1; θ)yt − L2(z−1; θ)ut

= Gp(z−1; θ)ut + (Gl(z−1; θ)− I)et + et − L1(z−1; θ)yt − L2(z−1; θ)ut

= (Gp(z−1; θ)− L2(z−1; θ))ut + (Gl(z−1; θ)− I)et − L1(z−1; θ)yt + et

According to the model,

yt = Gp(z−1; θ)ut + Gl(z−1; θ)et

et can be derived as

et = G−1
l (z−1; θ)(yt −Gp(z−1; θ)ut)

Using this relation, we can further write the expression of the prediction error
as

ε(t, θ) = (Gp(z−1; θ)− L2(z−1; θ))ut + (Gl(z−1; θ)− I)
×G−1

l (z−1; θ)(yt −Gp(z−1; θ)ut)− L1(z−1; θ)yt + et

= (Gp(z−1; θ)− L2(z−1; θ))ut + (I −G−1
l (z−1; θ))(yt −Gp(z−1; θ)ut)

−L1(z−1; θ)yt + et

= (G−1
l (z−1; θ)Gp(z−1; θ)− L2(z−1; θ))ut

+(I −G−1
l (z−1; θ)− L1(z−1; θ))yt + et

4
= Ψu(z−1; θ)ut + Ψy(z−1; θ)yt + et
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Given the conditions Gp(0; θ) = 0, Gl(0; θ) = I, L1(0; θ) = 0, and L2(0; θ) = 0,
it can be verified that

Ψu(0; θ) = 0
Ψy(0; θ) = 0

Namely, both Ψu(z−1; θ) and Ψy(z−1; θ) have at least one sample time delay.
Thus, by expanding transfer functions into impulse response functions, we
have

Ψu(z−1; θ)ut = ψu1ut−1 + ψu2ut−2 + . . .

Ψy(z−1; θ)yt = ψy1yt−1 + ψy2yt−2 + . . .

Being a future white-noise disturbance relative to Ψu(z−1; θ)ut and
Ψy(z−1; θ)yt, et is independent of both Ψu(z−1; θ)ut and Ψy(z−1; θ)yt. As a
result

Cov(ε(t, θ)) = Cov[Ψu(z−1; θ)ut + Ψy(z−1; θ)yt] + Cov[et] < Cov(et)

or as a norm expression

trace[Cov(ε(t, θ))] ≥ trace[Cov(et)]

Therefore, the minimum is given by Cov(et), i.e., the covariance of white noise
et, which is Σe. Consequently, an optimal one-step predictor should give this
lower bound as its prediction error. This lower bound is achieved if

Ψu(z−1; θ) = 0
Ψy(z−1; θ) = 0

Solving these two equations gives, respectively,

L2(z−1; θ) = G−1
l (z−1; θ)Gp(z−1; θ)

L1(z−1; θ) = I −G−1
l (z−1; θ)

As the result, the optimal predictor can be derived.
Let’s start from a simple example to demonstrate how the optimal predic-

tion can be derived. Consider the following ARMAX model:

yt =
bz−1

1 + az−1
ut +

1 + cz−1

1 + az−1
et

The white noise term et can be derived from this equation as

et =
1 + az−1

1 + cz−1
(yt − bz−1

1 + az−1
ut) (2.18)

The following derivation yields optimal one-step prediction:


