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Abstract. In this thesis, we discuss some problems in wavelet analysis.
More precisely, the content of this paper is the following:

I.  On dual wavelet tight frames

II. Some applications of projection operators in wavelets

ITI. A sufficient and necessary condition on I'y for T'(I'g, M) to be a
self-affine tiling

IV. Miscellaneous results on shift-invariant subspaces of L?(R").

In Part I, we present a complete description of dual wavelet tight
frames and by using these results, we construct dual wavelet bases and
dual wavelet tight frames in L?(R"). In Part II, we obtain a criterion for
dual wavelet bases which can be generated by an MRA. In Part III, we
find a sufficient and necessary condition for T(T'y, M) to be a self-affine
tiling ( a kind of special wavelets ) which is convenient to apply. In the
last Part IV, we show some results on shift-invariant space.
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Part 0: Introduction and Definitions

At first, we shall review some concepts and notations. Throughout this paper, we
shall always let " be a lattice subgroup of R™*(I"' := EZ", E is an n X n nonsigular
matrix) and M, an n X n real matrix, be an acceptable dilation for '(MT' C T
, and all the eigenvalues, \;, of M satisfy |\;| > 1) with m = |detM|. Then we
let B := M* 1. T* := 2rE*" 1 Z" called the dual lattice of I', S := 27 E*~1[0,1)"
called the fundamental block of I'*. |S| denotes the Lebesgue measure of S. For any
f,g € L>(R), we shall use the following notations:

f&):=—L— [ f)eat,

(2m)"/? Jgn
fin(@) =mil?f(Miz—~), j€Z~eT,
mf(z) = f(x —v), ~veT,
f||z = {f(w + 7*)}7*€F* € ZQ(F*)v

[£,91(6) == > fE+")g(E+ 7).

,y* el"*
And notice that we have

(f,9) ={(f,9), Yf,g€ L*(R"),

fz) = W/R Ft)ye™tdt, Vi e L*(R™).
A sequence {V;}jcz of closed subspaces of L?(R") forms a multiresolution anal-

ysis ( MRA ) if

(1) ij - ‘/}+1 Vj € Z,

(i

(

i) NjezV; = {0} and UyezV; = LA(R™),
iii) f(z) e V; it f(Mz) € Vi1 jEZ
(iv) there exists an element ¢ € Vj such that {¢p(z—=) : v € I'} is an orthonormal
basis of Vj (¢ is called a scaling function).



Part I: On Dual Wavelet Tight Frames

81. Introduction

Dual wavelet tight frames play a very important role in both the theory and
application of wavelet analysis. How to consruct them, therefore, becomes a key and
interesting problem (since dual wavelet bases are the special cases of dual wavelet
tight frames). For simplicity, in this paper we call dual wavelet tight frames by
dual tight frames. Although some results on dual tight frames appeared elsewhere
by other authors in various forms, here we present a more complete, general and
strict approach of this problem. To speak in detail, we first use two classes of
equalities (these equalities appeared in Lemarié [6] and were known to Y. Meyer
and A. Bonami, F. Soria & G. Weiss [2], C. K. Chui & X. Shi [3]) to characterize
dual tight frames. Worthy of a mention is that we obtain a necessary and sufficient
condition to characterize dual tight frames with the Fourier transforms of their
wavelet functions having finite supports. Then by generating Lawton’s results on
tight frames (see Lawton [5]) to several dimensional cases and the method in G.
V. Wellend & M. Lundberg [7] to construct wavelet bases with compact support to
dual wavelet tight frames, we construct dual wavelet tight frames. Futhermore we
can use one function to generate a tight frame in L?(R"™) and construct some new
wavelet bases in H?(R).

In this paper we always let F' denote a measurable subset of R™ such that yp(z) =
xBr(z), ae. z € R" and define L3 (F) := {f € L*(R") : f € L*(F) N L*®(F) such
that f vanishes in a neighborhood of the origin and suppf is included in a ball with
finite radius.}. We say that f € L?(R") is (strictly) admissible if Z |F(B7¢)]? e

JEXL
Li (R")(€ L™(R™)). )

We call that {1;}¢_; with dual functions {;}¢_; generates a dual tight frame
in L2(F) ( L2(F) := {f € L*(R") : J € L*(F)}, and without further mention, we
always assume 1;,1); € LQ/(}')) with the tight frame bound Cy # 0, if Vf € L2(F),

d d

(1.1) Cof =Y > Aftbiimisis Cof = > D Afstij) iy
i=1j€Z vel i=1j€Z y€er

with the series converging in L2, and there exists a constant C' > 0 such that

Vf e L2(F)

d
(1.2) CUAT <SS i) P < ClSIIG S

i=1jEZ y€r



d
(1.3) CHAZ <SS KF g I? < ClIfIIe.

i=1 j€Z €T

If in addition Cp = 1 and there exists C; > 0 such that V{C;i;,} € *({1 <i <
d} X Z xT)

d
(1-4) 01_1”{01;]',7}”12 < || Z Z Z Ci;j,’ﬂbi‘ B

i=1jEZ yel

1{Ci:jy Hle2

d
(1.5) Cr I Cajn e < 112D D Cojtbiviallze < CL{Cijn e

i=1jeZ el

and (i, Yijig) = 6iindj 10y, 1 Sj,il <d, j,jl € Z, ~7l e lwe
will say that {1;}&, with dual functions {¢;}¢_, generates a dual wavelet basis in
L2(F). If {a;}¢_, satisfies only (1.4), we shall call {1);}¢_, generates a Riesz basis.

§2. Characterization of Dual Tight Frames

In this section let us first review and state some basic results.
Proposition 2.1 (C.K. Chui and X. Shi [3]). If ¢y € L?(R") satisfies

(2.1) Vi e LXR"), >3 i)l < ClfIl

JEZ veT

here C' > 0 is a constant (we call that such ¢ has an upper frame bound), then ) is
strictly admissible, i.e. Z 1p(BIE)|]? € L™.

jEZ
Proposition 2.2. {1p; Y%, with dual functions {¢);}%_, generates a dual tight frame

in LQ(F ) with the tight frame bound Cj # 0 if and only if the following hold

d
(22)  VFELX(F), Y30 (i) + 1 diga) ) < ClIf I

i=1jeZ vel

d
(2.3) V]?,Q\G L*(F), Colf,q) Z Z Z I i) 1/)2,3,77 g)-

1=1jeZ vel

where C' > 0 and Cj # 0 are constants.
Proof. The necessity is obvious. Now we prove the sufficiency. By (2.2) and the



Cauchy-Schwartz inequality, the condition (2.3) implies (1.2) and (1.3). To complete
the proof, it suffices to prove (1.1). VN € IN, f € L*(F),

d
HCOf_Z Z Z <f71/)z';.7}7>1/)z';.7}7|

PR

d
= Ssup CO<f7 g) - Z Z Z <f7 z;bi;j,’y)(/‘/)i;j,’yvg)

llgll L2 <1 i=1[j|<N |y|I<N
d

= sup Z Z <fa¢i;jﬁ><&i;j,%g>

ll9llz2 <1 {i=1 max(|j],|[7|)>N

J 1/2
<C (Z >l %m)l)

i=1 max(|j,||y|[)>N

which converges to 0 as N converges to infinity. Thus the proof is finished. O
In the rest of this section, we shall present our main results of this paper. Using
the following Theorems, we characterize dual tight frames by two classes of equalities.
Theorem 2.3. If {¢;}%_, with dual functions {;}%_, satisfies the following condi-
tions
j, zzi, 1 <4 <d are admissible

d
Ve Lia(F), SO ST i) P + 1 i) < oo,

1=1j€Z yel’

d
(24) Vfag € LQBC(F)v CO<f7 g) = Z Z Z(fv ¢i§ja7><1;i;j,77g>

i=1jEZ vl

where Cj # 0 is a constant. Then the following equalities hold

d >~ .= .
(2.5) YD i(BIE(BIE) = ColS| ™ xr(£),
i=ljez
d oo - ., = .
(2.6) Vs € DAMITY, SO 3 i (M€)gh(M™ (€ + ) = 0.
i=13j=0

Proof. From the assumptions, by application of the Parseval equality and the po-
larization identity, we get

(2.7) Vf,g € Lo (F)



d
IPIPUIRTIRIINPIS 35 SEE T, BOli(6). 3.

1=1j€Z vel’ 1=1jeZ

To simplify our argument, without loss of generality we assume F' = R"™. For
any fixed w € R"\0, there exists g > 0 such that 0 € Bo. (w) and Vi,j € Z,i #
4, |B*Bey (w) N BI B,y (w)| = 0 (here B.,(w) denotes a ball centered at w with radius
g0). Also for any £ > 0, there exists jo such that Vy* € T*\0,5 > jo, |(B?B:(w) +
7v*) N B B.(w)| = 0. Thus we let j. denote the mimium number of such j;. Now we
define

R(frgri) =3 3 mils / [FOMY€), di(©)[ha(€), FME)]de,

z 1j5>je

KT =3 5 mIS] [ (FO090) T 0. a0 e e

=1 j<Je
To prove (2.5), For any 0 < € < ¢, we select f({) =g(¢) = WXBE(“}) (€).
&
We now compute and estimate R(f,g,7:) and L(f,g, j).

R(fvgvja) = |S| |/ XBe(w B]§)¢Z(BJ§)§

1= 1]>]

Z Bl o BB e

i=1j>je

Since 15, 1; are admissible, thus Z Z |1,b@ BJ§)¢@(B]§)| € L},.. By the Lebesgue’s

1=1jeZ
dominated convergence theorem, we have
: |S| - T (R j
(2.8) RB($,9:39) = 151007 L Z S GBIV (BIE)de.
¢() i=15>j.
On the other hand
. |S| M*I 1/2
Uil < XY Ee /[ X0 (M9), 15(6) )
i= 1]<] 5
[X B (w) (M), |1/)z 2172 [ > XBoo) (MY (€ + 7)) | de,
yrer

Noting that |B.(w)| = lim m/|S|- #{y* € T* : |B.(w) N M*(S 4+ +*)| # 0}. Thus
j——00

Vi<0, > Xp.(o) (MY (E+7Y)
(2-9) y*el* ‘
< #{y* € T* ¢ |Bo(w) N MY (S +7¥)| £ 0} < 0y Bl

-mi|S]



here C is a constant. Let F, := B’ |J;_ B/ B.(w), then

1/2 1/2
. 2 2
L(f.9,50)] < H(Z/ It |d£) (Z/BBE hilé |d£)

J<i J<i
N2 = N2
- a3 ([ 1he dé) ([ wera)”
=1 Fe Fe
Note that inf €1 > 0 and j. converges to negative infinity, as ¢ —

j<o B?Beg(w
0, we know inf [[{|| = +o0, as ¢ — 0. Thus lim/ ([: (6)? + |4 (€))?)de = 0,
ECF. e—=0 /.
which means that lim |L(f, g, je)| = 0. Since Co = R(f, g, je) + L(f, g, J), by using
Lebesgue’s differentiability Theorem, we get Cy = liII(l) R(f,g,7:) + liII(l) L(f,g,75:) =
E—r E—r

d _ —
lim R(f,g,c) = 18132 3 $:(B'Oi(BE).
¢ i—1jeZ
To prove (2.6), select w € R™\I'* fixed. Let ey = % mlin\O II7*l, then
7*6 *

(3.0) Yy eI"M\0,  [Be, (w) N (B, (w) +7%) = 0.

Let g € I'"\M*T"* be fixed, then there exists e5 > 0 such that 0 ¢ Ba., (w)UDBag, (w+

78) and Vi, j € Z,i # 4, B Bey(w) 0 BIBey(@)] = 0,|B By (@ + 7)1 B By (w0 +

75)| = 0. As in the proof of (2.5), we let j. denote the minium integer such that

V§ > je,v* € T*\0,|(B?B.(w) + v*) N B/B.(w)| = 0. Noticing that j. — —oo, as

e — 0, we know that there exists g > 0 such that 9 < min(eq, 62) and j., < 0.
Now we prove (2.6). For any 0 < € < g9, we select f(§) WXBe( ) (£),3(8)

B.(w )|1/2 XBe(w+fyg)(€) and calculate R(f,g,j.) and L(f,g, je).
By (3.0), we have

Vi >0, (b0 (MYE), Bi(E)] - [Xp(wing) (M), $:(6)] =

So

d
fagajs Z |S| /[ XBe(w *]f d)z( )][d)z( ) X Be (w+73) (M*Jf)]d&

Note that Vj < 0, [x, () (M), PAONE) = [Xpetey (MHIE), (€ + Bing))(€) and
(3.0) holds

d —
R0 = 3 3 ST | GErile + B, o MO

d S —
- XX BL(LH [, BB €+ iy




Since %&i are admissible, using Lebesgue’s dominated convergence theorem and
Lebesgue’s differentiability theorem, noticing that j. = —oo, as € — 0, we have

lim R(f,g,5c) = lim lSl / Z S GuBIEG(BI(E ++5))de

z 1] <j<0
d
Z

Using the same method in proving (2.5), we also can prove that lirr(l) L(f,g,7:) =
e—

0. By the assumption R(f,g,j.) + L(f,g,j:) = 0, we obtain (2.6). O

Remark. Given ¢ € L%(R"), if there exist ¢ > 0,0 > 0,C > 0 such that |1(¢)| <
C||€|If, whenever |[£]] < d, then 1 is admissible. If in addition there exist ; >
0,C > 0 such that |1(¢)| < Cy]|¢]|~, then 4 is strict admissible. In the general
case, when F' is a measurable subset of R™ such that F = BF, in proving (2.5),

we can select w € F\0 with liminf._,o “Tﬁ%&(;”')[ = 1 (noticing that for a.e. w € F,

this holds) and substitute D, (w) := F N B:(w) for B.(w). In proving (2.6), we still
choose f, g as above and (2.4) still holds for such f and g.
Under some mild conditions, we prove the converse theorem of Theorem 2.3.
We say that ) € LQ(R”) satisfies condition (I) if there exist positive constants
81,05 such that ||€]|% ¢ P(§) € L™ and P € L¥02(R).
Theorem 2.4. If ¢, ¢; € L% 1 < i < d are admissible, [¢};,1;] € L, 1); satisfy
condition (I) and (2.5), (2.6) hold, then (2.4) holds.

d — _
Proof. For any f,g € L%, (F), letting h(¢) = Z Z Z |zzi(Bj§)zzi(Bj§ +

i=1 jEZ v €l*
Y)G(&) f(& + M*y*)|, we shall prove h € L'. Since f,g € L% (F), then there
exists jo € IN such that Vy* € T*\0,j > jo, G(€) F(€ + M*Iy*) =0, a.e. £ € R

Let Iy = [ S ¥ BRI FaE s and

i=1jeZ

Be(w)
> il (M) (M7 (€ + 7))

]:

L= / 22 S (B Gi(BIE + 4G (€ + M) de.

=1 j<jo y*€I'*\0

since );,1); are admissible and f,g € L% o(F), then

L < | Floe gl / Y (i (BI€) g (BIg)|de < oo

ppgjeZ
Since suppg C 0l < < C}, then inf Bi¢|| > ¢~ Y|M*||~! and
ppg C {¢ < i€l < C} C_1§||§||§C” ¢l = e IMH|
Vi < jo, Z Xpisuppg(§ +7°) < Cim’, where Cy is a positive constant. By

y* er*



[@, zzz] € L and 1); satisfying condition (I), we get

d
B Y3 gl=md [ @IF ), FOIE 2, g

i=1 j<jo Bisuppy

lgllz~ (Z || m,wz]nm) Sy e

i=1j<jo B/suppyg

VAN

~ 1/2
Fig), Fargae} [ /, jsupp§|¢(£)l2_52d£]

d
. 52 * %] 1/2
<CaY2 S [ OO, far e

1/2

d 1/2 = /
here Gy = gl (z i, Bl ) [ 9P . since

Lo 1@ IF e, Fre)de
Bisuppg

~

< eI ot [ [Faarie), foreldg

Bisuppg
< Cym ™2 || M7 |12,

here C3 = C1C""” maxi<i<q ||||§||‘51¢z (119171132, then

d d
I, < Oy Z Z ij§/2m_j||M*j||5152/2 < 0205/2 Z Z ”M*j||5152/2 < c0.

=1 j<jo 1=1 7<jo

which means that h € L. By (2.7) and Lebesgue’s dominated convergence theorem,
we obtain Vf,g € L} (F)

d
SN S i) (P )

i=1 jGZ yel

—3 3 wls JIFI7€), u€)) (€), 5 )
= 1362

~

SIS [ N T X RBORBIE 4 TOE M

i=1jEXZ v* EI‘

SIS [ OO Y. Y R meon e +1s] [ e >

=1 jez OEZ’}/OEF \M~*I*
o d

T+ M9055) S0 57 (M (BIE + ) (M (B¢) e
j=01i=1



From (2.5), (2.6), we obtain (2.4).0

Remark. The condition (I) is not very strict. For example, if |1(£)| < C||€] =%,
a.e. £ € R, here C and ¢ are positive constants, then 1) satisfies condition (I). If
@Z € L*® N L? has compact support, it is obvious to see that 1) satisfies condition (I).
Proposition 2.5. If 4 has an upper frame bound, then [¢), ] € L.

Proof. ¥{C,},er € I*(T), we have

Z Cv¢0,v

yel

ZC ¢0,779>

yel

< CI{C e

= sup
llgll 2 <1

L2

which means [¢), 9] € L. O
Proposition 2.6. If Y is a dense subset of L?(R") and v € L?(R") and there
exists a constant C' > 0 such that Vf € Y, > > " [(f,1;1)]> < C||fl72, then ¢ has

JEZ veT
an upper frame bound C.

Now we state our main results in this section.
Theorem 2.7. Given v;,1; € LQ(R") 1 < i < d,4; (or 1) satisfy condition (I),
then {t;}¢_, with dual functions {ihi}_| generates a dual tight frame in LQ(F) if
and only 1f i, i, 1 < i < d have upper frame bounds and (2.5), (2.6) hold.
Proof. Combining Proposition 2.1, Theorem 2.3, Theorem 2.4, and Proposition 2.5
and Proposition 2.6, the result is obtained. O
Theorem 2.8. 1; € L?(R"),1 < i < d satisfy condition (I), then {1;}¢_, generates
a tight frame in Lz/(\F) if and only if [¢);, ¢;] € L°,1 < i < d and (2.5), ( .6) hold.

Using the results we have obtained, we now characterize (dual) wavelet bases.
Corollary 2.9. v;,1; € L2(R"),1 < i < d. Assume that 1; (or 1;) satisfy condition
(1), then {1;}%_, with dual functions {¢); }%_, generates a dual wavelet basis of L2( )
if and only if the following hold

(i) (Dual orthogonality condition)

[1(€), By (M)] = [4(€), b (M™*€)] = 8|71 61 jdox, VE > 0,1 <i,j < d,

(ii) (Dual tight frame condition)

Vi, zzi, 1 <4 < d have upper frame bounds and (2.5), (2.6) hold with Cy = 1.
Corollary 2.10. ¢; € L*(R"),1 < i < d satisfy condition (I). Then {t;}¢,
generates a wavelet basis of LQ/(E’) if and only if the following hold

(i) (Orthonormality condition)

[i(€), b (M**€)] = |76, j00k, Yk >0,k € Z,1<i,j <d,

(i ) (Tlght frame condition) N
[i, ] € L®,1 < i < d and (2.5), (2.6) hold with ; = 1;,1 < i < d, and
Co=1.

10



Remark. From Corollary 2.9 and Corollary 2.10, it seems that to a great extent,
the dual orthgonality condition and the dual tight frame condition are relatively
independent. In fact, item (i) in Corollary 2.9 can be replaced by any one of the
following

(i1) {1 }%, (or {¢;}%_|) generates a Riesz basis.

d
(i2) If V{Ci;j,fy}lgigd,jez,'yer‘ € 17 such that Z Z Z Ci;jy¥ijy = 0 in L2,
i=1jEZ el

then C;;, =0, 1 <i<d,j e Z,vyel.
(i3) G : L*(R") — I*({1 < i < d} x Z xT) is a surjection, here G(f)ij, =
zf7 ,(/)21]773 :

(i4) {%i;j,}i<i<djez,yer has a unique dual frame with the tight frame bound
Co=1.

We also note that item (i) in Corollary 2.10 can be replaced by ||¢;||z2 = 1,1 <
i < d. But we shall show that item (i) in Corollary 2.9 can not be replaced by
[hi, ;] = |S|—15ij,1 < i,j < d TInthe case n = 1,M = 2,F = R, let K =

[~2m,,—n] U [r,27], K = [-2m,—m/2] U [1/2,2x] and §(¢) = —Z=xx (&), be) =
\/Lz—ﬂx 7(§). Using Theorem 2.8, we know that ¢ ( also 1) generates a tight frame in

Ig(R). Checking the conditions in Theorem 2.7, we know 1) with the dual function
1 generates a dual tight frame in L?(R) with the tight frame bound Cy = 1 and

[4h,1] = 1/27. But 1) generates a wavelet basis, which means that item (4) does not
hold. B
Proposition 2.11 ( also see [2] ). {t;}% ; with dual functions {¢;}¢ ; generates a
dual wavelet basis of LQ/(}’) and 1@,1;,, 1 < i < d are e-holder continuous at the
origin ( i.e. there exists § > 0,6 > 0,C > 0 such that [(¢)] < C||€]|E, whenever
€]l < 6), if 4 is compactly supported, then ; vanishes in a neighborhood of the
origin.
Proof. By item (i) in corollary 2.9, since 1/)1, is compactly supported, then there
exists jo large enough such that Vj > jo,1 < k < d, 7,[)1(6 wk Bi¢) = Z 7,[)1 £+
yrer*
M9y )y (B¢ +~*) =0, V€ € suppthy. Since 9y, 1y are e-hdlder continuous at the
origin, then there exists 6 > 0 such that

d - . onl .
1Y hr(BIE (B

k=137<jo

< g Vel <

11



1
oTa XF>s V||£|| < 4. Thus

which means that Z Z 15_ ng)iﬁ(ij” = 2[5

k=173>j0
Ml <13 & Tmemioni =0, viel <o
k=173>j0

which finishes the proof. O

Proposition 2.12. If ¢ generates a wavelet basis in L?(R) and 1} has compact
support, let [ :==sup{b—a: a <0 < band @(ﬁ)x[a,b](é) =0} and h := inf{b—a:
a < b and suppz,Z C [a,b]}, then I < 27 and h > 47, moreover, [ = 27 ( or h = 4)

if and only if |QZ( )| = le—ﬁx[ga 4 a—27)Ufa,24) (€), for some 0 < a < 2m.
Proof. It 1 > 0, by definition of I, there exist a,b such that ¢ <0 <b,b— a =1/ and

¢(§)X[a 5(§) = 0. By Corollary 2.10, (2.5) gives us that 37, |1/)(29§)|2 = 27r’ V¢ €
[a,b]- S0 [ 50 [$(27€)2d¢ > B2, Since [ 3 >0 |¢(2J§)|2d§ > 5027 [l 2 =
1, we obtain [ = b—a < 27. If [ = 27, then Zy>0 [p(218)|? = QWX[Q 5 (§) which gives
us that |7,Z)( ) = mX[Qa,a] b,25)(§), by [7,/1, I/J] = 1, thus there must exist 0 < a < 2,

such that W;(f” = \/LQ—WX[2a—47r,a—27r]U[a,2a] (f)
If h < oo, by definition of h, there exist a,b such that b —a = h ancl suppzz C
[a,b]. By Corollary 2.10, (2.5) and suppy) C [a,b] tell us that Z]>0 [P (27€))? <

3= X(a/2,6/2 (€)- Thus [ 57,50 [1h(20€)[2d¢ < 47T Since [ Y0 [$(27)2d¢ = 1, we
get h=b—a>4n. If h = 4m, then 37, |7,Z)(2 )2 = 217‘_ X[a/2,/2)(§) which gives us

that W’(ﬁ)l = \/%_WX[Q(I—47T,(I—27T]U[0,,2G] (6) for some 0 <a <2m. 0O

Since how to check that 1 € L?(R™) has an upper frame bound is an important
problem, to complete our approach, in the last of this section, we shall cite some
results on frame bound.
Proposition 2.13 (I. Daubechies [4]). If [1h;, 1] € L, 1 < i < d and ¢; satisfies
condition (I), then Vf € L2(R"), ||f|l2 = 1,

essinfeernn(§) — 0 < @ Z Z Z [{f, 1/)%7 < esssupgeRnn(f) + 46,

1=1jeZ yel’

d
here 7(¢) == S Y [Bi(BIOP, 0 = S (BORH)B—)Y? and B(%) =

i=1jez g P\ M*T*

sup ) Zm (M Bﬂogﬂo))@(M*ﬂ'(Bj%))‘.

SER™ jocz |i=1j=0

Proposition 2.14(I.Daubechies [4]). € L?*(R"), if there exists 6 > 0 such that
Z [p(BI€)[? € L™ and Z (€ + %)% € L™, then ¢ has an upper frame
JEZ y*el*

bound.
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3. Construction of Dual Tight Frames

In this section, we shall generalize Lawton’s results on tight frames in L?(R) to
several dimensional cases. In the end of this section, we shall show another way to
construct tight frames.

Theorem 3.1. Let T = {v;}™," be a full collection of representatives of distinct

cosets of I /M*T* with 45 = 0. $(§) = po(BE)P(BE), (&) = Po(BE)H(BE) with
o, Po periodic and bounded such that

m—1
(3.1) > ol + By)po(€ + By) = 1.
1=0
Moreover we assume that [5, a] € L™, ¢ satisfies condition (D), ||llllmO qﬁ(ﬁ)g(g) =
n
$(0)$(0), dim (|¢( )| + |(€)]) = 0, and there exist two 1 x 1 matrices
po(§+Bv5),  po§+Bvy), v po(§+ Bym_1)
pi€+BYv), pE+By), - pil+Bymo)
P(f) = . . . .
pm—1(§+B76<)7 pm—1(§+B’7ik)7 Ty pm—1(£+B7:n 1)
[ po(+By),  po§+By), -, pol€+Bypo)
_ piE+By),  PiE+BY), -, + By,
Be) o= p1(§ | %) p1(€ | ) : p1(§ : Ym—1)
Pm— 1(5‘*‘373) Pm-1(§+BYY), -5 Pm-1(§+ Byp_1)
such that P(€)P*(¢) = I, Z (Ips(&)] + [Pi(€)]) € L. Define ;(¢) = pi(BE)H(BE),

1@(5) = p;(B¢) ¢(B§), 1 < i <m —1. Assume that 1,[)1, {/;Z have upper frame bounds.
Let F' = R", then {;}/* ! with dual functions {1/)Z o ! generates a dual tight frame
in L?(R"™) with the tight frame bound |S|¢( )(0). o N

Proof. From the assumptions, it is easy to see that [1);, ;] € L, 1); satisfy condition

(I) and @z)i,iz?i are admissible whenever 1 < ¢ < m — 1. To apply Theorem 2.7, it
suffices to check (2.5), (2.6).

S Z i(BIE)yh(Big) = sz (BI~'e)p(BI~ L) (B~ ¢) p(BI¢)

JEZ i=1 N jGZ i=1
= S [BBITE)GBITLE) — GBI (B %)
JEXZ

= lim HBIE)GBIE) - jHm HBIOGBIE) = $(0)(0).

13



which is the equality (2.5). For any ~§ € I'"\M*I'*,

T;l 27 (M9E)d(MI (€ +5))
- 212 DH(BMIE)G(BMYIE), py( BM (€ + 7)) p(BM (€ + 7))
- :1 BB (B(E + ) $BEHB(E +13)

LS S RO IR (€ + )

=1 5=0
z PTG (€ +75)) — SLTHE M (E +43)) — BENE +75)

= lim ¢(M*j§)¢(M*J(§+70)) 0.

which means (2.6) holds.

By using Theorem 2.7, the result is obtained. O
Lemma 3.2. ¢ € L?(R"), and there exist positive conitants &;,d> such that (1 +
€12 (€) € L, Z (€ + )22 € L™, Let p(¢) be I'*-periodic and there exist

constants 6 > 0,C > 0 such that |p(¢)| < C||¢]|°. Define @(f) = p(B§)qAS(B§), then
1) has an upper frame bound.
Proof. Checking the conditions in Proposition 2.14, we obtain the result. O
Remark. In the special case when ¢ = ¢, P(¢) = P(¢), without the assumption that
%ﬂzi, 1 <4 < m — 1 have upper frame bounds, Theorem 3.1 still holds. Theorem
3.1 is also true for {¢;}%, with dual functions {¢;}%, under the same conditions
as stated above.

Now we construct I'*-periodic functions pg, pg such that (3.1) holds.
Lemma 3.3 (see G. V. Wellend & M. Lundberg [7]).

Leth(X):qN(X17X27"'7Xm—1): Z <N_1.+|]|>Xj,hel‘660:
0<j<(N-1)eq J
m—1 . m—1 .
) . (N -1+ N-—-1+
(1717"'71)7|j|: Z]u( . |j|> = H< - |j|) a’ndagﬁ7a7ﬁ6
=1 J =1 Ji
m—1 R
Zm U iff o < V1 < i < m —1. IfZX = 1, then ZX gn(X;) = 1, here
7=0

X\J = (Xo,- e Xjo1, X, 5 Xm—1).
Proposition 3.4. If pg, pg are I'*-periodic and satisfy

m—1

> o€+ By)po(€ + Byy) = 1.
=0

14



Let p(§) = qn(@o(§ + B¥{)po(§ + BY1), -+, po(€ + By—1)po(§ + By,,_1)), then

m—1

Z po (€ + BY))B) (€ + By)p(€ + By)) =
=0
Remark By using these results above, we can construct new dual tight frames

from known dual wavelet bases, especially those wavelets whose Fourier transforms
have compact support.
Now we present another way to construct tight frames.
Theorem 3.5. Let n € L?(R") with supp C {¢ € R™ : ||¢|| < C} for a con-
stant C' > 0. Assuming [(§) = Z [A(B7¢))? < oo, a.e. & € R™ we define
JEZ

= ey .o {ME/UE),  when I(€) 75 :
M) = {0 when I(£) = If k € Z satisfies gl,gzselgﬁppﬁ||§l - & <

1r%f\ |B¥y*||, then (&) = (Bk§) generates a tight frame in the space {f €
*e *

L*(R") : suppf C suppl(é)}.
Proof. Since 71 < 1 with suppn; C {¢ € R" : ||¢]| < C}, then ¢ € L*(R") and
satisfies condition (I). It is easy to verify (2.5),(2.6). Applying Theorem 2.8, we
obtain the result. O
Remark. By using this result, we can easily construct a function v with J €
C§°(R™) generating a tight frame, but ZZ(f) # 0,V¢ # 0 in a neighborhood of the
origin.

It is interesting to construct wavelet bases by using characteristic functions. This
result is as follows.
Corollary 3.6. If K;,1 <14 < d are measurable subsets of R" and can be included
in a ball with finite radius. If the following hold

d
1) Y S xk. (BI€) =
i=1jeZ

(i) > xm(€+97) =1, Vi<i<d
yer+*
here F' is a measurable subset of R", then {|S|+/2 @}le generates a wavelet basis

in LQ/(}’) Moreover this wavelet basis can be derived from a Multiresultion Analysis
(MRA) with one scaling function if and only if d = m — 1 and

(G BjK) N ( U (K+M*fy*)) ‘ =0,
j=1 yrelr*

d
here K = U K;.
i=1
When n =1, M = 2,I' = Z, using Corollary 3.6, we will give examples of such
wavelets in L?(R) and H?(R) := {f € L*(R) : suppf C [0, 00)].
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Example 1. Let K = [a,2a] U [2a — 47, a — 27], when 0 < a < 27. Such wavelets
can be generated by an MRA
Example 2. Let K = [a,b]U[2°b,2°F a]U[—2c, —c], here a = 285 b = Tk21 o —
21k—2°b, when 1 < k < 2°,k,s € IN . When k is odd, such wavelets can be generated
by an MRA; When £ is even, they can’t be generated by an MRA with one scaling
function.
Example 3. K; denotes [2533—1”_1, 7r] U [2s7r, %] ,let K = K1U—Kj here s € IN.
When s > 2, such wavelets can’t be generated by an MRA with one scaling function.
In the case s = 2, this is the Journé’s counterexample.

All the three examples above are wavelets in L?(R), now we give out such
wavelets in H?(R).
Example 4. K = [a,b] U [2°b,2°"'a], when a = %Zi’?ff,b = 225”_1“1, for any k <
25+l — 2 k. s € IN. Thus we construct other orthonormal wavelets for H?(R) which
are different from \/LQ—W X[2r4x) ( the only known example of a wavelet basis of H 2(R)

before, see [1] and [2]). Also we know that when k is odd. Such wavelets can’t be
generated by an MRA.

Remark. The Lemarié and Meyer wavelets and the wavelets constructed in The-
orem 3.1 in [2] are just the modified wavelets with so called bell functions of the
wavelets in Example 1 by letting a = w. There also exists such modification to
construct smooth wavelets for any 0 < a < 27 by using the same method.
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Part II: Some Applications of Projection Operators in Wavelets

§1. Definitions and Results

In I.Daubechies [4], the author put forth such a question that if one imposes some
smoothness conditions on the Fourier transform of the wavelet function ¢ € L2(R), does
¢ must be derived from an MRA? In [6] and [7], P.G.Lemarié gave a satisfactory positive
solution to this question. The main ingredient in the recipe of his proof is a new formula of
the projection operator Py. In this paper, we shall again obtain this formula under weaker
conditions and give a complete description of dim.Jy,(x), which means that we have a
criterion for a dual wavelet basis which can be generated by an MRA . More interesting
is that whether a wavelet basis can be generated by an MRA with one scaling function is
totally determined by the support of the Fourier transforms of their wavelet functions. So
1t seems that Daubechies’ question whether ¢ can be drived from an MRA is not related
to the smoothness of 1) but the support of .

In order to state our results more clearly, we shall recall some notations and concepts
in advance.

If @ is a subset of L2(R"), we let S°(®) := Span{p(x —v) : ¢ € ®,v € I'} with Span
denoting the closed linear span. If Vg is a [-shift-invariant subspace of L2(R™) ( Vp is a
closed linear subspace in L?(R™) and f(z) € Vy iff f(x — ) € Vo, Vy € I'), we let Jy,
denote the range function of Vg ( see [3] ), that is,

Jv, 0 S — 13(IT), Jv, (z) = Span{$||m : ped}

where @ is a countable set and Vo = SO(®).
Now we state our main results in this paper._
Theorem 1. If {y;}%_, with dual functions {1);}?_, generates a dual wavelet basis in

L/(F) and 1,51 satisfy condition (1), let Vo = SO({¢i(M_jx)}1§i§d7je N), then dimJy, (&) =
d A . : .
|S|Zj<0 Zi:l[wi(ij)vwi(ij)] .
From Theorem 1, we obtain the following interesting result.

Corollary 2. If {1;}¢_, generates a wavelet basis in L2(R) and v; satisfy condition (1),
then {1;}4_, can be derived from an MRA with one scaling function if and only if d = m—1
and one of the following properties holds

(i) dimJv,(§) =1, a.e. €S, here Vo = S°({i(M~72) }1<icd jav),

(i) Y250 Xima[a(BIE), §u(B7E)] = |5] 7,

(iii) Uyser«(Fo +79%) = R, here Fy = Uj<o UL, M*3 suppij;.

Another application of Theorem 1 is the following Theorem 3.
Theorem 3. If {29/2(27x — k)} jez kez is a wavelet basis in L/Q(F) such that v satisfies
condition (I) and ), 14 (26 + 47k)|2 # 0, a.e. £ € R, then suppi) = F.

One consequence of this result is the following.

Corollary 4. There exists no wavelet basis{27/%(27x — k)}jcz.rez in L/z(F) such that
W} is compactly supported and Y kez (26 + 47k)|2 £ 0, a.e. £ € R.
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§2. Projection Operators in Wavelets

In this section, we shall define projection operators @, Qj and Py, Py derived from
a dual wavelet tight frame and then rewrite Py in another very useful formula which was
first introduced in Lemarié [6].

Assuming that v¢;,4;, 1 < ¢ < d have upper frame bounds, we define projection
operators @, Qj and Py, Py as follows:

d d
<f7 ¢i;j,7>¢i;jm ij = <f7 wi;j,7>¢i;jm
i=1~€r i=1~€r
P=Ya.  R-Ya
7<0 Jj<0
Note that Py = Py, Qj = Qj, where Pj,Q7 are the conjugate operators of IPp,(;

respectively.
Lemma 2.1. 1 has an upper frame bound C if and only if 1 has an upper Riesz bound

C, ue., V{Cjﬂ} € l2(Z xI), | dez qur i ¥i, v”LQ < CH{CJ V}HP'
Corollary 2.2. If 1 has an upper frame bound, then [¢), w] € L.
From the following Proposmon 2.3, we will see that @), QJ and Py, Py are well-defined.

Proposition 2.3. If ’sz,l/),, 1 <@ < d have upper frame bounds, then V — oo < j1 < jo <
00, Zj1<j<j2 Q; are unifromly bounded, moreover, Vj € Z, f € L*(R"™)

(2.1) |S|sz Big) S F(€+ MUy )in(BiE + 7).

yrer-

Proof. By applying Lemma 2.1, the results are obvious. W
Proposition 2.4. If ¢;,1;, 1 < i < d have upper frame bounds and 1); satisfy condition
(I), then for any f € L%o(R"), there exists constants § > 0,C > 0 (C is determined by

¥ i, 1 < i < d, HfHLOOH, HfHL2 and suppf) such that Vj < 0,]Q;f| L2 < ClIMH°.
Proof. Since 1;,1); have upper frame bounds, by Corollary 2.2, [¢);, 1] + [, ;] € L. By
(2.1), for any f € L%, (F),

d ~
1Q fll = 1Q5 Fll= <181 lli(BIE) Z F(&+ Mxjy ) ds(BIE + 7).
=1 *el

Since t; satisfy condition (I) and f € L%, (F), then there exist positive constants

01,Cy, Cy such that V1 < i < d, [$;(¢)| < Col|¢]| 7" and infep, 005 [I€]] > Col| M| 7L,
Thus
(2:2) ()] < CLCM M™%, ¥ &€ Blsuppf, 1<i<d
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[ BORIFMIE) OB P

=l [ PO (e = m [ [ ILFOI), )P
< || [, ]| Lo / M) (&) [F(M*€), F(M €)M 2y, )/ 2de

R

<mJIIfIILooII[wz,wz]llell[wz,wz]ll”z/B, f|«m( (Mg, f(M7€)] M 2dg
I supp
1/2

< Cym ( /| o IO [f(M*jf),f(M*jf)]df) " ( /| |zZ,~(£)|2‘52df)

. . A . A . 1/2
< Cy|| M*7]|0102/ 2 ( /B | f[f(M*f (©), f(M*fﬁ)]dﬁ)
J supp

here

Cs = || fllz= max <||wz,wz]||Loo||[w,,wzn|”2>

1/2
Cy :03052/205“2/2 max ( / i€ >|2‘52d§> :

1<:<d

and in the last inequality we used (2.2).
Since f € L%, (F), then there exists a constant C5 > 0 such that

Vi<0, D Xpisupps(§+77) < Com™,
’Y*EF*

So o
s (BY€) Z (& + M*Iy*)hy(BIE +v%)|| 2
y*el

. . R . 1/2
< GG | M9 |22 2 ( / If(M*”€)|2d§>

n

= C4C3 % || fl| 2 || M| 18272,

Thus Vj <0, [|Q;f]|r2 < d|S|C'i/2 1/4“||f||1/2||M>“j||5152/4, which completes the proof.
|

Let Iy be a full collection of representatives of distinct cosets of I'/MT, for any j > 0,
define I'j := T'o+MTo+- ~.~+M J=1Ty. It is clear that I'isa fqll collection of representatives
of distinct cosets of I'/M7T. For any j < 0, define QF :=m/ Y .  7,Q;7_,. and G :=

> i<k<0 QY. Note that

d = .
(2.3). QUf (&) =1S| Z Di(BIE)[f(€),9(BI€)](€)
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Theorem 2.5. If @bi,l[)i,l < ¢ < d have upper frame bounds and 1[), satisfy condition
() and 7, Po7—y = Py, Yy € T, then Vf € L*(R"),limj—_o ||Pof — Gjf||z2 = 0. i.e.,
Pof(€) = IS c0 Yoty $i(BIE(F (), s(BIE)(&) with the series converging in L*(R™).
Proof. At first, we shall prove that Vf € L%, (R™), limj_ ||Po — G f||z2 = 0. By the
assumptions, we know that Vj5 < 0,

— mJo E:
Po—m TfyP()T_,Y

TEL—jg
— o Jo ) Jo .
=m Z Z TyQjT—ny + M Z Z TyQjT—y
Y€l —jp J0<j<0 Y€ET 5 7<Jo
— J . Jo .
- Z m Z TyQjT—y + M Z Z Ty QT
Jo<j<0 veT_; vel_j, 3<djo
— (. Jo .
=Gj, +m g g Ty QT .
vel_;, 7<do

For any f € L%, (R™), since ; satisfy condition (I), by Proposition 2.4, there exist
constants C' > 0,8 > 0 such that Vj < 0,y € I, ||Q;7 f||zz < C||M*J||°. Thus

IPof = Gjofllrz =Im” > Y 1Qir—fllz <C > [|MH]°,

YET —j4 §<Jo J<Jjo

which means that lim;,_,_ || Pof — Gj, fl|z2z = 0.

Since L%, (R™) is dense in L?(R™), for any f € L*(R™), there exists fy € L%, (R™),
k € N such that limg oo || fx — f]/z2 = 0. By Proposition 2.3, It is clear that sup, q [|G}|| <
oo. Thus we get Vjo < 0,k € N,

|Pof — G flle> < |Pof — Pofwllee + 1Pofr — Gjo frlle + |G o fr — Gy, £
< |Pofx — Gjo frllz + 1 fi — fllzz ([ Poll + sup 1Gj6l1)
Jo

which gives us that limj, o [|[Pof — G, fllrz=0. N
Corollary 2.6. If {1;}¢_, with dual functions {1;}¢_, generates a dual tight frame in
L2(F) and v; satisfy conditoin (I), then Py = >oi<o Q9.

63. Proofs of the Main Results

Lemma 3.1(see [3]). if Vi is a I'-shift-invariant subspace of L2(R™), then there exist ¢y, k €
N such that Vo = S°({¢ }xay) and b, ¢;] = 0,Yi # j and [¢i, d5)(€) = 0 or 1, V& € R™,
that is, Vo = @re nS°(dr) and [br, d](€) = 1, whenever & € supply, dr], k € N, here &
denoting the orthogonal sum. o

From this Lemma, we know that dim.Jy, (£) = >, oy[®x, d](£)-
Proof of Theorem 1. Since Vj is a I-shift-invariant subspace of L?(R™), by Lemma 3.1,
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there exist ¢, k € N such that Vo = @S°(¢y) and dimJy, (€) = 3, ay[r, Pr)(€). It is
easy to verify that Vf € Vj, ( ) = Zk@y[f ¢k]¢k( ). Thus Vj < 0, 1 <i<d,

P(BIE) = Z[w BI€), dr(€)1hr(6).
On the other hand, since

| S ) dulinl) (B

J<0 k&Y

1/ 1/2
< /ZZI% (BIE), pu(¢ st) (/ZZI[qbk ), i B’&]zdﬁ)
J<0 k&y 1<0 kgy
1/2 1/2
< | [ S i) ]d&) ( | Xtuwo. )de)
Jj<0 j<0
= (m — 1) Il 2 | 9ill 2> < o0,

then by Theorem 2.5

d
> Wi(Big), B”&]—ZZZ%BG i(©)[Dk(€), hi(BIE)]

1=1 <0 1=1 j<0 kg¥
d = .
= 30N [0i(BIE), ()] pr(€), s(BE)]
kdy i=1 5<0
= |S|~ IZ[qsk (©)] = [S]~ dim.Jv, (&)

which completes the proof. B X R

Proof of Corollary 2. Since [ > <0 Z;n:;l[z/)i(ij), V;(BI¢)]dé = 1, by using Theorem
1, it is easy to verify that item (i), (ii), (iii) are equivalent.

Proof of Theorem 3. Since ), _, |1$(2§+47rk)|2 # 0, a.e. £ € R, by Corollary 2, it gives
us that ¢ can be derived from an MRA with one scaling function ¢ such that [¢, ¢] = |S]~*

and ¢(&) = po(¢/2)$(£/2) and $(€) = p1(£/2)$(¢/2) where py, pr are I'* periodic and

i ) (RO A

we have that pi(§) # 0, a.e. £ € R which means that po(§) # 0, a.e. £ € R and suppyp =
2suppg. But po(€) # 0 means that suppd = 2supp¢p which follows that suppp = F. Thus
suppy = 2suppp =2F =F. N

64. Other Applications of Theorem 1
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In this section, we generalize the wavelets which were introduced by Lemarié¢ and
Meyer (also see [2]).
Theorem 4.1. for any fized 0 < a < 2w, 0 < ¢ < fmin(a, 27 — a), if 0 < b(&) € L2(R)
satisfies the following conditions

(i) b(a+ &) = bla — 2 — £), b(2a+ &) = b(2a — 47 — &), V¢ € [—¢,¢]

(i) b(a+ &) = b(2a — 26), b*(a + &) +0%(a — &) =1, VE € [—e, €]

(iii) b(¢) =1, V€ € [a+¢€,2a — 2¢] U [2a — 47 + 2e,a — 27 — €]
and p(§) is a measurable function such that ¢(a + &) — p(2a + 28) — p(a — 27 + &) +
0(2(a—27+¢)) = (214 )7, for somel € Z and & € [—¢,€]. Let &(€) := |S|~1/2e(E)p(¢),
then {27/2w (295 — k) }jez ez 15 a wavelet basis and can be derived from an MRA with one
scaling function.

Proof. For the proof of the first assertion, please see B.Han [5]. By Corollary 2, noting
that > pez D iso b2(27 (€ + 27k)) = 1, we see that the second assertion is true. W

In [1], Auscher has shown that if one assumes some smoothness for the function ),

then ¢ cannot generate an wavelet basis for H2(R) := {f € L2(R) : suppf C [0,+00)}.
We now use Theorem 1 to prove it. A precise version of Auscher’s theorem is the following:
Theorem 4.2. There does not exist a wavelet function ¢ € H?(R) such that ) € C1(R)

and [ ()| +[§'(€)] < ClE[~ for & > La > 1/2.
Proof. we use proof by contradiction. If there exists such a wavelet function ¢, it is clear
that 1 satisfies condition (I). By Theorem 1, we have 2j>0[¢(2j§),¢(2j§)] =dim.Jy, (£).

But Lemma 3 in P.Auscher [1] says that ZDO[@(WE), P(296)] = # which means that

dimJy, (§) = 3“2_5. Thus we get a contradiction. M
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Part III: A Sufficient and Necessary Condition on

Iy for T(T'y, M) to Be a Self-Affine Tiling

61. Introduction

Self-affine tilings are the fundamental blocks to construct scaling functions and wavelet
bases (see [s]). The main task to construct a self-affine tiling is that given an acceptable
dilation M for a lattice subtroup I' of R™, how to find I'g, a full collection of represen-
tatives of distinct cosets of I'/MT, satisfying xp(r,,m)(7) = Z’YOEFO XT (~o,M) (M — 0)
and > p X7(ro,m)( +7) = 1 (Here T(Tg, M) is defined in the following text). The
ordinary method is to check Cohin’s condition (see [GM]). But this condition is ususlly
not very easy to apply. In this paper we present a necessary and sufficient condition on
Iy for T'(T'g, M) to be a self-affine tiling. It is much easier to check this condition than to
check Cohen’s condition. Moreover, by using this result, we construct wavelet basis which
basis which have exponential decay and high regularity with Frobenius matrix M as its
acceptable dilation and Z™ as its lattice subgroup of R".

At first, we define some concepts and recall some basic facts on tilings and lattice
subgroups of R™.

Let T'y be a full collection of representatives of distinct cosets of I'/MT with 0 € T'y.
We define T'(I'g, M) by

T(To,M)={z€R:x=>Y M Iy, v €T}
j=1

To understand lattice subgroups and self-affine tilings, we first state some basic facts.
Lemma 1.1. If G is a discrete additive subgroup of R™, then there exists an n X n matriz
A satisfying G = AZ".

Due to the somewhat long and detailed analysis, we state this results without proof.
The key is to prove that the least number of generators of G is less than n + 1.

Given a measurable set S, xs denotes its characteristic function and |S| denotes its
Lebesgue measure.

@ is a measurable set, we say @ is a self-affine tiling if xq(z) = 32, cr, X@ (z — 70)
and 37 p(z+7v) =1
Lemma 1.2(see [JM]). Let A be an acceptable dilation for T'; ¢ £ 0, and ¢ € L'(R™) N
L?(R") satisfying

(1.1) $(x) =Y byd(Az — ),

(1.2) b < oo

vel
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then $(v*) = 0 V7" € T*\0 and 3. cp dlx — ) = $(0)
Proof. Let B denote A*~!. Applying the Fourier transform to both sides of (1.1), we
have

$(€) = b(BE)p(BE).
Here b(¢) = (det A)~! Zwel“ bwe_i&. (1.2) and ¢ € L'(R") N L?(R"™) mean that b(¢) and
QAS({) are continuous and bounded functions.

If [b(0)] < 1, then there exists € satisfying ¢ > 0 and [b(0)| + € < 1. Given £ € R",
there exists NN, a large enough natural number, satisfying Vs > N, and s € N, then

B = |[1=1 b(BIE)| 18(B*€)] < CTI;-1(1B(0)] + €) = C(Ib(0)] + €)* = 0,a5 5 = +oc
(Here C is determined by &, b(€) and ¢), but ¢ = 0 is contradictary to the given conditions.
So [b(0)| > 1.
Let £ = (A*)*y*,s € N and * € I'*\0 then
(&) = P(A™7") = $(B°¢) [ [ b(B€)
j=1
QAS(A*—SA*S,Y*) H b(A*_jA*s’)/*)

j=1
Q?)('Y*) H b(A*s_j’}/*)
j=1

= d(v*) [ ] 6(0) = d(v*)b*(0)

Jj=1

that is, |¢(y*)| = [b(0)|~*|A(€)| < |d((A*)*v*)|. A is an acceptable dilation and v* # 0, so
II(A*)*~v*|| — +o0, as s — +00. Since ¢ € L'(R™), by using Riemann-Lebesglle lemma, we
know lim,_, 400 ¢(A*7*) = 0, 50 G(7*) = 0V 4* € [*\0. doer PE—7) = $(0) is obtained
from the equality, > cp d(z —v) = > v cp- d(v e =, A
Lemma 1.3. |T(I'o, M)|/|det E| €N, and > X (0o, 00) (T +7) =
|T(To, M)|/|det E|. Here' = EZ"™.
Proof. From Lemma 1.2, we can easily obtain Lemma 1.3.
Lemma 1.4(see [GM)).The set T(T'g, M) has the following properties.

1) T(Ty, M) is a compact set.

2) MT(To, M) = Uyer, (T(To, M) + 70)

|T(To, M) + 1) N (T (Lo, M) + %) =0 Vyi,72 €0 and 1 # 2.

3) Rn = U')’EF(T + ’Y)

Let {A;} be a measurable subset family of R",i € N. If |A; N Aj| = 6;j]A;|,Vi, j €N,
we let U2, A; denote U2, A;. Thus 2) is equivalent to

2)) MT(To, M) = Uy,er, (T (o, M) 4 70)-
Lemma 1.5(see [GM]). Suppose that Q is a measurable subset of R™ such that

U’YEF(Q + ’7) = R"

25



then the following are equivalent
1) U’YEF(Q + ’V) = R",
2) |QN(Q+ )| =0, whenever v is a nonzero element in T'.
3) |Q| = |det EJ,
4) @ is a self-affine tiling.

62. Main Results

We let T'y denote (g, MTg,---), the additive group generated by {M‘['c}52,. Let
F_l = {71—’721’71€F0 and ’YQGF()} Fg Z—P0—|—MP0+M2P0—|— -andF3 =
{71 =72 :m €2 and vy, € T'2}.

Lemma 2.1 [T'(Tg,M)|/(]det E|-|I'/T1]) € N. Here [I'/T'1| is the number of cosets of
r/Ty.

Proof. T';1 C T means that I'; is a discrete additive subgroup of R™. Lemma 1.1 says that
there exists an n X n matrix F; satisfying I'y = E1Z™ and | det E1| = |det E|- |T'/T'1|. The
assumption, I'g is a full collection of representatives of distinct cosets of I'/MT', also means
that T'g is a full collect of representatives of distinct cosets of I'y /MT'1, by applying Lemma
1.3, we obtain |T'(I'g, M)|/|det E1| € N, that is, |T(To, M)|/(|det E| - [T'/T1]) e N. R
Remark. If T(T'g, M) is a self-affine tiling for I", then I'y =T

Lemma 2.2. Let T denote T(T'g, M), and T denotes the interior of T, then T is a

nonempty set, and |T| = |T|, and also there exists ko € I' and N € N, Vso € N satisfying
RM = U, M*(MNT — ko).
Proof. From Lemma 1.4, we know R" = Uvep(T +7),T is a compact set and R" is

complete space, by the Baire category theorem, T is nonempty. It means MY T contains

a large ball, if N is large enough. Then there exists ko € T' satisfying kg € M T, that is,
MNT — ko contains a neighborhood of the origin, then Vs, € N

(2.1) R" =02, M*(MNT — ko)
=UgZ,, (U p< LETo 1(T +y0+ -+ MV Ty — MPho)),

From this equality, we know that there exist s € N and n € Wy = {y: v =y + My +
+ MN+5=1 4, €T,0 < i < yngs_1} such that T+ n— M*kq is included in the interior

of M3(MNT — k).
Note that the interior of T+ n — M®ko = (T +n — M®ko)\ Uyew, (T + v — M?ky),

. Y#N
namely, T' = T\ Uyew, (T + v —n).
Y#N
Therefore |T\T| < > yew, [T N (T +v —n)| = Xyew, (T +n) N (T + )| = 0, then

. Y#N Y#N
we have [T|=|T|. A
Remark. We can choose s; — +00, as i — 400 satisfying {I'g + - -- + Msi+N=1 1, —
Msiko} C{To+ -+ MNFsiti=loyy o — M%i+1ky} Vi € N.
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The following Theorem is alreadly implicitly obtained in [6], in order to complete our
approach, we state it here explicitly.
Theorem 2.3. ko € I', N € N then |T(T'y, M)| = |det E| and M~Nkq € T(T'g, M) if and
only if

(2.2) U [T + -+ 4+ MSTN=ID — M®ky} =T.

Proof. Assume |T'(I'g, M )| = | det E|. By using Lemma 1.5, we get
(2.3) Uyer (T (Lo, M)+ ) = R"™.

From (2.1) and (2.3), we have (2.2)
If U2 {To+-+ -+ M3TN=ITy — M?®ko} = T. To prove |T(Ty, M)| = | det E|, it suffices
to prove that

Vni,me €T and m #ne then (T +m) N (T +n2)| =0.
From (2.2), there exists xs € N satisfying 11,12 € {To+ -+ + MN+=1y — M*kq}. Note

MS(MNT—ko) = U vi€Lo (T+’)’0+"'+MN+S_1’}/3+N_1—Msko).
0<i<N+s—1
We have
(T +m1) N (T +n2)| = 0.

Let B, denote the ball of radius r centered at the origin. Because #{v € T' : By N
(T + ) # ¢} < oo, there exists s € N satisfying

BiCU syery (TH+yo+ -+ My vy — MPko) = M*(MNT — k),
0<i<stN—1

then M~5"NB, CT — M~ Nk, that is, M VkoecT. R

Corollary 2.4. |T(T'g, M)| is a self-affine tiling and 0 € T if and only if To + MT +
M?Ty+---=T.
Our main result in this paper is the following theorem.
Theorem 2.5 |T'(T'g,M)| = |det E| if and only if T3 =T.
Proof. IfT'3 =T, to prove |T'(Ty, M)| = | det E'|, by Lemma 1.5, it suffices to prove that
Vv € I'3\0 then |T'N (T + 7)| = 0. From the definition of I's, we know Vy e I's =T, v =
m —n2,m € 'y and 1 € Ty, so there exists s € N satisfying n1,1m2 € {T'g + MTy +
-oo 4 M*71T¢}.Note that V s € N, M*T = U ~er, (T + 0+ -+ M5 1vy,_1), we have
0<i<s—1

(T +m) N (T +n2)| = 0, that is, [T N (T +m —n2)| = 0. So [T'N (T + )| = 0.

Now prove the converse. By (2.1) and item 1) of Lemma 1.5, we know that there
exists sg € N,Vs > sg satisfying 0 € {T'g+--- + MN+s=1p, — M?ko}, we have M%kq € T's.
Observe that Vs € N and s > sg,[g + -+ + MN+3=1g — M?®ko C I's, we have

R" = U, (T +To+ -+ MV — M°ko)
C Uyery (T'+7) C Uyer(T +71) = R™,
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As thus we get Uyer, (T +v) = Uyer(T + ), which means that ['s =I'. W
Corollary 2.6. IfT's is an additive group (that is, I's =1'1), then [T (Lo, M )| = | det E]-
IT/T1| and 3-. er, Xr(ro,m) (@ +71) = 1.

In fact, by using the following lemma, it is easy to check I'y =T'3.
Lemma 2.6. ['s=17<11nN T(Fo,M) CrIs.
Proof. Tt suffices to prove that when I'y N T'(T'g, M) C '3, we have also I'y C I's. Let v €
'y, VseN,lety=yy+My 4+ +M"1y,_ 1 +M375,. Herey; € T,0 <3 < s—1,7, € I'y.
Then s = M=%y — (M %49 + -+ + M ~1v,_1). Observe that lims_, ;o ||[M~%y| = 0 and
M=y + -+ M 'y_1 € T(Ty,M) and T(To, M) is a compact set, so there exists a
subsequence {s;}5°, satisfying t—lg—noo%" exists and lim; o0 75, € T(I'g, M) N T';. Because

I' is a discrete additive subgroup of R", there exists 7o satisfying Vi > 49, 7s, = :Vsz-o' This
means s, = lim; 00 Y5, € T(Lo, M)NT1 CT3. S0y =70+ -+ M%7, €l3. N
Corollary 2.7. Denote 1o = (3 1o, [|M™|) maxy,er, |70, i I'1 N By, C T3, then I's =
ry.

Proof. By T(I'g, M) C B,,, the result is obtained.

Remark. In fact, for any I'g, the equality Uyer, (T (Lo, M) + v) = R™ is always
true. There are results showing that when n = 1,I'3 = I'; is always true, so we guess that
for general n € IN,I'3 = I'y is always true. If this guess is right, from Corollary 2.6, the
constructure of T'(I'g, M) is clearly understood.

Example. The ’twin dragons’ tiling of R?( where I' = Z%, M = <1 _11> and
Lo =0, (1,0)T) can be easily shown to be a self-affine tilingby using Corollary 2.7. In fact,
we have rg = \/i-i- 1, and Z2 N Bro - {F—l + MF_l + M2F_1 + M3F_1 + M4F_1}, by
using Corollary 2.7, T(I'g, M )is a self-affine tiling of R2.

63. Wavelet Bases on R"” with g-Exponential Decay

Throughout this section, Vf € L?(R™), we use the following notation,
Jin(z) = m!2f(MIz —v), jeZ, el

Let eg := (1,1,--- ,1)Va,B € Z", a = (a1, ,a), B= (01, ,0n), we mean a < [ if
Vi<i<n,a <B;.
In this section we let I' = Z™ and M be the following n x n Frobenius matrix.

0 0 --- 2
1 0 --- 0
M:=1 0 r - 0
0 o --- 1 0

Note that |\ — M| = A™ — 2, then M is an acceptable dilation for Z™. Choose I'y =
{0,(1,0,---,0)T}, it is easy to verify that Ty = Lo+ MTo+--- = {(y1,72, "+ ,¥n) € Z" :
vi > 0,V1 < i < n}. It follows that I's = {y1 — 2 : 71 € T2 and 72 € T2} = Z", by
applying theorem 2.5, we have T'(I'g, M) is a self-affine tiling of R™. In fact, T(I'g, M) =
[0, 1]™.
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Given 3 € Z",0 < 3, we say that f € L?(R") is a (-exponential decay function if
there exists p > 0 such that

Dgf € C°(R"),and |Df(x)] < Cye 1"l Wy € Z" and 0 < < B.
Here z = (21, -+ ,xy) and |z| =Y | |zl

We mean that f € L2(R™) has 3 vanishing moments (here 0 < f3) if

/ ¥ f(r)de =0, V0O < a < f.

We say that a multiresolution analysis with scaling function ¢ and associated wavelet
basis {1i.j 4 }1<i<m—1jez~er has B-exponential decay if ¢ and {¢}7"7" are B-exponential
decay functions. Let

1 0 N
n(x) = WXT(FO,M)(QT) = X1 (z) and oy = (7)",VN €N.

By the definition of S-exponential decay functions and ggN (1,00, 6n) =

_ie\N
]_[7;21 <1_f£,» i ) , it is easy to prove that ¢x is an (/N — 2)eg-exponential decay function.
Note that [, 7](§) = Z,Yegn |ﬁA(£ +27v)|? = 1 and 7 is a compactly supported function,
then ¢y satisfying 0 < Cy < [¢pn, dn](§) < Co < 00. C1, Cy are real constants.Now we let
PN = v
[Pn, pn]1/2

It is easy to prove that {V;};ez» associated with Z™ and M is a multiresolution analysis
with the scaling function .

Now we construct wavelet basis. Note that @y (&) = m(M*~1)pn(M*~1€) and
Im(&)]2 4+ |m(€ + (m,0,---,0)T)|2 = 1. Here m(&) is 2mrZ™ periodic. Let

and Vj € Z, V; =span{on(Miz — 7)} ez

In () = e Pm(MF1E 4 (m,0,- -, 0) ) (M*71E).

By using the Theorem 1 in [4], we can easily obtain that ¢y has (N — 1)eg vanishing
moments. Due to the following Lamma 3.1, we can prove that ¢y and ¢y are (N — 2)eo-
exponential decay functions.

Lemma 3.1. If p(z1,22, -+ ,2n) is a holomorphic function in Q; (here 0 < t < 1 and
O ={(21,22, ++ ,2n) €EC" 1t < || <t71,1 <i<n}), and f(x) is a B-exponential decay
function, define

g(&) = p(ei£17" ' 76Z£n)f(€)7 v€ = (517" ' 7671) €ER"

then g(z) is a B-exponential decay function.

Proof. Since p(z1,- -+, z,) is an holomorphic function in €; and €, is a Reinhardt domain,
then p(z1,--+,2,), in Q4 has a Laurant series (see [5])
p(Zl,"',Zn)z Z a'yz’y VzEQt
yeZn
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and
™ ™ ) ) .
Ay = w_7(277)_n/ .. / p(wlez&’ co ,wnewn6_2(7101+...+7n9n)d91 - dly,
-7 -7

™ ™
— t1/2|7|(27T)_n/ h / plwietr wnibn =i nbit+mmbn) gg, ... g,
—T —T

Here 27 = 27" - 20n w = (Wi, -+ ,wn), w; = t~1/2%%% (note that w € Q).
Thus |a,| < C1tY/201 ¥y € Z™. Meanwhile f(z) is a S-exponential decay function,
so there exists p > 0 such that

D, f(z)] < Coe™?ll V0 <~ < 6.

By the definition of g(z), we have

g(x) = Y ayf(z+7).

YEZ™

Thus V0 < a < g,

1Dag(@)] < Y lay| - [Daf(@+7)| < Y CLCot/2lerlot]

yeZ" yeZ"
— 10, § : e~ Plz+y|+1/2|y|Int
YEZ"
— 0102 E 6—p|w1+’71|+1/2|’)’1|1nt e E e_p|mn+7n|+1/2|7n|lnt
Y1EZ Yn€EZ

Let p1 = min(p, —1/21Int), then V1 <i <n

plei + il = 1/2]vilInt = p1(jzi + vl + [nl) > pl\/(xi +7i)? + 77

P1
= pl\/1/2[a;§ + (x; +27:)?%] = 7 2?2 + (z; + 27;)?

P1
> 7 (il + i + 27),
thus, we get
Z e—PlEitvil+1/2|vi|Int ~ Z e~ 1/2m(ziltlzi+27il) < Cpe=1/201l2i]
V€L Vi€EZ

So

|Dag(z)| < C1CoC5 [ [ e /20r1eil < Cye= /20 1o]
=1
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which means that g(z) is a f-exponential decay function. B

Since ¢y has compact support, thus [(ZSN, qASN] is a polynomial. By using Lemma 3.1,
on and ¥y are (N — 2)eg-exponential decay functions. w1y generates wavelet basis of
L%(R™), that is, {27/2¢n(M7x — 7)}jcz ezn are orthonormal basis of L2(R™). Notice
that when n = 1, then M = 2, this is the case in [4].

By using the same method, for all d € N, we can choose M and construct {; f;ll
generating wavelet basis of L?(R™). This can be done as follows.

Let I' = Z™ and M be the following n x n Frobenius matrix,

0 0 d

/1 0 0\
M= 0 1 0
0 o --- 1 0

Choose T'y = {0, (1,0,---,0)7,--- ., (d—1,0,---,0)T}.

It is easy to check the condition in theorem 2.5 (in fact T'(I'g, M) = [0,1]™). Following
the method used in [6], we can construct {¢}%=! which are (N — 2)eg-exponential decay
functions and generate wavelets basis of L?(R™).
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Part I'V: Miscellaneous Results on Shift-Invariant subspaces of L?(R")

§1. Definitions and Results

This paper follows the line developed by C.de Boor, R.A. Devore and A. Ron in [2].
We mainly treat the finitely generated shift-invariant subspaces in LZ(R™).
If ® is a subset of L2(R™), we let #® denote the number of elements in ® and define

SI(®) := Span{p(z —277y): y€ Z",p € D}

with Span denoting the closed linear span.

A closed linear subspace Vg of L2(R™) is called shift-invariant if for any f € Vj, then
flx —~v) € Vi, Vy € Z". If Vj is a shift-invariant space, we let len(Vp) := min #{® : Vy =
S%(@)}.

Now we state our main results in this paper. .

Theorem 1. If f; € L3(R"), 1<i<d, then SUp ez len(SO({fi(Wx)}lSiSd)) =

dim Span{fl(x), e 7fd($)}

The following result which is associated with multiresolution analysis is first obtained
by R.Q. Jia and Z.W. Shen in [3]. But here we present another way to prove it.
Theorem 2. If ® is a subset of L?(R™) such that #® < oo, then NjczS’ ({#(27z) : ¢ €
o}) = {0}.

If V is a shift-invariant space, then let E(f, V) denote the distance between f and
V. 1In [1], C.de Boor, R.A. Devore and A.Ron obtain an important inequality, i.e.,
E(f,8%(Pyg)) < E(f,V)+ 2E(f,5%9g)), Vf,g € L?*(R™) where V is a shift-invariant
subspace of L?(R™) and Py denotes the orthogonal projection into V. By using this in-
nequality, they solved a long standing question in the area of spline theory, namely under
what circumstances the approximation power of a local finitely generated shift-invariant
space V ( that is, there exist finite number of functions with compact support which gen-
erate V') is already realized by one of its local PSI subspace ( that is, such space can be
generated by one function with compact support). In this paper, we shall show the follow-
ing better consequence in a very simple way.

Theorem 3. If V is a shift-invariant subspace of L*>(R"™), then for any f,g € L?>(R"),

E*(f,S°(Pvg)) < E*(f,V) + E*(£,5%(9))-

§2. Proofs of the Results

To prove Theorem 1, let us first prove the following lemma.
Lemma 2.1. If & :={¢ri}i<i<a, k€ Z are subsets of L*(R"), then
dim Nkez Sk(q)k) <d.
Proof. We shall show that for any f; € NgezS*(®), 1 <i<d+1,then fi, 1 <i <
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d + 1 are linearly dependent. Let f := (fi,- s far)T and f := (f1,---, far1)T. Since
fi € S¥(®y), then there exists a 2w Z™ periodic (d+ 1) x d measurable matrix T}, such that

) e)

Fay=me= " |
Pr,a(x)

which means that Vk € Z, dim Span{f(:v +2m2ky):y € Z™"} <d ae. x € R™
The above inequality gives us that dim Span{f(z + 272%y): v € Z™ k € Z} < d,
a.e. r € R"(Since if dim Span{f(z + 272%y) : v € Z",k € Z} > d when z is in a

positive measurable subset of R", then there must exist f(x +2m2kiy), 1 < i <d+1
such that they are linearly independent when z is in a smaller positive measurable subset

of R™. Let k = min(kq, -, kqy1), then dim Span{f(w + 2m2k2ki =k b cicqpr = d+ 1
when z is in this subset. This is a contradiction to the above inequality). Define a matrix

-
~

M(z) = (- f(x + 2n2%5) ) ezn kez. We now show that there exists a measurable

vector £(z) = (t1(x),- - ,tqr1(x))T such that Z;iill t:(z)|> = 1 and t(z)T" M (z) = 0, a.e.
r € R"

Since the set of all square submatrice of M (z) is countable, let us denote its elements
by My (z), Ma(z), - - . Now we construct () in three steps.
Step 1. Letting 0 := {x € R" : M(x) = 0}, we define () := (1,0,---,0)T when = € 0.
Note that if f; Z 0 for some 1 < i < d + 1, then |og| = 0 with |og| denoting its Lebesgue
measure of oy.
Step 2. Let o1 := {z € R" : detMy(z) # 0 and all the determinants of the bordered
square matrice of M;(z) are zero at x}. If |o1] = 0, we go to the next step, otherwise,

by dim Span{f(z + 272%v) : v € Z",k € Z} < d, we have ord(Mi(z)) < d + 1. Since
there are exist two reversible transformations G; and Gs, one on rows and the other on

columns, such that
GiM(z)Gy = <A($) MIE;E) B($)> .

Let 1 := ord(M;) and define

. —_— Il O
Hy(z) = <_D($);\41_1(x) Tat1-1, >
then

Hy ()G M (2)Gy = ( A) M () B(z) >

C(z) = D(@)M; ' (2)A(z) 0 E(z) - D(z)My () B(x)
By the definition of oy, we have that Vz € oy, C(z) — D(z)M; *(z)A(z) = 0 and E(z) —

D(z)M[(z)B(z) = 0. Thus if we define ty(z)” = (0,---,0,1)Hy(x)G1, V& € oy, then, by
[ <d+ 1, we have

to(z)TM(2)Gy = (0,---,0,1) <Ag”) Mlo(‘”) B((]x)> = 0.
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So we define #(z) = ”;zz g;” , Vo € o1 with the norm denoting the ordinary Euclidean norm
in R

Step 3. By induction, we can define #(z) on o; = {z € R" : det M;(x) # 0 and = ¢ U Z}o;
and all the determinants of the bordered square matrice of M;(x) are zero at x}. If |o;] = 0,
we go to the next step to define £(x) on 0,41, otherwise we using the same method in step

2 to define £(x) on o;.
For any zo € R™, if M (zo) = 0, then xg € ¢, otherwise there must exist [ € N such
that det M;(zo) # 0 and all the determinants of the bordered square matrice at zy are

zero. Choose the minimum number Iy of such I, then zy € oy, which means that (x) is
well defined on R". Since #(z)TM(z) = 0 a.e. z € R", then < i(z), f(z + 272Fy) >= 0
Vk € Z,v€ Z" ae. x € R". For any y € R™ there exist subsequences kj,7;,j € N such
that lim;_, 27r2kf’yj =y. So

[ @) e+ P = [ (@), o+ ) - Flat 2m2n)Pda
d+1

< Z/ i+ ) — Fie + 2m2bimy) P

—

letting j converge to +oc, we have [, [(t{z), f(z+y))|2dz = 0. Thus Jn @y [ |((2),
a.

(2 + y))|2dz = 0 which means that for a.e. zo € R, such that (£(z¢), f(zo + y)) = 0,
y € R" that is, f;, 1 <1i <d+ 1 are linearly dependent Thus we complete the proof.
Proof of Theorem 1. It is clear that

sup len(S°({f;(2'2) }1<i<a)) < dim Span{f;(z)}1<i<a.

j€Z
If | = supcz len(S°({fi(2/x) }1<i<a)) < d and dim Span{ f;(x)}1<i<a = d, then
SO({fi(2j.’17)}1§i§d) = SO((I?J) with #(I?J S . Thus for any 1 S 1 S d,

filz) = S°(®;)(277x) = ST (@;(27x)).
So fi € NjezS™7(®;(277x)) for any 1 < i < d. By Lemma 2.1, dim Span{f;}1<i<a
< dim ﬂjeZS_j( (2 Jx)) <1 < d. This is a contradiction. Thus we have that

sup ez len(S ({fz(zjx)}1<z<d) dim Span{fi(z)}i<i<q. M

Remark. In the case d = 1, Lemma 2.1 is proved in [2] in a different way. Note that
Theorem 1 also implies Lemma 2.1

Lemma 2.2. For any f € L?(R"), if f £0, then

dim Span{f(2'z)};cz = lenS°({f(272)}jez) = +oo.
Proof. If the dimension of V = Span{f(2/z)},cz is finite, then define an operator P :
V =V, Pg(xz) = g(2z),Yg € V, we know that P must have an eigenvalue A\ and a nonzero

eigenvector h(z) such that Ph(x) = Ah(z), i.e. h(2z) = Mh(x). By ||h(22)||z2 = || Mo (2)|| L2,
we get [A| = 2"/2. So V I > 0, letting B;(0) denote the ball centered at the origin with

radius [,
/ |)\|2|h(x)|2da::/ |h(2a:)|2da::/ 2" |h(z)|2dw.
By (0) B (0) B2 (0)
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which means that A = 0. This is a contradiction. So dim Span{f(2/z)}cz = +oo. By
Theorem 1, we have 1lenS®({f(2/x)};cz) = +oo. W
Proof of Theorem 2. For any f € NjczS? ({#(27z) : ¢ € ®}), then f(277z) € SO(®),Vj €
Z. Thus S°({f(27z)}ez) C S°(®), which means that 1lenS°({f(2/z)};cz < lenS?(®) <
oo. By Lemma 2.2, we have f = 0. So NjezS? ({#(27z) : ¢ € ®}) ={0}. W

Note that Theorem 2 also implies Lemma 2.2.
Proof of Theorem 3. Let W be the orthogonal complement of S°(V, g) in L?(R") and
S9(Pyg)t NV be the orthogonal complement of S°(Pyg) in V. It is easy to see that
L2(R™) = S°(Pyg) ® S°(g — Pyg) ® (S°(Pyg)*NV)@® W with @ denoting the orthogonal
sum. Thus for any f € L*(R™), f = f1+ f2 + f3 + fa where fi1, f2, f3, fa are in S°(Pyg),
S%g — Pyg), S°(Pyg)t NV, W respectively. Then

E*(f,8°(Pyg)) = |1 fll72 + | f3ll72 + [| £allZ
E*(f,V) = | f2ll22 + || fallZ-
E*(f,5%(9)) = E*(f,S(Pg) ® S(g — Pvg)) = | fsl7> + | fallZ:
Thus
E*(f,V) + E*(f,5%(9))
> || follze + If3ll22 + 2(| fall7e > E*(f,5%(Prg)). ®
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