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Emergency systems are designed to almost always have enough capacity to respond to emergencies. However,

capacity shortage periods do occur and these systems need to recover quickly. In this paper, we apply

queueing models and study whether it is better for an emergency system to add or to expedite servers, in

order to quickly recover from a capacity shortage period. We focus on emergency medical service (EMS)

systems and use Erlang loss models to study Red Alerts (when all ambulances are busy) and Yellow Alerts

(when the number of available ambulances falls below a threshold). We analyze two loss models: one with

Markovian state-dependent service rates and one with generally and independently distributed service times.

We validate the two models against EMS data sets from two cities. Despite the fact that the distribution

of ambulance service times is a mixture of lognormal distributions, which is far from being exponential,

we find that the loss model with Markovian state-dependent service rates provides a better representation

of empirical Yellow and Red alert statistics. We build on the model with state-dependent rates and use

the theory of absorbing Markov chains to quantify the impact of adding or expediting ambulances, with

respect to two performance measures: (1) the duration of alert periods and (2) the number of lost calls. This

quantification helps EMS staff (dispatchers and supervisors) to make better decisions to avoid, and to recover

from, alert periods. For example, staff should not wait until a Red Alert before adding ambulances, which is

a common practice, because the expected number of lost calls rapidly increases as the number of available

ambulances at the action epoch decreases.
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1. Introduction

Capacity shortage in a mission-critical system like fire, police, and emergency medical service

(EMS) can lead to a disaster if no contingency plans have been made. Although these systems
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are designed to almost always have enough capacity to respond to emergency calls in a timely

fashion, contingency plans are needed to minimize the frequency with which the capacity is highly

utilized, and to shorten the duration of capacity shortage periods if they do happen. Motivated

by the EMS in Calgary and Edmonton, Alberta, Canada, that have been experiencing relatively

frequent capacity (ambulance) shortage periods for several years, we focus on the specific context

of EMS, and use queueing theory to provide insights on managing ambulance shortage periods.

Ambulance shortage periods are not limited to Alberta—they occur in EMS systems all over the

world. For media and organizational reports from EMS in Australia, the US, and Canada (outside

Alberta), see ABC News (2015), Zekman (2014), and Brown (2018), respectively.

EMS practitioners distinguish between high, medium, and low levels of resource utilization (Fitch

et al. 1993). The terms used to describe these utilization levels vary among countries and regions.

Calgary and Edmonton EMS refer to a High utilization as a ‘‘Red Alert,’’ which corresponds to

a period when no ambulances are available to respond to new medical emergencies. They refer

to a Medium utilization as a ‘‘Yellow Alert,’’ which corresponds to a period when the number of

available ambulances is below a threshold1 θ (θ= 12 in Calgary; θ= 8 in Edmonton). In this paper,

we use Red Alert and Yellow Alert to refer to High and Medium utilization levels, respectively.

Yellow Alert periods are important from two perspectives: (1) the onset of a Yellow Alert is a

signal to EMS staff to take actions to prevent the situation from deteriorating into a Red Alert, and

(2) a smaller number of available ambulances in the system increases the average distance between

the call and the closest available ambulance, which results in longer response times. Practitioners

view the threshold θ as the minimum number of ambulances needed to adequately cover the city’s

geographical area. As Figure 1 shows, average response time depends primarily on the number of

available ambulances and is not highly sensitive to the number of scheduled ambulances (which

varies with the call arrival rate). For these reasons, we keep θ fixed, independent of time, the

number of scheduled ambulances, and the rate of call arrivals.

EMS staff manage Yellow and Red Alerts by taking three types of actions: expediting, adding,

and repositioning ambulances. Expediting shortens ‘‘hospital time’’, during which EMS crews wait

to transfer patient care to emergency department (ED) staff. Expediting can be accomplished

by: (1) expediting the admission of a patient occupying an ED bed into a hospital ward to free

up the bed for an EMS patient, and (2) consolidating the care of several waiting EMS patients

under a single paramedic crew, allowing the other crews to leave the ED. Approach 1 requires

collaboration and coordination between EMS and ED staff but Approach 2 can be carried out within

1 Protocols that define when a Yellow Alert is triggered sometimes include additional considerations besides the
number of available units, such as ‘‘7 or fewer units ... sustained for 15 minutes.’’ We use alert period definitions that
are solely based on the number of available units, for simplicity.
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Figure 1 Average response time vs. the number of available ambulances. Each curve corresponds to one quartile

for the number of scheduled ambulances (Calgary 2009 data). Only data points with a sample size of

10 or more are shown.

the EMS. Adding ambulances could take the form of supervisors or managers asking for ambulances

from neighboring municipalities, from another service (an interfacility-transfer ambulance fleet, for

example), or asking new ambulance crews to come on duty. Adding ambulances usually requires

collaboration and coordination between different EMS systems. Repositioning entails relocating

available ambulances to improve the coverage of arriving calls. A simple and commonly used

repositioning policy involves the use of a compliance table, which specifies target locations for all

ambulances, as a function of the number of available ambulances.

Discussions with Calgary and Edmonton EMS staff indicate that they decide on actions based

on a combination of judgment and rules that are implemented in a decision support system. A

Red Alert is a simple rule that often triggers the adding of ambulances (Rumbolt 2017). A Yellow

Alert is another trigger that indicates the staff should consider taking action but does not specify

precisely which actions should be taken. The dynamics of EMS systems are sufficiently complex

that it is difficult, even for highly experienced practitioners, to reliably predict the consequences of

different actions using unaided human judgment. For example, the impact of adding ambulances

depends on the remaining duration of the current alert period, which is difficult to predict, because

alert period durations are highly variable, with squared coefficients of variation larger than one in

most cases (Table 2). If the current alert period ends before the new ambulance(s) arrive, then cost

will have been incurred and dispatchers, supervisors, and ambulance crews will have experienced

added stress, all to no avail.

In this study, we do not attempt to estimate the cost of actions. Instead, we mathematically

model alert periods and analyze the impacts of the expedite and add actions on these periods. We



4

�

����

�

����

��

����

��

����

��

���

��

���
� �

������������

�	���
	�
���	����

��

����

�	�������	���	����

�	����	���	����

������	��	��

���������	��	��	���

Figure 2 System states that correspond to Yellow and Red Alerts. c= 41, θ= 12.

do not study repositioning because its impact on EMS operations has been investigated extensively

by several researchers (Alanis et al. 2013, Maxwell et al. 2010, Schmid 2012).

We model an EMS system as a loss (as opposed to delay) system, similar to other researchers

(Maxwell et al. 2010, Restrepo et al. 2009, for example), because the loss model is tractable, and

calls that arrive during a Red Alert (which we refer to as ‘‘lost calls’’) are typically served by other

resources, such as the fire department or backup ambulance units, rather than waiting in a queue

(Chong et al. 2015). We model Yellow and Red Alerts as special cases of ‘‘k-partial busy periods’’:

time intervals during which k or more of the c scheduled ambulances are busy. Red Alerts are

c-partial busy periods and Yellow Alerts are (c− θ+ 1)-partial busy periods. Figure 2 illustrates

Yellow and Red Alerts when θ= 12 and c= 41. Every Red Alert is contained within a Yellow Alert,

and a Yellow Alert can contain multiple Red Alerts.

We view an ambulance and its crew as a server, and we define the period from when a patient is

assigned to a server, until the server becomes available again, as the service time. We thoroughly

analyze the loss model with Markovian state-dependent service rates, M/M(k)/c/c, and provide

some results for the loss model with general service time, M/G/c/c. The former permits us to

capture load-based speedup or slowdown effects, and to indirectly capture some of the impacts

of the spatial distribution of available ambulances, especially for systems in which compliance

table policies are used to reposition ambulances. The latter permits us to model service times as a

mixture of two distributions, for calls that are transported to hospital and those that are not.

We extend M/M(k)/c/c loss models to capture the impacts of add and expedite actions on alert

periods through two performance measures: (1) the expected residual duration of a Yellow Alert,

and (2) the expected number of lost calls. We provide insights on how the expedite and add actions

compare with respect to these performance measures.

Our managerial contribution is that we show how to apply queueing models to quantify the

impact of add and expedite actions on the expected remaining duration of Yellow Alert, and on

the expected number of lost calls. For each performance measure, we use real EMS data and
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provide a threshold policy for comparing add and expedite actions as a function of the expected

value of the time until actions are realized. We show that staff should not wait until a Red Alert

occurs before taking action (which is a common practice), especially if the performance measure of

interest is the expected number of lost calls, because that measure escalates rapidly as the number

of available ambulances decreases. Another drawback of waiting too long before taking action is

that the improvement in comparison with taking no action decreases, as the number of available

ambulances at the action epoch decreases.

Our technical contribution is that we provide recursions to calculate the first and second moments

of k-partial busy periods for M/M(k)/c/c. We prove an insensitivity result for M/G/c/c that the

first moments (but not higher moments) of k-partial busy period durations depend on the service

time distribution only through its mean. Using real EMS data, we show that although ambulance

service rates depend strongly on the number of busy ambulances, and the service time distribution

is a mixture of lognormal distributions, which is far from being exponential, the two loss systems

perform similarly (M/M(k)/c/c is slightly better), with respect to predicting the mean of alert

periods.

The remainder of the paper is organized as follows. We review related literature in Section 2; we

define and analyze k-partial busy period durations in Section 3; we validate our models in Section 4;

we analyze the impacts of two actions, add and expedite, on two performance measures, expected

remaining Yellow Alert duration and the expected number of lost calls, in Section 5; we provide

managerial insights on taking actions in Section 6; and we conclude in Section 7. Appendices A-H

contain proofs, additional computational results, and a list of notation.

2. Literature Review

We survey four streams of related literature: (1) modeling of EMS systems, (2) insensitivity results

for loss systems, (3) modeling of partial busy periods, and (4) strategies to mitigate capacity or

inventory shortages in various contexts.

EMS system models: Ingolfsson (2013) provides a recent general survey of research on planning

and management for EMS systems. Modeling EMS systems as loss systems is common in this

literature—either as a standard M/G/c/c system (Restrepo et al. 2009) or as a more general loss

system (Maxwell et al. 2010, Almehdawe et al. 2013, Alanis et al. 2013, Li and Whitt 2014, Chong

et al. 2015). We adopt the Erlang loss model for simplicity and to make progress on modeling

the duration of partial busy periods and on modeling the impact of actions to mitigate capacity

shortages. We assess the impact of some of the simplifications that are inherent in the Erlang loss

model in Section 4.
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The impact of adding or expediting ambulances appears not to have been investigated before.

Repositioning—another action that can be taken to mitigate capacity shortages—has been in-

vestigated by Alanis et al. (2013), Maxwell et al. (2010), Schmid (2012) and others. Our work

complements theirs.

The Erlang loss model ignores two key aspects of EMS systems: Ambulances may not have the

same service distribution, because of their geographic locations, and parameters (arrival rates and

number of ambulances) vary with time or system state. Larson’s (1974, 1975) exact and approximate

hypercube queueing models (HQM) address the geographic heterogeneity of ambulances. Many

researchers have used variants of HQM to study EMS systems. Fewer researchers have explicitly

incorporated time-varying parameters in an analytical EMS system model; Ignall and Walker (1977)

did this for an EMS system and Kolesar et al. (1975) for police patrol cars. Simulation models

of EMS systems typically do incorporate time-varying parameters (Henderson and Mason 2004,

Mason 2013).

Evidence in Alanis et al. (2013) suggests that ambulance service rates depend on the number of

busy ambulances. Erlang loss models with state-dependent service rates have applications in traffic

flow modeling (Jain and Smith 1997), and in designing evacuation networks (Weiss et al. 2012).

Insensitivity results for loss systems: Taylor (2011) defines an insensitive stochastic model as

one whose ‘‘stationary distribution depends on one or more of its constituent lifetime distributions

only through the mean,’’ and provides an extensive literature review. The best known insensitive

stochastic models are M/G/c/c and M/G/∞.

Although the steady state probabilities of the M/G/c/c system are insensitive to the service

time distribution beyond its mean, the same is not true for the transient occupancy probabilities.

We show that the first moments of the k-partial busy period durations, although they are measures

of transient behavior, are insensitive to the service time distribution beyond its mean.

Partial busy periods: Busy periods are unambiguously defined and well studied for single-server

queues; they begin when a customer arrives to an empty system and last until the server becomes

idle again for the first time. For analytical results, see Gross and Harris (1998, p. 102), for example.

For multi-server queues, however, the terminology for busy periods varies. Omahen and Marathe

(1978) use ‘‘busy period Tk,’’ and Sharma (1990, Chap. 4.4) uses ‘‘k-server busy period’’ to refer

to k-partial busy periods. Artalejo and Lopez-Herrero (2001) use ‘‘partial busy periods’’ for what

we refer to as 1-partial busy periods—that is, at least one server is busy—and they use ‘‘full busy

period’’ for what we refer to as c-partial busy periods—that is, all servers are busy. Other authors

(Chan et al. 2017, for example) have followed Artalejo and Lopez-Herrero in using the term ‘‘partial

busy period,’’ and we extend that term in defining k-partial busy periods.
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Omahen and Marathe (1978) and Sharma (1990) studied k-partial busy periods for the M/M/c

and M/M/c/N (with queue capacity =N − c) systems, respectively. Bountourelis et al. (2013)

observe that k-partial busy periods have not been studied for loss systems, except as a special case

of the M/M/c/N system. Our focus on loss systems allows us to obtain stronger results than those

in Sharma (1990). Bountourelis et al. (2013) discuss applications of loss models in modeling hospital

intensive care units (ICU) and highlight the importance of studying the length of periods during

which ICUs are full, that is, c-partial busy period durations. We thoroughly investigate k-partial

busy period durations, for k= 1, . . . , c, for Erlang loss systems with state-dependent service rates

and provide formulas to calculate their moments.

Shortage strategies: Protocols for managing ED capacity shortage have been formalized in an ED

Surge Capacity Protocol in Alberta (Alberta Health Services 2010) and elsewhere (Viccellio and

Santora 2012, The College of Emergency Medicine 2014) and medical researchers have investigated

the impact of such protocols on ED crowding (Cha et al. 2009, Watase et al. 2012). Modelers

have studied how to shift focus between triage and treatment when congestion in an ED exceeds a

threshold (Zayas-Caban et al. 2019). Alert periods are conceptually similar to low-inventory periods

for a retailer or a manufacturer, or periods where almost all beds in a hospital ward are occupied.

Lawson and Porteus (2000), Duran et al. (2004), and Veeraraghavan and Scheller-Wolf (2008)

discuss the use of expediting during low-inventory periods; that is, placing orders with a shortened

lead time. Chan et al. (2014) investigate the use of speedup, modeled as a service rate increase, in

an ICU in order to accommodate new patients that need to enter the ICU. Such short-term actions

are not without risk—for example, KC and Terwiesch (2012) show that speedup can increase the

chance of ICU readmission and decrease an ICU’s peak capacity. We provide methods to compare

the impacts of the adding and expediting actions on the expected residual Yellow Alert duration

and the number of lost calls during the Yellow Alert.

3. Partial Busy Period Modeling

In this section, we model an EMS system where no actions are taken as a multi-server loss system

with Poisson arrivals and either Markovian state-dependent service rates (M/M(k)/c/c), or a

general service time (M/G/c/c).

We start with the M/M(k)/c/c system, which has a Poisson arrival process with rate λ, and

has service rate µk, when there are k busy ambulances in the system. We recursively obtain the

first and second moments of the distribution of k-partial busy period durations. Then, we study

the M/G/c/c system that has a generally distributed service time, T , with mean 1/µ, CDF FT (t)

and complementary CDF F T (t). For M/G/c/c, we show that the first moment (but not the higher

moments) is independent of the shape of service time distribution beyond its mean.
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t0 t1 t2 time

Bk

Figure 3 A schematic view of Bk and its components. Note that t2 − t1 > 0 only if the event at t1 is an arrival.

A k-partial busy period, with duration Bk, begins when an arrival increases the number of busy

servers to k and ends when a departure leaves k− 1 busy servers. With this notation, the duration

of a Yellow Alert is Bc−θ+1 and the duration of a Red Alert is Bc.

3.1. The M/M(k)/c/c Model

As illustrated in Figure 3, we decompose Bk into (1) the time from t0, when the k-partial busy

period begins, until the next event occurs at t1, and (2) the time from t1 until t2, when the k-partial

busy period ends. The duration of the second component, t2− t1, can be positive or zero, depending

on the event at t1. That is:

E[Bk] = Pr(t1 event is a departure|t0 event is an arrival)E[t1− t0]

+ Pr(t1 event is an arrival|t0 event is an arrival)E[t2− t0]. (1)

We explicitly include conditioning in (1) to stress that a k-partial busy period always begins

with an arrival. If the t1 event is a service completion, then the k-partial busy period ends at t1,

and t2− t1 = 0. If the t1 event is an arrival, however, then a (k+ 1)-partial busy period begins at

t1 with duration Bk+1. At epoch t1 +Bk+1, a service completion occurs and the number of busy

ambulances decreases to k. Depending on the next event, either the k-partial busy period ends,

or another (k+ 1)-partial busy period begins. It follows that, if the event at t1 is an arrival, the

k-partial busy period ends after a geometrically-distributed number of (k+ 1)-partial busy periods.

Following this logic, we provide recursive formulas for E[Bk] and E[B2
k] in the following theorem:

Theorem 1. The first two moments of Bk for an M/M(k)/c/c system satisfy:

E[Bc] =
1

cµc
, E[Bk] =

λ

kµk
E[Bk+1] +

1

kµk
, k= c− 1, . . . ,1. (2)

E[B2
c ] = 2E [Bc]

2
, E
[
B2
k

]
=

λ

kµk
E
[
B2
k+1

]
+ 2E [Bk]

2
, k= c− 1, . . . ,1. (3)

Proof: See Appendix D.1.

The M/M/c/c system is a special case of M/M(k)/c/c, with µk replaced with µ. We show in

Figure 4 how the mean and coefficient of variation vary with k and with the system utilization,

for a base case with λ = 10.74 calls per hour, c = 41 ambulances, and 1/µ = 90 minutes (these

parameters are realistic for the Calgary EMS). We varied 1/µ from 60 to 120 minutes to obtain

utilization values ranging from 26% to 52%. We see (Fig. 4(a)) that the mean alert durations
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(b)

Figure 4 Impact of utilization and k on mean and coefficient of variation of alert durations.

increase with utilization and the increase is faster for lower k (hence, faster for Yellow Alerts than

for Red Alerts). We also see (Fig. 4(b)) that alert durations become more variable as utilization

increases, and are more variable for lower k.

3.1.1. The Relationship Between the Loss Probability and Partial Busy Periods

The stationary loss probability for an M/G/c/c system is obtained from the Erlang B formula,

the probability that all servers are busy (Gross and Harris 1998, p. 81). Here, we investigate the

probability of experiencing Yellow and Red Alert periods during a k-partial busy period. Let Uk be

the event that the system experiences at least one Yellow Alert and Vk be the event that the system

experiences at least one Red Alert, within the current k-partial busy period. We calculate Pr(Uk)

and Pr(Vk) recursively. If the system is already within a Yellow, or Red Alert, then the probability

of experiencing that alert is 1; that is, Pr(Uk) = 1, for k= c, . . . , c− θ+ 1, and Pr(Vk) = 1, for k= c.

For other k values, we obtain the following recursions, by conditioning on the number of times

the system enters a (k+ 1)-partial busy period, without experiencing Yellow or Red Alert periods,

before the end of the k-partial busy period.

Theorem 2. For an M/M(k)/c/c system, the probabilities Pr(Uk) and Pr(Vk) satisfy:

Pr(Uk) = 1, k= c, . . . , c− θ+ 1, Pr(Uk) = 1− kµk
λPr(Uk+1) + kµk

, k= c− θ, . . . ,1. (4)

Pr(Vk) = 1, k= c, Pr(Vk) = 1− kµk
λPr(Vk+1) + kµk

, k= c− 1, . . . ,1. (5)

Proof: See Appendix D.2. (4)(5)

Figure 5 shows how Pr(Uk) and Pr(Vk) vary with k when µk = (74.83 + 0.84k)−1, λ= 10.74, and

c= 41 (the equation and parameters are realistic for the Calgary EMS). We observe that as k

increases, both probabilities first decrease and then increase, reflecting the competing influences of

two factors: (1) the distance from k to the state that triggers a Yellow or Red Alert (the longer it
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Figure 5 The probability of experiencing Yellow or Red Alert within a k-partial busy period as a function of k.

is, the less likely an Alert period) and (2) the duration Bk (which increases rapidly with k, and the

longer Bk is, the more likely an Alert period).

3.2. The M/G/c/c Model

Our calculations in Section 3.1 relied heavily on the Markovian property. We develop our M/G/c/c

formulas for E[Bk] and E[B2
c ] by observing the system only at arrival and departure epochs, and

condition our calculations on the last event. A detailed discussion of our calculations is provided in

Appendix D.3; here, we only present a summary of our results.

If the system has k busy ambulances, then we use Rk to denote the sojourn time; Lk to indicate

that the last event was an arrival (Lck indicates a departure), and Nk to indicate that the next

event is an arrival (N c
k indicates a departure). Let T̃ be a residual service time, which follows the

stationary excess distribution FT̃ (t) = µ
∫ t
0
F T (s)ds. The complementary CDF of Rk, given the last

event, can be calculated as:

FRk|Lk
(t) = e−λt1{k<c}F T (t)F T̃ (t)k−1, k= 1, ..., c. (6)

FRk|Lc
k
(t) = e−λtF T̃ (t)k, k= 1, ..., c− 1, (7)

where 1{k < c} is an indicator function. Using (6) and (7), we obtain all moments of Rk|Lk and

Rk|Lck by applying the following general result for the moments of a non-negative random variable

X (Wolff 1989, p. 37):

E[Xn] =

∫ ∞
0

FX(x1/n)dx, (8)

When there are k busy ambulances in the system, we calculate the probability of the next event

by conditioning on the last event:(8)

Pr(Nk|Lk) = λE[Rk|Lk], Pr(Nk|Lck) = λE[Rk|Lck], k= 1, ..., c− 1. (9)

We use equations (1) and (6)-(9) to calculate the first moment of Bk. Theorem 3 summarizes

our findings for the first two moments.
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Table 1 Fleet size and utilization in Edmonton in 2008 and in Calgary in 2009.

Edmonton Calgary
Yellow Alert threshold (θ available ambulances) 8 12
Minimum number of scheduled ambulances 19 28
Maximum number of scheduled ambulances 36 54
Average number of scheduled ambulances 25 41
Average utilization 57% 43%
Average hospital time (minutes) 68.87 69.44

Theorem 3. The following hold for a stationary M/G/c/c system:

(a) The first moment of Bk is insensitive to the shape of the service time distribution and satisfies:

E[Bc] =
1

cµ
, E[Bk] =

λ

kµ
E[Bk+1] +

1

kµ
, k= c− 1, . . . ,1. (10)

The first moment of Bk is strictly decreasing in k and has the closed-form expression:

E[Bk] =
c−k∑
i=0

(k− 1)!

µ(k+ i)!

(
λ

µ

)i
, k= 1, ..., c− 1. (11)

(b) The second moment of Bc is:(11)

E
[
B2
c

]
=

∫ ∞
0

F T

(
t1/2
)
F T̃

(
t1/2
)c−1

dt. (12)

(c) The higher moments E[Bn
c ], n≥ 2, are sensitive to the shape of the service time distribution.

See Appendix D.3 for a precise stationary regime definition and a Theorem 3 proof.

4. Validation

We validate Equations (2)-(3) and (10)-(12) for the first and second moments of partial busy period

durations for M/M(k)/c/c and M/G/c/c systems against data sets from Calgary and Edmonton,

two cities with population of about 1 million in Alberta, Canada. The Calgary data set has 93,734

calls from 2009 and the Edmonton data set has 64,267 calls from 2008. Tables 1-2 provide fleet

size, utilization, and descriptive statistics for EMS alert periods in these two cities. Utilization is

computed as the average of the ratio of busy ambulances to scheduled ambulances. Yellow and

Red Alerts were more frequent in Edmonton than Calgary, consistent with the higher average

ambulance utilization in Edmonton.

We show the validation results for Calgary in this section and discuss the Edmonton results in

the online supplement, Section F. We use the first 6 months as a training sample (used to compute

all parameter estimates) and the second 6 months as a testing sample, for both data sets.

As inherent in standard Erlang loss models, in using (2)-(3) and (10), we implicitly assume that

(1) the arrival rate and the number of scheduled ambulances are constants that do not vary with

time or system state, (2) the service rates do not vary with time, and (3) all ambulances have the
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Table 2 Descriptive statistics for alert periods in Edmonton in 2008 and in Calgary in 2009.

Yellow Alert Red Alert

Edmonton Calgary Edmonton Calgary
Sample size 1,349 703 587 9
Mean (min.) 106.41 7.09 7.20 1.37
Standard deviation (min.) 120.26 11.53 11.32 1.32
Maximum (min.) 1,012.02 127.28 138.93 4.53
Squared coefficient of variation 1.28 2.64 2.47 0.94
Avg. number of calls per alert period 25.55 2.35 2.23 1.11
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Figure 6 The arrival rate and the number of scheduled ambulances vs. time of the day (Calgary 2009 data).

same service time distribution. In a real EMS system, however, arrival rates vary systematically by

time of the day and day of the week (Channouf et al. 2007, Setzler et al. 2009, Kim and Whitt

2014); the number of scheduled ambulances changes by time of the day and day of the week; and

the service time of an ambulance depends on its location and on the number and locations of

other available ambulances. Figure 6 illustrates how the arrival rate and the number of scheduled

ambulances vary by time of the day in Calgary.

We address these real-world complications as follows:

• Instead of explicitly incorporating time-varying parameters in our model (as Ignall and Walker

(1977) did), we divide each week into 168 1-hour segments and apply our model separately

for each segment. We index the 1-hour time segments using τ , with τ ranging from 1 for

Sundays between midnight and 1 am to τ = 168 for Saturdays between 11 pm and midnight.

We aggregate model outputs for the 1-hour segments to obtain global model outputs. At the

end of Subsection 4.1, we outline reasons that suggest this method will be effective.

• We do not explicitly model ambulance locations, but the number of busy ambulances provides

information about ambulance locations, because EMS dispatchers in Calgary and Edmonton

use compliance tables to reposition ambulances (Alanis et al. 2013), that is, they try to achieve

a pre-specified configuration of locations for each number of busy ambulances. Service rates
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are likely to vary depending on the number of busy ambulances and the configuration of

ambulance locations, and our M/M(k)/c/c model captures part of this dependence via the

state-dependent service rates.

Modeling of service times: We compare two modeling approaches for service times within each

segment: general service times (G), and Markovian state-dependent service times (M(k)).

For the general distribution approach, we fit a mixture of lognormal distributions with separate

components for calls that are transported and not transported to hospital (Appendix A), separately

for each segment.

For the state-dependent approach, we use a regression model to capture how mean service times

vary with segment (Figure 7(a)) and with the number of busy ambulances (Figure 7(b)). The

mean service time change by segment can be partially attributed to the change in traffic and

transportation speed. By increasing the number of busy ambulances, the mean service time tends to

increase; Alanis et al. (2013) hypothesize that this ‘‘slowdown’’ effect occurs because a large number

of ambulance patient arrivals causes ED crowding, which increases the time that ambulances

are tied up in EDs, which translates to longer average service times. Delasay et al. (2016) also

argue that as the number of busy ambulances increases, the average travel distance from available

ambulances to call locations increases, which increases the mean service time. Delasay et al. (2016)

discuss additional mechanisms through which the components of EMS service time vary with the

number of busy ambulances.

To build our regression model, we compute the sample path for ν(t), the number of busy

ambulances at t, by adding one at each call arrival epoch and subtracting one at each service

completion epoch. We remove the data for 1 January and initialize ν(t) with the number of active

calls at 0 am on 2 January, based on the assumption that none of these active calls arrived more

than 24 hours before. KC (2013) used a similar approach to initialize a sample path for the number

of busy physicians in an emergency department.

We estimate state-dependent mean service time for Segment τ using a simple continuous piecewise

linear regression model with a cutoff point at the Yellow Alert threshold, θ:

E
[
T

(τ)
k

]
= α0 +α1k+α2

(
k− c(τ) + θ

)
H +

24∑
i=1

βiIi +
23∑
i=1

γiJi, τ = 1, ...,168, k= 1, ..., c, (13)

where T
(τ)
k is the service time for a call that arrives during Segment τ when there are ν(t) = k busy

ambulances; the dummy variable H is for Yellow Alert periods; the Ii dummy variables are for the

hours of the day on weekends (Saturday-Sunday); the Ji dummy variables are for the hours of the

day on weekdays (Monday-Friday); and we use 11 pm –a12 am on weekdays as the base case. In this

model, we aggregate the 168 segments into 48 segments (24 for weekends and 24 for weekdays) and
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Figure 7 Average service time vs. number of busy ambulances and hour of the week (Calgary 2009 data).

we assume that the slope of the mean service time with respect to k (i.e. α1 +α2H) is independent

of the segment. We fit other models (Appendix E) where we did not aggregate the segments and

where we allowed the slope with respect to k to vary by segment, but the parsimonious model in

(13) was the one that minimized the Akaike Information Criterion (AIC).

The estimated intercept, slope, and Yellow Alert effect are α̂0 = 70.27, α̂1 = 0.51, and α̂2 =−2.21,

respectively, indicating that the estimated mean service time varies in the base case as follows: from

70.27 to 85.06 minutes outside Yellow Alert periods, when the number of busy ambulances varies

from 0 to 29, and from 83.36 to 64.66 minutes inside Yellow Alert periods, when the number of

busy ambulances varies from 30 to 41. The estimated increase in mean service time with k outside

yellow alert periods is consistent with the slowdown finding by Alanis et al. (2013) and Delasay

et al. (2016) that we discussed earlier. We attribute the negative α̂2 to actions that EMS staff take

during Yellow Alerts, and these actions cause the service times to decrease with k.

4.1. Validation Using the Entire Sample

In this subsection, we perform out-of-sample validation using the entire data set. In Subsection 4.2,

we perform out-of-sample validation for each time segment separately. The validation process (both

for the entire data set and separately for each time segment) consists of three steps: (1) estimate

model primitives from the training sample, (2) use the primitives to compute model outputs, and

(3) compare the model outputs to empirical outputs from the testing sample.

For validation, we take a weighted-average approach2, in which we first estimate model primitives

separately for each time segment in the training sample, and use these segment-specific primitives

along with (2)-(3) and (10)-(12) to compute model outputs for each time segment, and then compute

a weighted-average of the segment-specific model outputs to obtain global model outputs. We

perform these steps for both ways of modeling services times (M(k) and G).

2 We also tried a naive approach, in which we estimated model primitives from the training sample, and used (2)-(3)
and (10)-(12) to compute model outputs. This approach resulted in a poor fit and we do not discuss this approach
further.
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Model primitives: We use the superscript (τ) to indicate a notation is associated with Segment τ .

For the weighted-average approach, we estimate segment-specific arrival rates λ̂(τ) and number

of ambulances ĉ(τ), which is the rounded average number of scheduled ambulances. We estimate

two sets of segment-specific service time primitives: µ̂
(τ)
k = 1/E

[
T

(τ)
k

]
, using (13), for M(k) and

lognormal mixture parameters estimated using only calls that arrived in Segment τ for G.

Model outputs: We use (2)-(3) and (10)-(12) to compute segment-specific model outputs E
[
B

(τ)
k

]
and E

[
B

(τ)2

k

]
, using the model primitives for Segment τ , for each of the two ways to model service

times. (For G service times, we compute the second moment only for k= c.) We approximate the

overall expected value as a weighted average of segment-specific expected values:

E[Bk]≈
168∑
τ=1

Pr(Bk begins in Segment τ)E
[
B

(τ)
k

]
≈

∑168

τ=1E
[
N

(τ)
k

]
E
[
B

(τ)
k

]
∑168

τ=1E
[
N

(τ)
k

] , (14)

where E
[
N

(τ)
k

]
is the expected number of k-partial busy periods that begin in Segment τ , which

we approximate as:

E
[
N

(τ)
k

]
≈ l(τ)λ(τ)π

(τ)
k−1, (15)

where l(τ) is the total duration of Segment τ , and π
(τ)
k−1 is the steady-state probability that the

Segment-τ Erlang loss system has k− 1 busy ambulances. At the end of this subsection, we relax

the assumption that the system reaches steady state within each segment, and calculate transient

expected values and standard deviations for Bk, and show that our steady-state method provides

close approximations, especially when k is within the Yellow Alert region, 30≤ k ≤ 41. We use

standard formulas (Gross and Harris 1998, p. 80, for example) with
(
λ̂(τ), µ̂(τ), ĉ

)
to obtain π

(τ)
k−1.

The rationale for the approximation is that λ(τ)π
(τ)
k−1 is the steady-state rate at which k-partial

busy periods begin in the Segment-τ system. Combining approximations (14)-(15), we obtain the

following weighted average:

E[Bk]≈
168∑
τ=1

w
(τ)
k E

[
B

(τ)
k

]
, w

(τ)
k =

l(τ)λ(τ)π
(τ)
k−1∑168

τ=1 l
(τ)λ(τ)π

(τ)
k−1

. (16)

We use the same approach to approximate the second moment:

E
[
B2
k

]
≈

168∑
τ=1

w
(τ)
k E

[
Bk

(τ)2
]
,w

(τ)
k =

l(τ)λ(τ)π
(τ)
k−1∑168

τ=1 l
(τ)λ(τ)π

(τ)
k−1

. (17)

We use the first and second moments of Bk to compute S[Bk] =
√
E [B2

k]−E[Bk]2. (For G service

times, we can only compute S[Bc].)(16)(17)

Empirical outputs: We use the ν(t) sample path of the testing data to compute samples of

empirical k-partial busy period durations {bki, k = 1, . . . , c, i = 1, . . . , nk}, where nk is the total
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(b) Standard deviations

Figure 8 Empirical and model outputs for the entire sample (Calgary 2009 data), ĉ= 41.

number of k-partial busy periods. We calculate sample means, bk, and sample standard deviations,

sbk , as bk = (1/nk)
∑nk

i=1 bki and sbk =
√

(1/(nk− 1))
∑nk

i=1(bki− bk)2, respectively.

Figure 8 illustrates our out-of-sample validation outcomes (Table 17 in the online supplement

shows the numerical values). Figure 8(a) compares the model and empirical means. It shows that

model outputs for M(k) fit better than the ones for G, for small k, and they have very similar

performance for large k, including those in the Yellow Alert region, which is the region of primary

interest.

Figure 8(b) compares the model and empirical standard deviations. Here, we have G model

outputs only for k = c. The M(k) model outputs overestimate the empirical outputs but the

deviation is smaller in the Yellow Alert region, which is the region of primary interest.

To better understand the validation results, we note that the average arrival rate decreased by

0.84% from 10.74 in the training sample to 10.65 calls per hour in the testing sample, and the

average service time decreased by 6.40% from 90.52 to 84.73 minutes, while the average number

of scheduled ambulances remained at 41. Based on the decrease in workload, we would expect

the periods when the system has a large number of busy ambulances to be shorter in the testing

sample than in the training sample. Indeed, in Figure 8(a), we see that the weighted average model

outputs tend to be at the upper empirical confidence limits. In Figure 8(b), we further see that the

model outputs overestimate the empirical standard deviations, indicating that the k-partial busy

periods for high k in the testing sample were not only shorter, on average, but also less variable.

Perhaps the most important finding from this validation exercise is that even though the service

time distribution is far from exponential, and service rates depend strongly on the number of busy

ambulances, the two service time models (M(k) and G) result in model outputs that are very close

(the M(k) model is slightly better). Our findings for the Edmonton data are similar. We already

know from Theorem 3(a) that the first moments of partial busy periods are insensitive to the shape
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of the service time distribution beyond the mean, when service times are modeled as i.i.d. random

variables. Our validation results supplement Theorem 3(a) with the numerical results that, for

our data sets, the first moment is relatively insensitive to whether service times are modeled as

state-dependent (M(k)) or not (G). It appears that for the purpose of developing valid models of

partial busy periods, changes over time, such as the reduction in workload we see between our

training and testing samples, could be more important than how service times are modeled.

Transient vs. steady state analysis and the effectiveness of time segmentation: We use (16)-(17)

to approximate E[Bk] and E[B2
k] by assuming that the system reaches the steady state within each

time segment τ . Our method of approximating the queueing system in each time segment with a

steady state system is similar to the ‘‘stationary-independent-period-by-period’’ (SIPP) approach

for predicting staffing requirements for M/M/c systems. Green et al. (2001) use numerical methods

and show that the SIPP approach may provide inaccurate staffing levels in many realistic cases,

which have time-varying parameters. We use a similar numerical method, as described in Appendix

G, and investigate how the assumption of reaching the steady state within each segment impacts

our E[Bk] and E[B2
k] approximations. (The empirical and weighted average curves in Figure 9 are

the same as those in Figure 8.) Figure 9(a) illustrates that model outputs for E[Bk], calculated based

on steady-state and transient approaches are almost the same for all ks. Figure 9(b) illustrates that

while the steady state model outputs for S[Bk] are close to those of the transient outputs for large

k values (including k values within the Yellow Alert range, 30≤ k≤ 41), the difference between

the two approaches grows when k is small. These figures illustrate that while our steady-state

approximation performs well in the Yellow Alert region, which is the main focus of this paper,

it is responsible for the poor performance of predicting the standard deviation of k-partial busy

periods when k is small. It is important to mention that while the steady-state calculations are

almost instantaneous, for the transient approach the computation time grows extremely fast when

k decreases; for example, it took 2 days to complete calculations when k= 5.

We expect (consistent with results illustrated in Figure 9) our time segmentation approach to

be more reliable than what Green et al. (2001) results suggest, for the following three reasons: 1)

EMS systems typically have lower utilizations than the systems studied by Green et al. (2001). For

example, based on our data, the utilization is 43% in Calgary and 57% in Edmonton (Table 1).

2) Our model is a loss system, whereas Green et al. (2001) SIPP approach is for delay systems.

Therefore, in our model, queues do not build up and queues do not propagate from one time segment

to future time segments. 3) Green et al. (2001) note that there is a lag between a peak in the

arrival rate and a peak in congestion. Consequently, when the arrival rate is increasing, one expects

steady-state models for delay systems to overestimate the probability of delay and when the arrival

rate is decreasing, one expects steady-state models to underestimate the probability of delay. We
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(a) Outputs of the two methods almost match.
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(b) Outputs of the two methods are close within the

Yellow Alert region.

Figure 9 Comparing the steady state and transient approaches using the entire sample (Calgary 2009 data).

aggregate model outputs for the 1-hour segments to obtain global model outputs, which implies

that the overestimation and underestimation errors cancel out to some extent.

4.2. Validation by Segment

Our findings so far are that global model outputs computed using a weighted-average of segment-

specific model outputs fit well with global empirical outputs. We would also like to know, however,

how well the model outputs for a particular segment match empirical outputs for that segment,

as that comparison provides an indication of the utility of our models for predicting alert period

durations in real time. In this subsection, we perform this comparison, as a further validation step.

We perform out-of-sample validation for our model against each segment by using the same three

validation steps listed in Section 4.1, for the entire sample. To demonstrate our validation steps,

however, we focus on the busiest segment in the training data, Wednesday 1-2 pm, τ = 86 (with

344 calls and 27.91 busy ambulances on average), and the least busy segment in the training data,

Tuesday 4-5 am, τ = 53 (with 113 calls and 6.52 busy ambulances on average). We focus on these

two segments to show that our model provides good results both for segments with a high and a

low number of busy ambulances.

Model primitives: For the busiest segment, we estimate the arrival rate to be λ̂(86) = 13.77 calls per

hour, and the number of ambulances to be ĉ(86) = 45 ambulances. We estimate the constant mean

service time to be T̂ (86) = 114.12 minutes, and we estimate the smoothed state-dependent mean

service times as T̂
(86)
k = 91.79 + 0.51k minutes, for k= 0, . . . ,33, and T̂

(86)
k = 164.79− 1.70k minutes,

for k= 34, . . . ,45, from (13). The parameters of the lognormal mixture service time distribution are

shown in Appendix A, Table 8.

For the least busy segment, our estimates are λ̂(53) = 4.36 calls per hour, ĉ(53) = 28 ambulances,

T̂ (53) = 75.49 minutes, T̂
(53)
k = 70.11 + 0.51k minutes, for k= 0, . . . ,16, and T̂

(53)
k = 105.50− 1.70k
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(a) Busiest segment; ĉ= 45.
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(b) Least busy segment; ĉ= 28.

Figure 10 Empirical and model outputs for the first moment (Calgary 2009 data).

minutes, for k = 17, . . . ,28, from (13). The parameters of the lognormal mixture service time

distribution are shown in Appendix A, Table 9.

Model outputs: We compute the segment-specific model outputs as described in Subsection 4.1.

Empirical outputs: We would like the empirical outputs for Segment τ to be representative of

conditions during that time segment. Therefore, we do not use empirical outputs based on the entire

sample. A possible approach would be to use only k-partial busy periods that are fully contained

within Segment τ , but this approach would severely bias the analysis, because partial busy periods

that span more than one hour tend to be longer, on average, than those contained within an hour.

Instead, we construct separate sample paths for each segment, by concatenating the 26 1-hour

periods of observations that we have for each segment.

Appendix B describes the concatenation procedure. We follow the same process as we did for the

entire sample to construct the sample path and calculate the empirical outputs for each segment.

The concatenated sample paths are not used in the estimation of model primitives, the calculation

of model outputs, or in the aggregate validation in Section 4.1—they are only used to calculate

segment-specific empirical outputs.

Figures 10-11 compare model and empirical outputs for the busiest and least busy segments.

The model outputs are generally within the 95% confidence intervals for the empirical outputs,

especially for high values of k, which correspond to Yellow and Red Alerts. The model outputs for

the two service time models are almost indistinguishable for high k values.

5. Modeling the Impact of Actions

As discussed in Section 1, once a Yellow Alert period begins, EMS staff face the uncertainty of

whether the alert will be naturally short-lived, or whether the system will operate with a shortage

of available ambulances for an extended period that can lead to longer response times and possibly

a Red Alert. In this section, we extend the loss model with Markovian state-dependent service
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(a) Busiest segment; ĉ= 45.
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(b) Least busy segment; ĉ= 28.

Figure 11 Empirical and model outputs for the standard deviation (Calgary 2009 data).

rates, M/M(k)/c/c, to incorporate add and expedite actions that staff could take to handle alert

periods. Our choice of the M/M(k)/c/c model (as opposed to the M/G/c/c model) follows our

findings in Section 4 that while both of these models provide similar capabilities of predicting the

first moment of Bk for large k, specifically when k is within the Yellow Alert range, the former

provides better predictions when k is small. In addition, because of the Markovian property, the

M/M(k)/c/c model is more tractable.

We assume that add and expedite actions are taken within a Yellow Alert when k′ ∈ {c−θ+1, ..., c}

ambulances are busy. We use s0 to denote the initial state when we take an action, B̃s0 to denote

the remaining Yellow Alert duration and Hs0 to denote the number of lost calls during B̃s0 .

Two outcomes that EMS staff would like to avoid are: (1) longer response times, which happen

when the number of available ambulances decreases, and (2) lost calls (those that arrive during

a Red Alert). We define two performance measures that correspond to these outcomes: (1) the

expected remaining Yellow Alert duration, E
[
B̃s0

]
, and (2) the expected number of lost calls,

E [Hs0 ], during the remainder of the Yellow Alert. Figure 1 illustrates how the average response

time increases during Yellow Alert periods, which motivates our use of the first measure. The

second measure is directly related to the second outcome of interest, the number of calls during

Red Alerts.

We first model the M/M(k)/c/c system as a continuous-time Markov chain (CTMC) for the

number of busy servers, {ν(t), t ≥ 0}, and calculate E
[
B̃s0

]
and E

[
Hs0

]
assuming no action is

taken, which we use as the base case. We then augment the state variable with additional variables

to model the add and expedite actions. We calculate E
[
B̃s0

]
and E

[
Hs0

]
using standard results for

absorbing CTMCs. We use Ω to denote the CTMC state space, A for the set of absorbing states,

Ac for the set of transient states (A∪Ac = Ω), and Ar ⊆Ac for the set of Red Alert states, in which

all ambulances are busy. We specify s0,Ω,A, and Ar when no action is taken, and when add and

expedite actions are taken.
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5.1. No Action (Base Case)

We model the M/M(k)/c/c system as a CTMC, {ν(t), t≥ 0}. Assuming the system is currently

within a Yellow Alert and the number of busy ambulances is k′, for k′ ∈ {c− θ+ 1, ..., c}, the initial

state becomes s0 = k′, and we calculate E[B̃s0 ] and E[Hs0 ].

To compute E[B̃s0 ] = E[B̃k′ ], we decompose the residual Yellow Alert duration as B̃k′ = Υk′ +

Υk′−1 + · · ·+ Υc−θ+1, k
′ ∈ {c− θ+ 1, ..., c}, where Υi is the time it takes for the number of busy

ambulances to decrease from i to i− 1. For the M/M(k)/c/c system, because of the memoryless

property, Υi equals Bi in distribution. Therefore:

E
[
B̃k′
]

=
k′∑

i=c−θ+1

E[Bi], k
′ = c− θ+ 1, . . . , c, (18)

where the E[Bi] values can be calculated using (2). (18)

To compute E[Hs0 ] = E[Hk′ ], we collapse all states outside the Yellow Alert period into a

single absorbing state and create a modified M/M(k)/c/c system such that Ω = {c− θ, ..., c} and

A= {c− θ}, as depicted in Figure 12(a). The initial state is s0 = k′ and the set of Red Alert states

is Ar = {c}. The infinitesimal generator matrix Q in canonical form (Kao 1996) is:

Q=
A Ac

A 0 0
Ac Y Z

.

The fundamental matrix (Kao 1996, p. 256) for this Markov chain is

V =−Z−1,

where vij is the expected time spent before absorption in transient state j, given that the chain

begins in transient state i. As summarized in Proposition 1 below, the fundamental matrix provides

an alternative way to obtain E
[
B̃s0

]
, as the total expected time spent in transient states prior to

absorption, and a way to obtain E [Hs0 ], which equals the arrival rate times the expected time

spent in state Ar:

Proposition 1.

E
[
B̃s0

]
=
∑
s∈Ac

vs0s. (19)

E[Hs0 ] = λ
∑
s∈Ar

vs0s. (20)

In the absence of any action, (19) reduces to E
[
B̃k′
]

=
∑

s∈Ac vk′s,A
c = {c− θ+ 1, . . . , c} and (20)

reduces to E[Hk′ ] = λvk′c, where k′ ∈ {c− θ+ 1, . . . , c}.
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(b) Regular and Adjusted Yellow Alert periods when cadd = 1.

Figure 12 Absorbing states (indicated by a thicker border) when no action is taken and adjusted Yellow Alert

period when cadd = 1.
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(a) Add 1 ambulance.
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(b) Expedite 1 ambulance.

Figure 13 Modified Markov chains (absorbing states have thicker borders) when cadd = 1 and cex = 1.

5.2. Add Ambulances

We assume that cadd ambulances are added. We model the arrival times of the cadd ambulances

as independent exponential random variables with rate δ. We augment the state of the CTMC

{ν(t), t≥ 0} by adding w(t) for the number of requested ambulances that have already arrived

by time t, and form a bivariate CTMC {(ν(t),w(t)), t≥ 0}. We also define an adjusted Yellow

Alert period, which begins when the number of busy ambulances increases to c− θ+ 1 and ends

when the number of available ambulances increases to θ for the first time. Figure 12(b) illustrates

the difference between adjusted and regular Yellow Alert periods when cadd = 1. Both of these

periods begin when the number of busy ambulances increases to c− θ+ 1. The regular partial busy

period ends when the system enters a state with less than c− θ+ 1 busy ambulances (left of the

vertical dashed line) while the adjusted one ends when the system enters a state with θ available

ambulances (left of the diagonal dashed-dot line).

We modify the Markov chain {(ν(t),w(t)), t≥ 0} such that Ω = {(i, j)|i= c− θ+ j, ..., c+ j, j =

0, ..., cadd} and A = {(i, j)|i = c − θ + j, j = 0, ..., cadd}. Transitions are as follows: Call arrival:

(i, j)→ (i + 1, j), if c − θ + j < i < c + j; call departure: (i, j)→ (i − 1, j), if i > c − θ + j; and
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ambulance arrival: (i, j)→ (i, j+ 1), if j < cadd. This system begins from the initial state s0 = (k′,0),

and its Red Alert states are Ar = {(i, j)|i= c+ j, j = 0, ..., cadd}. Figure 13(a) shows Ω, A, Ac, and

transitions when cadd = 1. We use Proposition 1 to calculate E
[
B̃s0

]
and E [Hs0 ].

5.3. Expedite Ambulances

We assume that cex ambulances that are tied up in EDs are expedited and released faster. We

model remaining service times of these ambulances as independent exponential distributions with

expedited rate µex. Expedited ambulances operate with normal service rate µk after being released.

We augment the state of the CTMC {ν(t), t ≥ 0} by adding y(t) for the number of expedited

ambulances that are still tied up in the EDs (expedite process has not finished yet) at time t, and

form a bivariate CTMC {(ν(t), y(t)), t≥ 0}.

We modify the Markov chain {(ν(t), y(t)), t≥ 0} such that Ω = {(i, j)|i= c−θ, ..., c, j = cex, ...,0}

and A= {(i, j)|i= c− θ, j = cex, ...,0}. Transitions are as follows: Call arrival: (i, j)→ (i+ 1, j),

if c− θ < i < c; normal call departure: (i, j)→ (i− 1, j), if i > c− θ; and expedited call departure:

(i, j)→ (i− 1, j− 1), if i > c− θ and j > 0. This system begins from the initial state s0 = (k′, cex),

and its Red Alert states are Ar = {(i, j)|i= c, j = cex, ...,0}. Figure 13(b) shows Ω, A, Ac, and

transitions when cex = 1. We use Proposition 1 to calculate E
[
B̃s0

]
and E [Hs0 ].

6. Numerical Results and Managerial Insights

In this paper, we do not attempt to model the cost of actions, and therefore, we do not suggest

optimal actions. Instead, we use our models from Section 5 to obtain insights on when EMS staff

should take actions, and how these actions compare with each other with respect to the two

performance measures, the expected remaining Yellow Alert duration and the expected number of

lost calls. We focus on the busiest Calgary segment (τ = 86, with λ̂(86) = 13.77/hour, ĉ(86) = 45, and

T̂
(86)
k = 164.79− 1.70k) and use model primitives for that segment in the numerical calculations in

this section. We repeated the calculations for other segments and observed patterns consistent with

those that we discuss in this section. We systematically compare adding cadd = 0,1, or 2 ambulances,

and expediting cex = 0,1, or 2 ambulances.

6.1. When Should Staff Take Actions?

For EMS staff, it is important to understand what would be the implications of waiting, and not

taking actions in the hope that the Yellow Alert period will end soon. To gain insights on this

question, we keep all parameters related to add and expedite actions fixed and vary the number

of busy ambulances at the action epoch, k′. Figure 14 illustrates how the performance measures

change by varying k′, assuming no action is taken.
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(a) Expected remaining Yellow Alert if no action is taken
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(b) Expected number of lost calls if no action is taken

Figure 14 How performance measures escalate when staff decide to wait and not to take actions (Busiest

segment, Calgary 2009 data).

Observation 1: Staff should not wait until a Red Alert to take actions. There is an almost-linear

relationship between k′ and the expected remaining Yellow Alert duration as shown in Figure 14(a).

However, the relationship between k′ and the expected number of lost calls is convex and rapidly

increasing, as shown in Figure 14(b), which is consistent with the convex and rapidly-increasing

relationship between the loss probability and partial busy periods, shown in Figure 5. With respect

to the expected remaining Yellow Alert duration, staff should take an action as soon as possible,

because the performance measure constantly deteriorates when k′ increases. With respect to the

expected number of lost calls, however, they can wait at early stages of the Yellow Alert, as

outcomes do not change significantly initially (for this segment, k′ = 34, ...,39). Nonetheless, they

should be careful as the performance measure escalates quickly after a certain point (for this

segment, when k′ ≥ 42).

6.2. How Do Actions Compare With Each Other?

Even when staff decide to take an action, the question of ‘‘which action should be taken?’’ is not

easy to answer, especially when the expected action realization times (expected action times, for

short) are different (that is, 1/δ 6= 1/µex).

6.2.1. Pairwise Comparison of Actions With Equal Expected Action Times

Theorem 4. Adding cadd ambulances is always at least as beneficial as expediting cex ambulances

when cadd ≥ cex, with respect to both performance measures, if the arrival time of the added

ambulances and the remaining service time of the expedited ambulances have the same distribution.

Proof: See online supplement Subsection D.4. Consider a special case when cadd = cex = 1. The

proof relies on the coupling method, where we assume that the arrival of the new ambulance and

the release of the expedited ambulance occur simultaneously. The proof evolves around the idea

that the added ambulance stays in the system and has a long-term impact while the expedited
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Table 3 Threshold values for comparing add (cadd = 1) and expedite (cex = 2) actions, with respect to the two

performance measures, for k′ = 34, ...,45.

k′ 34 35 36 37 38 39 40 41 42 43 44 45
E[Rem. YA] 50 48 46 45 43 41 39 36 34 31 28 25
E[Lost calls] 43 41 41 41 41 42 43 44 45 47 48 49

ambulance has a one-time impact. When cadd = cex = n> 1, the coupling idea is extended under

the assumption that the remaining service time distribution of the ith expedited ambulance is the

same as the arrival time distribution of the ith requested ambulance, for i= 1, . . . , n. Extending the

proof from the cadd = cex case to the cadd > cex case is straightforward as the additional number of

added ambulances can only improve the system.

As discussed in Section 1, expediting is realized through actions that lead to a faster transfer of

the patient’s care from the EMS to the ED, or to other EMS crews (care consolidation). Adding,

however, is realized by borrowing ambulances from neighboring municipalities, from another service

(an interfacility-transfer ambulance fleet, for example), or asking new ambulance crews to come

on duty. Decisions associated with some actions are solely made within the EMS system (care

consolidation, for example), making them easier to manage, but some actions require collaborations

with other health care systems (borrowing ambulances, for example), making them more challenging

to manage. Depending on action types, there might be operational difficulties that staff must take

into account; for example, neighboring EMS systems may not have available ambulances to lend at

a given time.

Observation 2: When cadd < cex, the comparison of expedite and add actions is of a threshold type.

The staff should expedite if the expected action time is small, and they should add if the expected

action time is large. We calculate the expected action time threshold numerically. For cadd = 1 and

cex = 2, we vary the expected action times between 10 and 60 minutes, by 1-minute increments,

and calculate performance measures. Figure 15 illustrates linearly interpolated results when k′ = 43.

With respect to both performance measures, the actions have strictly increasing curves, and the

expedite action outperforms the add action for small expected action times. With respect to the

expected remaining Yellow Alert duration, the two actions perform equally (the two curves cross)

when the expected action time is 31 minutes (see Fig. 15(a)), and with respect to the expected

number of lost calls, they perform equally when the expected action time is 47 minutes (see Fig.

15(b)). Therefore, when the expected action time is smaller than the threshold 31 (47) minutes, the

expedite action outperforms the add action, with respect to the expected remaining Yellow Alert

duration (the expected number of lost calls). We recreated Figure 15 for all k′ = 34, ...,45. Table 3

shows the threshold values for different k′.
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(b)

Figure 15 Comparing cadd = 1 and cex = 2 actions when we set k′ = 43, and vary the expected action time.

6.2.2. Pairwise Comparison of Actions With Different Expected Action Times aaa

In the same fashion as in Figure 15, we generated performance curves for cadd = 1,2; cex = 1,2; and

k′ = 34, ...,45, by varying the expected action times from 10 to 60 minutes. We use these curves to

identify actions that can be taken to achieve a desired improvement over the base case (no action).

For example, if k′ = 43, and no action is taken, then as illustrated in Figure 15, the expected

remaining Yellow Alert duration will be 76.95 minutes and the expected number of lost calls will

be 0.58. If, however, staff decide to take an action and wish to improve the expected number of

lost calls by 30% (reduce it to 0.4), then either cadd = 1 ambulance must be added, with 1/δ≤ 16

minutes, or cex = 2 ambulances must be expedited, with 1/µex ≤ 27 minutes.

Table 4 summarizes the largest expected action times that achieve 5% to 50% improvement in the

expected remaining Yellow Alert duration of the base case. Table rows show desired improvements

in the base case performance measure. For each desired improvement-action pair in the table, we

vary the expected action time between 10 and 60 minutes and record the largest expected action

time that satisfies the desired improvement. For example, when k′ = 43, if no action is taken (base

case), the expected remaining Yellow Alert duration will be 76.95 minutes. If staff want to achieve

a 10% improvement (to reduce the performance measure to 0.9× 76.95 = 69.26 minutes), they

should add 1 ambulance with 1/δ≤ 34 minutes, 2 ambulances with 1/δ≤ 60 minutes, or expedite

2 ambulances with 1/µex ≤ 32 minutes. It is not possible to achieve the desired improvement by

expediting only 1 ambulance. The largest improvement shown in this table is 50%, and we use

increments of 5%, which indicates that we cannot achieve more than 55% improvement by adding

cadd = 1,2, or expediting cex = 1,2 ambulances. Table columns show different actions, grouped by k′

values. Table 5 summarizes similar results with respect to the expected number of lost calls (which

cannot be improved more than 85% compared to the base case, by adding cadd = 1,2, or expediting

cex = 1,2 ambulances).
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Table 4 The largest expected action time (min.) that achieves the target percentage improvement in the

expected remaining Yellow Alert duration, compared to the base case.

Imp.%
k′ = 35; Base case = 19.83 k′ = 39; Base case = 52.54 k′ = 43; Base case = 76.95

Add 1 Add 2 Ex. 1 Ex. 2 Add 1 Add 2 Ex. 1 Ex. 2 Add 1 Add 2 Ex. 1 Ex. 2
5% 60 60 59 60 60 60 48 60 60 60 32 60
10% 60 60 37 58 56 60 20 47 34 60 — 32
15% 41 60 24 44 21 60 — 31 — 60 — —
20% 25 60 16 34 — 48 — 19 — 27 — —
25% 16 46 11 27 — 29 — — — — — —
30% 11 34 — 21 — 16 — — — — — —
35% — 25 — 17 — — — — — — — —
40% — 19 — 13 — — — — — — — —
45% — 14 — 10 — — — — — — — —
50% — 11 — — — — — — — — — —

Table 5 The largest expected action time (min.) that achieves the target percentage improvement in the

expected number of lost calls, compared to the base case.

Imp.%
k′ = 35; Base case = 0.01 k′ = 39; Base case = 0.10 k′ = 43; Base case = 0.58

Add 1 Add 2 Ex. 1 Ex. 2 Add 1 Add 2 Ex. 1 Ex. 2 Add 1 Add 2 Ex. 1 Ex. 2
5% 60 60 60 60 60 60 60 60 60 60 60 60
10% 60 60 60 60 60 60 60 60 60 60 45 60
15% 60 60 58 60 60 60 47 60 60 60 30 54
20% 60 60 47 60 60 60 34 60 39 60 20 43
25% 60 60 37 60 60 60 24 52 25 60 13 34
30% 60 60 29 55 46 60 15 43 16 55 — 27
35% 58 60 21 49 31 60 — 36 — 41 — 21
40% 43 60 15 42 19 60 — 29 — 31 — 16
45% 31 60 — 36 — 60 — 23 — 23 — 12
50% 21 60 — 31 — 48 — 17 — 17 — —
55% 12 60 — 25 — 37 — 10 — 12 — —
60% — 52 — 20 — 28 — — — — — —
65% — 41 — 15 — 19 — — — — — —
70% — 31 — 10 — — — — — — — —
75% — 22 — — — — — — — — — —
80% — 14 — — — — — — — — — —

Observation 3: If staff wait too long before taking action, then the action becomes less effective,

even if the expected action time is short. Tables 4-5 show that the later an action is taken, the

less its marginal improvement in comparison with taking no action becomes, with respect to both

performance measures. For example, according to Table 4, while adding 2 ambulances can improve

the base case up to 30% when k′ = 39, this action cannot bring more than, or equal to, 25%

improvements if the action is taken when k′ = 43.

Expediting, through the consolidation of care of several waiting EMS patients under a single

paramedic crew, is perhaps the action that requires the least coordination with other agencies, and

therefore could be realized quickly. Here, we provide more insights on this action by comparing
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Table 6 The largest expected action time (min.) for expediting 2 ambulance that outperforms adding 1

ambulance that is available instantaneously, with respect to the expected number of lost calls.

k′ 34 35 36 37 38 39 40 41 42 43 44 45
Base Case 0.01 0.01 0.03 0.04 0.06 0.10 0.15 0.23 0.36 0.58 0.92 1.51
Inst. Add

(Imp. %)
0.00
(100%)

0.00
(67%)

0.01
(56%)

0.02
(51%)

0.03
(48%)

0.05
(46%)

0.08
(45%)

0.13
(44%)

0.21
(43%)

0.33
(43%)

0.53
(43%)

0.86
(43%)

Largest 1/µex — 13.15 19.61 21.99 22.48 21.95 20.74 18.94 16.58 13.60 — —

Table 7 The largest expected action time (min.) for expediting 2 ambulance that outperforms adding 1

ambulance that is available instantaneously, with respect to the expected remaining Yellow Alert duration.

k′ 34 35 36 37 38 39 40 41 42 43 44 45
Base case 10.26 19.83 28.79 37.21 45.12 52.54 59.50 65.95 71.82 76.95 81.07 83.62
Inst. Add

(Imp. %)
0.00
(100%)

9.59
(52%)

18.58
(35%)

27.04
(27%)

35.01
(22%)

42.52
(19%)

49.61
(17%)

56.26
(15%)

62.46
(13%)

68.13
(11%)

73.11
(10%)

77.12
(8%)

Largest 1/µex — — 12.68 16.40 19.02 20.81 21.99 22.76 23.43 24.65 28.16 37.81

expediting cex = 2 ambulances with small 1/µex, to adding cadd = 1 ambulance with instantaneous

arrival—that is, 1/δ approaches 0. Although it may not be realistic for 1/δ to approach 0, it

provides a bound on the amount of improvement that EMS can expect from the add action.

Observation 4: When cadd < cex, the expedite action with a sufficiently-small expected action time

can outperform the add action, even if the arrival of new ambulances is instantaneous. Table 6

shows the largest 1/µex for an expedite action with cex = 2 that outperforms an instantaneous add

action with cadd = 1, for k′ = 34, ...,45, with respect to the expected number of lost calls. According

to this table, if k′ = 43 and no action is taken, then the expected number of lost calls will be 0.58.

At k′ = 43, the instantaneous add action with cadd = 1 reduces the expected number of lost calls to

0.33 (43% improvement). The same improvement can be achieved by expediting 2 ambulances,

when 1/µex ≤ 13.60 minutes. Table 7 shows similar results with respect to the expected remaining

Yellow Alert duration.

7. Conclusion

This paper provides an understanding of capacity shortage periods in mission critical systems like

fire, police, and EMS. We focus on EMS systems and model these systems as Erlang loss systems

with service times modeled as either Markovian and state-dependent (M(k)) or general (G). We

show that the expected duration of periods during which at least k out of c ambulances are busy

is independent of the shape of the service time distribution beyond its mean, but this is not true

of the higher moments. We obtain closed-form formulas and easy-to-use recursions to calculate

the expected duration and (for M(k) service times) the standard deviation of ambulance-shortage

periods. We validate our formulas for the mean and standard deviation of partial busy periods

against empirical data from the Calgary and Edmonton EMS systems. Our validation results show
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that although ambulance service times are far from exponential, the loss model with Markovian

state-dependent service time slightly outperforms the loss model with general service time, with

respect to predicting the first moment of partial busy periods.

We expand the M/M(k)/c/c model and use the theory of absorbing Markov chains to quantify the

impact of adding or expediting ambulances on two performance measures: The expected remaining

duration of a Yellow Alert (a proxy for periods with long response times) and the expected number

of lost calls during this residual duration. We show that, regardless of the action type, the expected

number of lost calls increases rapidly when the number of available ambulances at action epoch

decreases, and that the escalation is almost linear with respect to the other performance measure.

Based on our results, both performance measures are monotonic functions of the expected value of

the time until actions are realized (1/δ and 1/µex) and their comparison is of a threshold type. We

show the two actions may be ranked differently with respect to the two performance measures.

Several related issues could benefit from further study, including: Models and algorithms to

choose the Yellow Alert threshold θ so as to balance mitigation of capacity shortages and the

added workload from operating in alert mode; investigating whether θ should vary with time;

investigating the action of delaying response to low-priority calls during alert periods; analytically

investigating when the stationary approach, as opposed to the transient approach, works well

in modeling loss systems and providing simple modifications for improvements, if needed; and

empirically investigating whether the time required to expedite (add) one additional ambulance

becomes progressively larger, as one would expect.
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