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Problem Definition: Standing orders allow triage nurses in emergency departments (EDs) to order tests

for target patients prior to a physician evaluation. Standing orders specify the medical conditions for which

a triage nurse is permitted to order tests but typically do not specify the operational conditions under

which ordering tests is desirable, from either a system or a patient point of view. Academic/Practical

Relevance: Medical studies demonstrate that the use of standing orders decreases average ED length of

stay (LOS) for target patients. We examine the operational impacts of standing orders on the ED as a whole,

and propose a threshold policy for enacting standing orders as a function of ED congestion. Methodology:

We develop three simplified models: 1) an infinite-server model to study how model primitives impact the

effectiveness of standing orders, 2) a Jackson network model, to demonstrate that standing orders can lead

to diverse outcomes for different patient populations, and 3) a Markov decision process model, to quantify

the optimality gap for our threshold policy. We confirm the tentative findings from the simplified models in

a more realistic setting using a simulation model that is calibrated with real data. Results: We find that

the threshold policy, with a threshold that is easily estimated from model primitives, performs well across a

wide range of parameter values. We demonstrate potential unintended consequences of the use of standing

orders, including overtesting and spillover effects on non-target patients. Managerial Implications: Our

research shows the importance of investigating the impact of standing orders on the ED as a whole. The

simple threshold policy that we propose can be used in practice to identify situations in which it is beneficial

to use standing orders.

1. Introduction

Chest pain is the second most common symptom of patients presenting to emergency

departments (EDs) (Rui and Kang 2017). Since chest pain can indicate a life-threatening

condition, medical guidelines recommend an electrocardiogram (ECG) within 10 minutes

of arrival to an ED (Zègre-Hemsey et al. 2016). Standing orders (also termed complaint

specific protocol, or advanced triage protocol) are one way EDs can ensure that the ECG

is performed in a timely fashion. Triage healthcare providers not explicitly licensed to

1



2

place orders for medical tests and treatments can initiate an ECG by following a codified

protocol for patients presenting with chest pain.

Standing orders can improve outcomes for patients with life-threatening emergencies,

but the practice need not be limited to critical cases. For example, a patient presenting

to ED with a low acuity complaint, such as sore throat, is likely to be triaged to low

priority and have to wait a long time for an initial evaluation by a physician. Following

the standing order protocol in Figure 1, a time-consuming bacterial culture test can be

ordered at triage and processed while the patient is waiting for a physician. For the target

patients subject to the sore throat protocol, this process intervention can reduce the ED

length of stay (LOS) by reordering the customary ED process flow (Settelmeyer 2018).

A typical ED process flow (Figure 2) involves triage by a nurse, initial evaluation by

a physician, diagnostic tests or treatments ordered by a physician, and the physician’s

disposition decision: discharge or hospital admission. This series of steps, with potential

waiting periods between steps, constitutes the critical path, whose duration determines

a patient’s ED LOS, which is a key performance measure (Wiler et al. 2015). Standing

orders can reduce ED LOS for target patients for two reasons: (1) Completing the tests

during the time the patient waits for the initial physician evaluation moves the testing

off the critical path, and (2) Having test results available in time for the patient’s initial

evaluation by a physician can eliminate the need for the physician to revisit the case.

Despite the potential benefits of ED standing orders, the practice is not universal.

Reported obstacles to adoption include: increased workload for triage nurses, perceived

lack of operational benefits if triage-ordered test results are not available in time for the

initial physician evaluation, inability of some EDs to reliably change their processes, and

costs of overtesting (Retezar et al. 2011). Furthermore, the practice of using mid-level

providers to order tests at triage has been criticized as prioritizing hospital profits over

patient care and leading to overtesting (Corl 2019). Overtesting incurs not only the direct

cost of performing and interpreting a test, but also indirect costs, such as increased load on

testing resources, leading to congestion, and lengthening the wait for all patients who need

testing—not only the target patients for standing orders. Overtesting can also increase

the load on physicians who must review the results of unnecessary tests to minimize the

chances of missing an incidental finding, which can increase ED wait times even more.

EDs have sought to understand when and how to use standing orders to reduce ED

congestion. However, a comprehensive review of empirical studies in the medical literature
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Figure 1 Rapid strep test protocol. Source: Kalra et al. (2016).

reveals that the overwhelming majority solely examine the effect of the intervention on

the target population (patients presenting with specific symptoms that are subject to the

standing orders protocol). One important contribution of our research is the demonstration

of the necessity of taking a system-wide perspective. With numerical experiments using

operational parameters reported in the medical literature, along with simulation models

that are calibrated with real ED data, we demonstrate potential unintended consequences

of standing orders, including spillover effects on ED patients who are not subject to the

standing order protocol. We also show that for a realistic set of parameters, an increase in

ED LOS for the target population can be accompanied by a decrease in the overall average

ED LOS, as non-target patients benefit from reduced wait for service by an ED physician.

Thus, empirical researchers should measure the effect of the intervention both on target

and non-target patients.
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Initiation of standing orders is an example of early task initiation (ETI), an important

mechanism through which system load can influence service time in a queueing network

(Batt and Terwiesch 2017, Delasay et al. 2016). Observational studies have found that the

use of ETI increases with congestion (Batt and Terwiesch 2017). In addition to studying

how activation of ETI by human servers depends on congestion and other factors, it is also

important to study optimal or near-optimal policies for using ETI to reduce ED LOS (Batt

and Terwiesch 2017), and that is another area where we make an important contribution.

We consider not only the two extreme regimes: never invoking standing orders (NSO) and

always invoking standing orders (ASO), but also a dynamic use of standing orders based on

operational conditions in the ED. Our review of empirical medical literature identified only

three papers discussing operational conditions under which ordering of tests at triage is

desirable: Hwang et al. (2016) and Retezar et al. (2011) specify that standing orders should

be initiated when the time until initial evaluation by a physician is expected to be longer

than some threshold and Li et al. (2018) recommend invoking standing orders when the

time until test results are available is below a threshold. Reliable estimates of processing

times or delays are not easy to obtain by the triage nurse. Information about the number

of patients waiting in different parts of the ED is likely easier to obtain, and this is the

type of information that we assume is available for the policy we propose: initiate standing

orders when the difference between the number of patients waiting for a physician exceeds

the number of patients waiting for testing by a certain threshold (see (1)). This threshold

is easily computed from model primitives: target population percentage, overtesting rate,

and mean service times of an ED physician and the testing station.

Our work appears to represent the first suite of analytical models of ED standing orders.

We quantify the relationship between target population percentage, overtesting rate, and

mean service times of the ED physician and the testing station to identify whether the

overall ED LOS improves with the use of standing orders. Viewing an ED as a queue-

ing network, we develop three simplified analytical models: 1) an infinite-server model

to study how model primitives impact the effectiveness of standing orders, 2) a Jackson

network model, to demonstrate that standing orders can lead to diverse outcomes for

different patient populations, and 3) a Markov decision process (MDP) model, to char-

acterize congestion-sensitive routing policies that minimize the overall average ED LOS.

We demonstrate with extensive MDP numerical experiments that both (1) an optimal

threshold policy, obtained through complete enumeration, and (2) an approximate threshold
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policy, for which the threshold is expressed as a surprisingly simple function of the model

primitives, are near-optimal across a wide range of parameters. We use a discrete event

simulation (DES) model to confirm that the approximate threshold policy performs well

in a more realistic setting, incorporating multiple servers, non-exponential distributions,

and a non-stationary arrival process.

The rest of the paper is organized as follows: Section 2 reviews related literature; Section

3 describes a typical ED process flow and how the use of standing orders changes the flow;

Section 4 presents our three analytical models; and Sections 5-6 report results of numerical

experiments on the MDP and DES models. Section 7 concludes.

2. Literature Review

We review four streams of literature relevant to our study: (1) medical studies on the impact

of standing orders on ED LOS, (2) DES studies of standing orders, (3) studies of staffing

triage with providers licensed to place medical orders (an alternative to standing orders),

and (4) OM papers examining costs and benefits of various alternatives for post-triage

prioritization of ED patients.

Stream 1: Table 1 summarizes findings from 17 medical studies of standing orders. Nine

studies were included in a 2011 systematic review (Rowe et al. 2011), and eight were

published after 2011. Eleven studies investigated standing orders for ordering X-rays for

limb injuries. The majority of these are studies of the Ottawa Ankle Rules protocol to

determine whether a patient presenting with an ankle injury requires an X-ray (Shell et al.

1993). The remaining studies examined standing orders for patient complaints such as

throat pain, pediatric emergency, and chest pain.

The primary outcome measure for most studies is ED LOS for the target population

and most studies report reductions in this measure, ranging in magnitude from 4 to 46

minutes (4.3 to 36%), as shown in Table 1 (Column 4). (See Table 11 in Appendix A for a

summary of results from studies whose outcome measures were defined differently, in terms

of start point, end point, or patient inclusion criteria). A single study (Hwang et al. 2016)

found an increase in ED LOS for the target population but this study failed to control for

ED congestion levels—standing orders were used only when the ED was congested, when

patients were experiencing longer waiting times.

Several other factors were identified as important to the operational effectiveness of

standing orders. If triage nurses order more tests than physicians, the potential benefits

of standing orders can be lost (Thurston and Field 1996). Having the test results ready
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before the physician sees the patient is another critical factor. In Parris et al. (1997),

where no significant LOS reduction was found, only 77% of patients had their X-rays ready

before being evaluated by the physician. Hwang et al. (2016) report that having the tests

completed reduced the time from physician evaluation to disposition by 16.9%.

With the exception of Thurston and Field (1996) and Rosmulder et al. (2010), all of the

empirical studies focus only on the effect of ASO on target patients, and do not discuss

the effect on the system overall (see Table 11). Our study demonstrates that a reduction

in the LOS for the target patients is neither necessary nor sufficient for an improvement in

the overall system performance: Shorter target-patient LOS can be accompanied by longer

overall LOS, because of overtesting, and longer target-patient LOS can be accompanied

by shorter overall LOS, because of freeing up of physician capacity.

Stream 2: We know of two DES studies (Ghanes et al. 2015, Yang et al. 2016) that

investigate factors (listed in Table 2) that impact the effectiveness of using standing orders

to reduce overall average ED LOS. Both studies assume that standing orders are used for

all target patients, rather than congestion-triggered policies. Our paper expands the OM

literature on standing orders by using a suite of analytical models to generate insight and

using a DES model to evaluate congestion-triggered protocols.

Stream 3: One reason for limited adoption of standing orders is regulation: ED triage

is generally staffed with registered nurses, who are allowed to use standing orders in some

US states (e.g., Colorado), but not in others (e.g., New York) (Castner et al. 2013). In

locations where the use of standing orders by registered nurses is not allowed, staffing triage

with a physician or a similarly licensed provider is an alternative to standing orders (Russ

et al. 2010, Nestler et al. 2012, Kamali et al. 2018). This practice introduces a trade-off

between placing such providers at triage or at later stages in the ED process flow. At least

one medical study has found that staffing triage with physician assistants reduced both

rates of leaving without being seen (LWBS) and the time patients spend occupying an ED

bed (Nestler et al. 2012). An empirical study of physician-staffed triage also reported a

decrease in the time patients spent occupying ED beds; however the median time from

arrival to disposition increased (Russ et al. 2010). OM scholars have investigated policies

for the allocation of physicians to triage vs. post-triage stages, so as to optimize time to

first treatment and timely discharges (Zayas-Caban et al. 2019) or to optimize the trade-off

between staffing cost and revenue loss from patients who leave without being seen (Kamali

et al. 2018). Our study complements this work, as the threshold policies that we propose
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Target population,
test type

Congestion
triggered

Study
design

LOS reduction for
target population

Sample
size

Reference

Limb injury, X-rays No

RCT

4 min (4.3%)a 1,833 Thurston and Field
(1996)

NR 175 Parris et al. (1997)

37.2 min (36%)*** 675 Lindley-Jones and
Finlayson (2000)

6.7 min (8.4%)a 130 Fan and Woolfrey (2006)

28 min (19.6%)** 146 Lee et al. (2016)

13 min (14.9%)* 112 Ho et al. (2018)

PC NR

934 Lee et al. (1996)

106 Pedersen and Storm
(2009)

B-A
14 min (14%) 704 Rosmulder et al. (2010)

6.5 min (6.3%)a 60 Ashurst et al. (2014)

Limb/skull injuries,
X-rays

No PC-C 24.5 min 276 Than et al. (1999)

Chest pain,
Multiple

Yes RC -212 min (-52.7%)*** 301 Hwang et al. (2016)

Pediatric
emergency, Multiple

Yes RC 15 min (6.2%)*** 116,202 Li et al. (2018)

Throat pain,
Multiple

No RC 6 min 117 Settelmeyer (2018)

Multiple, Multiple

No B-A 46 min 250 Cheung et al. (2002)

Yes RC-C NR 15,188 Retezar et al. (2011)

No RCT NR 1,044 Goldstein et al. (2018)

Table 1 Summary of medical literature findings on the impact of standing orders initiated by triage nurse.

Legend: NR = not reported, RCT = randomized controlled trial, B-A = before-after study, PC =

prospective cohort study, PC-C = prospective case-controlled study, RC = retrospective cohort study,

RC-C = retrospective case-controlled study.

Legend for statistical significance of LOS reduction: *: p < 0.05, **: p < 0.01, ***: p < 0.001, a: not

statistically significant, no code: statistical significance not reported.

Standing orders

Reference Parameters effective when:

Ghanes et al. (2015)

ED load ED load is high

Extension of triage time due to standing orders Time extension is reasonable

Overtesting and incomplete test rates Inaccuracy is low

Yang et al. (2016)
Physician utilization Physician utilization is high

Triage and test capacities Not important

Table 2 DES studies of triage standing orders.
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could be used to guide licensed providers regarding conditions under which ordering tests

early would be beneficial.

Stream 4: OM researchers have modeled other triage routing possibilities besides early

ordering of tests via either standing orders or physician-staffed triage. In particular, they

have investigated streaming of patients based on acuity level (Cochran and Roche 2009),

predicted disposition (discharged or admitted to hospital) (Saghafian et al. 2012), or pre-

dicted complexity (number of patient interactions in the ED) (Saghafian et al. 2014). OM

researchers have also examined prioritization by ED physicians of newly arrived patients

vs. in-process patients. The contexts include in-process patients creating additional work

for a physician through interruptions (Dobson et al. 2013), considerations of trade-offs

between the time-to-first treatment and LOS (Huang et al. 2015, Hu et al. 2018), and lack

of information about the state of ED queues (Ansari et al. 2019). Other OM papers that

use queueing theory to study management of EDs are reviewed by Hu et al. (2018). Our

study expands this stream, by investigating a new set of ED patient routing issues.

3. ED Process Flow, with and without Standing Orders

In this section, we describe a typical ED process flow and discuss how the implementation

of standing orders changes the flow.

3.1 ED Process Flow without Standing Orders

Figure 2 illustrates a typical ED process flow without standing orders. Patients regis-

ter upon arrival and wait for triage. Triage is performed by a nurse who determines the

patient’s primary reason for visiting the ED, and assesses how urgently the patient needs

to be evaluated by an ED physician. In the order of priority determined by the triage

nurse, the patient is allocated an ED bed, and a physician performs an initial evaluation.

In some cases, the physician treats and discharges the patient during this initial exam (e.g.,

a patient needs stitches for a cut). In other cases, the physician requires additional infor-

mation to arrive at a diagnosis and reach a decision on patient disposition. The additional

information may come from diagnostic tests, or from responses to treatment.

A diagnostic test could be performed at the bedside in the ED (e.g., a pregnancy ultra-

sound), in a hospital lab using a sample collected in the ED (e.g., a complete blood count),

or at another hospital unit (e.g., an MRI scan). Depending on the availability of resource

needed for testing/treatment, a patient may have to wait to be tested or wait to have

a treatment started. There can be a significant delay between the last step in the test

or treatment process which involves the patient (e.g., drawing a blood sample) and the
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Figure 2 The default ED care pathway.

instant when the test results or treatment response become available. After this informa-

tion becomes available, the ED physician decides whether to discharge or to admit the

patient to a hospital ward. The patients subsequently depart the ED, although a patient

directed to a hospital ward may need to wait in an ED bed until a ward bed becomes

available.

Patients might abandon, either prior to initial evaluation (“left without/before being

seen”) or after initial evaluation but prior to disposition (“left against medical advice”).

We omit abandonment from Figure 2 and from our models, in order to focus on process

flow features that are most relevant to our study.

3.2 ED Process Flow with Standing Orders

Figure 3 depicts an ED process flow with standing orders. The triage nurse decides whether

the patient’s condition is covered by a standing orders protocol. If not, then the process

continues as before. If the patient is deemed to be in the target group, then there is a

second decision: whether to invoke the test ordering protocol. Placing test and treatment

orders increases the nurse’s workload. Normal practice appears to be to use standing orders

whenever applicable, without consideration of operational factors such as ED congestion,

but see Hwang et al. (2016), Retezar et al. (2011), and Li et al. (2018) for exceptions.
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Figure 3 ED care pathway with standing orders.

4. Analysis of Standing Order Routing Policies

The focus of this section is on generating insights regarding policies for post-triage routing

of patients who are identified at triage as presenting with a medical condition that is

subject to a standing order. The routing policies specify operational conditions under which

patients should be routed from triage directly to testing. We are particularly interested

in the performance of a policy that computes the difference between the total number

of patients queued for or receiving physician service (Qphys) and the number of patients

queued for or receiving testing (Qtest), and routes patients to testing if this difference is

larger than a threshold, that is:

If Qphys −Qtest ≥ θ, then route to testing,

Otherwise, route to a physician. (1)

This is a threshold policy with a single fixed threshold θ. The ASO and NSO policies are

special cases of (1), corresponding to θ=−∞ and θ=+∞, respectively.

We discuss four models of ED flow with standing orders: An infinite-server model, a

Jackson network model, an MDP model, and a DES model. The first three models are

highly simplified but they allow us to generate tentative insights. We use the last model

to confirm that these insights hold in a more realistic setting.

In all models, we consider only the time period that begins with a patient’s placement

in a treatment space and finishes when a disposition decision is made. Patients do not
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Probabilities Predicted: Target Predicted: Other
True: Target ηTT =ψ ηTO = 0 ηT∗ =ψ
True: Other ηOT = (1− ν)(1−ψ) ηOO = ν(1−ψ) ηO∗ = 1−ψ

η∗T = 1− ν(1−ψ) η∗O = ν(1−ψ) η∗∗ = 1

Table 3 Distribution of patient types

abandon, they have at most one test encounter, and only one post-test evaluation with an

ED physician. Test results are available as soon as the testing service completes.

We view the ED as a multi-class queuing network. A patient’s class can depend both

on their true type, as determined by an ED physician, and on their predicted type, as

determined by a triage nurse. We assume that the probability that a physician determines

that the patient belongs to the standing orders target population and therefore needs

testing is ψ. We are particularly interested in the effect of overtesting, so we assume that

the triage nurse correctly identifies other patients with probability ν (and therefore, under

ASO, other patients get tested with probability 1− ν). We assume that the triage nurse

correctly identifies all target patients. We use a two-letter notation to indicate patient

types, with the first letter indicating the true type and the second letter indicating the

predicted type. We let T = target, O = other, and ∗ = all. Table 3 shows the joint and

marginal probabilities ηp for p∈ P = {TT,TO,T∗,OT,OO,O∗,∗T,∗O,∗∗}.
Comparing Figures 2–3, we see that NSO and ASO induce different queueing network

topologies. Under the assumption of at most one test and post-test evaluation, the primary

difference is that the NSO network has re-entrant flows, which complicates modeling, but

the ASO network does not. For the purposes of the infinite-server and Jackson network

models, we make the simplifying assumption that there are separate physician resources

dedicated to initial evaluation and post-test evaluation, respectively. The resulting topology

is shown in Figure 4. This network has an initial evaluation physician queue Q1, with

mean processing time τ1, a testing queue Q2, with mean processing time τ2, and a post-test

evaluation physician queue Q3, with mean processing time τ3. We assume τi <∞, i= 1,2,3.

In addition to eliminating the re-entrant flows, the simplifying assumption of dedicated

servers for each queue also eliminates the need for a physician to choose between Queues

1 and 3 when selecting the next patient to see. For the MDP and DES models, we use the

topology shown in Figure 5, which includes re-entrant flows, and separates patients waiting

for initial evaluation into those triaged as target (waiting in Q1 with mean processing time

τ1) and those triaged as other (waiting in Q4 with mean processing time τ4; we assume

τ1 = τ4). For all of the models, we assume an independent Poisson arrival process for new
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Q2 Q3 𝜏ଷ𝜏ଶ

Q1

Target patients 
Continue to testing

Post‐test
Evaluation

𝜏ଵ

Initial
Evaluation

Patients triaged 
as other:

Patients triaged 
as target:

𝜂∗

𝜂∗்
Testing Depart after post‐

test evaluation

Depart after 
initial evaluation

Figure 4 Queueing network topology for the infinite-server and Jackson network models

𝜏𝜏3
Q2 Q3

Patients triaged as other:

Patients triaged 
as target:

Depart after post-
test evaluation

𝜂𝜂∗𝑜𝑜

Physician  
Evaluation

𝜏𝜏2
Testing

Q4

Q1

Depart after 
initial evaluation

𝜂𝜂∗𝑇𝑇

Continue to testing 𝜂𝜂𝑇𝑇𝑇𝑇/𝜂𝜂∗𝑇𝑇

𝜏𝜏1

Figure 5 Queueing network topology for the MDP and DES models

patients, which are randomly split into patients triaged as target (with probability η∗T )

and patients triaged as other (with probability η∗O). The Poisson process is homogeneous

for the first three models but in the DES model, the process is nonhomogeneous.

We use M =∞ and M = J to denote the infinite-server model and the Jackson network

model, respectively. Let LOSγ,M
p be the steady-state average LOS for patients of type p∈ P

under policy γ ∈ {NSO,ASO} derived using queueing model M ∈ {∞, J} and let W γ,M
i

denote the average system time (waiting + processing) in queue Qi under policy γ and

model M . We define the change in LOS for patient type p under model M if standing

orders are adopted as:

∆M
p =LOSASO,M

p −LOSNSO,M
p , p∈ P (2)

∆M
∗∗ =

∑
p∈{OO,OT,TT}

ηp∆
M
p . (3)

A positive ∆M
p means that always using standing orders increases LOS for patients of type

p, under model M . We determine ∆M
∗∗ by substituting the ηp values from Table 3 and the

following expressions for ∆M
p into (3):

∆M
OO =WASO,M

1 −WNSO,M
1 , (4)
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∆M
OT =WASO,M

2 +WASO,M
3 −WNSO,M

1 , (5)

∆M
TT =∆M

OT −
(
WNSO,M

2 +WNSO,M
3

)
. (6)

We obtain these expressions by tracing the path of OO, OT , and TT patient groups under

ASO and NSO. Patients triaged as other (OO) follow the same path under both policies

but the system time in Queue 1 could depend on the policy. Overtested patients (OT ) go

through Queues 2–3 under ASO and go only through Queue 1 under NSO. Target patients

(TT ) go through Queues 2 and 3 under ASO and go through all three queues under NSO.

We see from (5)–(6) that ∆M
OT >∆M

TT , that is: if ASO lowers LOS for overtested patients,

then it also lowers LOS for target patients. The reverse is not true, however: lower LOS

under ASO for target patients does not imply lower LOS for overtested patients.

4.1 Infinite-Server Model

To focus on the effects of mean processing times on the relative performance of NSO and

ASO, we formulate a network of infinite-server queues (Harrison and Lemoine 1981), by

assuming the topology in Figure 4 and assuming that Queues 1–3 each have an infinite

number of dedicated servers. We show that under this model, standing orders reduce overall

LOS if the initial evaluation duration is long compared to testing and post-test evaluation

durations (that is, τ1/(τ2 + τ3) is large) and both the target population proportion ψ and

the triage accuracy ν are close to 1 (that is, ψ/((1− ν)(1−ψ)) is large).

Proposition 1. Under the infinite-server model, LOSASO,∞
∗∗ < LOSNSO,∞

∗∗ if and only if

β =

(
1+

ηTT

ηOT

)
τ1

τ2+ τ3
=

(
1+

ψ

(1− ν)(1−ψ)

)
τ1

τ2+ τ3
> 1. (7)

Proof: Under the infinite-server model, mean system time equals mean processing time.

Substituting W γ,∞
i = τi into (4)–(6) and using (3) results in

∆∞
∗∗ =LOSASO,∞

∗∗ −LOSNSO,∞
∗∗ = ηOT (τ2+ τ3− τ1)− ηTT τ1. (8)

Using (8), LOSASO,∞
∗∗ < LOSNSO,∞

∗∗ can be shown to be algebraically equivalent to β > 1.

As discussed in Sections 1–2, most empirical studies focus on the effect of ASO on target

patients, and do not measure the effect on the system overall. In situations with plentiful

resources and negligible queueing, ASO will shorten the LOS for target patients. But ASO

can lengthen the LOS for overtested patients, and this can lengthen the overall LOS. As

an example, consider the following extreme case: the test time is negligible (τ2 ≈ 0), and all



14

arriving patients are tested (that is, ASO with ν = 0). If the time spent reviewing unneeded

test results increases τ3 by a sufficient amount, specifically, if τ3 > τ1/(1−ψ), then

β =

(
1+

ψ

(1− ν)(1−ψ)

)
τ1

τ2+ τ3
≈
(
1+

ψ

1−ψ

)
τ1
τ3

=
τ1

1−ψ

1

τ3
< 1.

Thus, it can be preferable not to use standing orders even if the testing time is negligible.

We argue that β is predictive of the optimal θ∗ for the threshold policy (1), as well as of

which of the extreme policies, ASO or NSO, is preferable. To see this, note that β depends

on two ratios: τ1/(τ2+ τ3) and ηTT/ηOT . A large τ1/(τ2+ τ3) means that the initial exam is

long relative to the test and the post-test exam. A large ηTT/ηOT occurs if the proportion of

target patients is high and the probability of overtesting is low. Both of these are situations

in which one would expect that routing ∗T patients to testing would be beneficial, and

one would therefore set θ to a large negative value, or to −∞, corresponding to ASO.

Conversely, if both ratios are small, resulting in a small β, then we expect that routing ∗T
patients to the physician would be beneficial, corresponding to a large θ value, or to +∞,

corresponding to NSO. In other words, we expect β to have a negative association with

θ∗. In Section 5, we will see that θ∗ can be reliably estimated as a linear function of lnβ.

4.2 Jackson Network Model

In order to illustrate possible unintended consequences of standing orders, we formulate an

open Jackson network model (Chen and Yao 2001), with the same topology as the infinite-

server model (see Figure 4). The difference is that now we assume a single dedicated server

for each of Queues 1–3 and we assume that with probability ζ ∈ [0,1], standing orders are

used for ∗T patients—that is, ∗T patients are routed to testing (Queue 2) after triage.

Unlike the threshold policy (1), this randomized policy ignores congestion, but it permits

a simple analysis of the network. Like the threshold policy, this randomized policy includes

ASO (corresponding to ζ = 1) and NSO (corresponding to ζ = 0) as special cases.

To complete the specification of the Jackson network model, we assume a non-preemptive

work-conserving service discipline at each node, i.i.d. exponentially-distributed service

times with mean τi at Node i, i= 1,2,3, and an independent Poisson process with rate λ

for arrivals to triage.

We begin by establishing a stability condition for the network.

Proposition 2. The Jackson network model is stable if the following condition holds:

λ<min

{
1

τ1
,

1

η∗T τ2
,

1

η∗T τ3

}
. (9)
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Proof: Let ui be the long-run average rate at which work arrives exogeneously to the

system, destined for Node i. By tracing flows in Figure 4, we obtain:

u1 = (η∗O +(1− η∗O)ζ)λτ1,

ui =

(
1−

(
1− ηTT

η∗T

)
ζ

)
η∗Tλτi, i= 2,3.

Note that ηTT/η∗T is the conditional probability that a patient who is triaged as target

(∗T ) is indeed a target patient. For Queue 1, (9) implies λτ1 < 1. The quantity that pre-

multiplies λτ1 is the probability that a patient will have an initial evaluation and is therefore

less than or equal to 1. It follows that u1 < 1. Similarly, for Queues 2 and 3, (9) implies

η∗Tλτi < 1. The quantity that pre-multiplies η∗Tλτi is the probability that a patient will go

through testing, and is therefore less than or equal to 1. Hence, ui < 1, i= 2,3. It follows

from Theorem 1.1 in Chang et al. (1994) that the network is stable.

Proposition 2 implies that under (9), the network is stable under ASO, NSO, and for

any ζ ∈ (0,1). Proposition 2 holds even if the processing times and the inter-arrival times

for new patients have general (as opposed to exponential) distributions. Permitted queue

disciplines include priority disciplines, which one would be likely to see in an ED.

In the remainder of this subsection, we demonstrate numerically that an increase in LOS

for the target patients need not result in a corresponding increase in the overall LOS and

that the use of ASO may, surprisingly, lead to a decrease in LOS for over-tested patients.

The average system time in Queue i is given by the M/M/1 formula

W γ,J
i =

τi
1−ui

. (10)

Substituting (10) into (4)-(6) provides values for ∆J
p for p∈ {OT,TT,OO}.

For the numerical experiments, we fixed the arrival rate (λ = 1), the probability that

a patient is in the target population (ηTT = ψ = 0.18), the probability that a non-target

patient is correctly identified at triage (ν = 0.83), and the mean post-test evaluation time

(τ3 = 1). We varied the mean initial evaluation time (τ1) in the range [0.2,1] and we varied

the mean testing time (τ2) in the range [0.2,3]. In Figures 6–7, we contrast predictions

from the infinite-server and the Jackson network models about whether ASO or NSO will

perform better. Specifically, in Figure 6, we show where the difference between the ASO

and NSO overall LOS values, ∆∞
∗∗, changes sign, under the infinite-server model, whereas

in Figure 7, we show where ∆J
p changes sign, for various patient types p, under the Jackson

network model. Recall that ∆M
p > 0 implies that model M predicts that NSO results in a

lower LOS for patient type p. We observe the following from Figures 6–7:
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in lower LOS, for the M = J model.

Region (c): The LOS for overtested patients can decrease under ASO, if the initial exam

time is long and the testing time is short.

Region (e): The LOS for target patients can increase under ASO, even if the overall LOS

decreases, if the initial exam time is medium-to-long and the testing time is long.

Region (f): The overall LOS can increase under ASO, even if the LOS for target patients

decreases, if both the initial exam time and the testing time are short.

Region (a) vs. Regions (c), (d), and (e): Comparison of Figures 6 and 7 shows that for

these parameter values, the Jackson network model predicts a larger region where ASO

is preferable in terms of overall LOS (the union of Regions (c), (d), and (e)) than the

infinite-server model (Region (a)).

4.3 MDP Model

We formulate an MDP model to investigate the performance of the threshold policy (1),

relative to an optimal policy. We assume the network topology in Figure 5, with a single

physician serving Queues 1, 3, and 4 (thus, Qphys = Q1 + Q3 + Q4), and a single-server

testing resource serving Queue 2 (thus, Qtest =Q2). We let Qi(t) be the number of patients

waiting or being served in Queue i at time t, with t often omitted, for brevity. Service times

are independent and exponentially distributed, with rate µi = 1/τi, for Queue i, i= 1, . . . ,4.

The model is Markovian. Full state information is assumed available at the time of triage

routing: the number of patients in each queue, and the queue (if any) that the physician

is serving. The state vector is X =
(
Q,R

)
= ((Q1, . . . ,Q4),R), with R = i, i ∈ {1,3,4} if

the physician is serving Queue i and R = 0 if the physician is idle. The physician is idle

if and only if Qphys = 0 and the physician can serve Queue i only if Qi > 0, i ∈ {1,3,4}.
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These conditions define the set Ω
(
Q
)
of possible values for R given Q. To focus attention

on triage routing, we assume that the physician selects the next queue to serve randomly,

selecting Queue i with probability Qi/Qphys, if Qphys > 0.

A policy γ specifies whether to route ∗T patients to Q1 (“physician”) or to Q2 (“test”).

We formulate the problem as an infinite-horizon average-cost MDP with a countably-

infinite state space. The state vector under policy γ is Xγ = (Qγ,Rγ). The state space is

X =

{
X=

(
Q,R

) ∣∣∣∣Q∈Z4
+,R ∈Ω

(
Q
)}

, with Z+ the set of non-negative integers. We seek

a policy that minimizes the expected average number of patients in the system:

gγ =L= limsup
T→∞

1

T
E
[∫ T

0

(Qγ
1(t)+ · · ·+Qγ

4(t))dt
]
. (11)

Under our assumptions, for any γ, Xγ is a uniformizable continuous-time Markov chain.

We set Λ = λ+ µ1 + · · ·+ µ4, λ̂ = λ/Λ, and µ̂i = µi/Λ, i = 1, . . . ,4, and let X̂γ(k) be the

uniformized discrete-time Markov chain (with k often omitted, for brevity). Finding γ that

minimizes (11) is equivalent to finding γ that minimizes

ĝγ =
gγ

Λ
= limsup

K→∞

1

K
E
[ K∑

k=1

(Qγ
1(k)+ · · ·+Qγ

4(k))
]
. (12)

The average cost of the optimal policy, γ∗, is ĝ∗ =minγ ĝ
γ. The optimal average cost and

the bias function w(Q,R) satisfy the following equation:

w(Q,R) =
Q1+ · · ·+Q4

Λ
− ĝ∗ (13)

+ η∗T · λ̂ ·min
{
w
(
Q+q1, r(R,1)

)
,w(Q+q2,R)

}
+ η∗O · λ̂ ·w

(
Q+q4, r(R,4)

)
+ µ̂2 ·

(
w
(
Q−q2+q3, r(R,3)

)
·1(Q2 > 0)+w(Q,R) ·1(Q2 = 0)

)
+
ηTT

η∗T
· µ̂1 ·

(
c(Q−q1+q2) ·1(R= 1)+w(Q,R) ·1(R ̸= 1)

)
+
ηOT

η∗T
· µ̂1 ·

(
c(Q−q1) ·1(R= 1)+w(Q,R) ·1(R ̸= 1)

)
+ µ̂3 ·

(
c(Q−q3) ·1(R= 3)+w(Q,R) ·1(R ̸= 3)

)
+ µ̂4 ·

(
c(Q−q4) ·1(R= 4)+w(Q,R) ·1(R ̸= 4)

)
, ∀ (Q,R)∈X ,

where Q + qi corresponds to “add one patient to Queue i” and Q − qi corresponds to

“remove one patient from Queue i.” The function r(R, i) = R · 1(R ̸= 0) + i · 1(R = 0)

models the assumption that the physician will begin serving a patient newly arrived to

Queue i only if the physician is currently idle. The function c(Q) models the physician’s

probabilistic choice of the next patient to serve, and is defined as:

c(Q) =

{∑
i∈{1,3,4}

Qi

Qphys
w(Q, i), Qphys > 0,

w(Q,0), Qphys = 0.
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The meaning of the components of the right side of (13) is as follows. The first term is

the difference between the number of patients in the system and the optimal average cost.

The second term represents triage routing for ∗T patients, with w(Q+ q2,R) represent-

ing “test” and w
(
Q+q1, r(R,1)

)
representing “physician”. The third term represents the

arrival of a ∗O patient to Queue 4. The fourth term represents a patient who completes

testing and transfers to Queue 3. This can only happen if Q2 > 0 and therefore, for uni-

formization, we add a self-transition term w(Q,R) ·1(Q2 = 0). The last four terms represent

physician service completion. A patient receiving service in Queue 1 is a target patient

with probability ηTT/η∗T and such a patient moves to Queue 2 after service completion.

All other patients exit the system after service completion. If R= i, i∈ {0,1,3,4}, then the

physician completes service for Queue i with probability 1(R ̸= 0)µ̂i, and a self-transition

occurs with probability
∑

j∈{1,3,4},j ̸=i µ̂j.

We summarize properties of the MDP model in the following proposition.

Proposition 3. If λ<min
{

1
τ1+ηT∗ τ3

, 1
ηT∗ τ2

}
, then there exists an average-cost optimal

stationary policy for the MDP defined by (13) with an average cost that is independent of

the initial state.

Proof: See Appendix B.

The condition in Proposition 3 ensures that the system is stable under NSO. The uti-

lizations of the physician and testing servers under this policy are λ
τ1+ηT∗ τ3

and λ
ηT∗ τ2

,

respectively. Therefore, the condition guarantees that under NSO the utilizations of both

servers remain below one.

It is natural to conjecture that the optimal decision is monotone with respect to Qtest

and Qphys, meaning that:

• if “test” is optimal for (Qtest,Qphys), then it is also optimal for (Qtest,Qphys + 1) and

(Qtest − 1,Qphys), and

• if “physician” is optimal for (Qtest,Qphys), then it is also optimal for (Qtest +1,Qphys)

and (Qtest,Qphys − 1).

Figures 8–9, which display the probability that “test” is optimal as a function of Qtest and

Qphys for two problem instances, shows that this is typically true. (We truncated the state

space so thatQ1+ · · ·+Q4 ≤ 15 and found that under the optimal policy, Pr{Q1+ · · ·+Q4 =

15} was equal to 0.007 and 0.038 for the two instances, suggesting that the truncation had

little effect on the results. Note that in the truncated model, no action is available at the

boundary, where the system is full.)
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14 1.00
13 1.00 1.00
12 1.00 1.00 1.00
11 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.52
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.00 0.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.00 0.00 0.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.74 0.00 0.00 0.00 0.00
1 1.00 1.00 1.00 1.00 1.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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𝑄
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Figure 8 MDP instance with λ= 2.59, τ1 = τ3 = τ4 =

0.29, τ2 = 0.77, ηTT = 0.25, and ηOT = 0.05;

resulting in θ̂ =−3 and a 0.3% optimality

gap.

14 1.00
13 1.00 1.00
12 1.00 1.00 0.99
11 1.00 1.00 0.99 0.88
10 1.00 1.00 1.00 0.91 0.54
9 1.00 1.00 1.00 0.89 0.60 0.00
8 1.00 1.00 1.00 0.92 0.65 0.00 0.00
7 1.00 1.00 1.00 0.95 0.73 0.00 0.00 0.00
6 1.00 1.00 1.00 0.96 0.74 0.00 0.00 0.00 0.00
5 1.00 1.00 1.00 0.96 0.51 0.00 0.00 0.00 0.00 0.00
4 1.00 1.00 0.99 0.87 0.52 0.00 0.00 0.00 0.00 0.00 0.00
3 1.00 1.00 0.93 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 1.00 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝑄
ph

ys

𝑄test

Probability that "test" is optimal, given 𝑄phys and 𝑄test

𝑄phys െ 𝑄test ൌ 𝜃 ൌ 0

Figure 9 Same MDP instance as in Figure 8, except

τ2 = 1.24; resulting in θ̂ = 0 and a 0.8%

optimality gap.

However, Figures 8–9 show that the optimal policy is complicated, in ways that could

make it difficult to use in practice. First, the optimal action depends not only on

(Qtest,Qphys) but also on Q1,Q3,Q4, and R, as evidenced by the fact that the probability

that “test” is optimal is between 0 and 1 for some cells. (The state variables Q1,Q3,Q4,

and R vary within each cell, subject to the constraint Qphys =Q1 +Q3 +Q4.) Thus, the

optimal policy consists of a 5-dimensional lookup table. Second, suppose that one were to

approximate the optimal policy with a straight line in the space of Qtest and Qphys, such

as the dotted line Qphys =−(7/6)+(4/9)Qtest in Figure 8. This equation can be translated

into a form similar to (1), namely Qphys−Qtest =−(7/6)− (5/9)Qtest, but the right side of

this latter equation is a state-dependent threshold, which complicates the use of the policy.

Fortunately, use of constant-threshold policies (represented by solid lines with a slope of

+1; see Section 5 for how θ̂ is estimated), for the two instances illustrated in Figures 8–9,

results in an overall LOS that is only 0.3% or 0.8% higher than optimal—despite these

policies resulting in suboptimal actions for several cells. Section 5 shows that threshold

policies of the form (1) are indeed near-optimal for most problem instances.

4.4 DES Model

The DES model uses the network topology in Figure 5. This model allows multiple servers

for each queue, uses distributions that are fit to empirical data for processing times, and

has a nonhomogenous Poisson arrival process with a time-dependent arrival rate obtained

from real data. Patients waiting to see a physician (Queues 1 and 3) are seen in first-come-

first-served order. The physicians are pooled, in the sense that a patient is seen by the first

available physician, regardless of whether the patient has seen that physician previously.
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Appendix F provides more detailed information about the DES model and Section 6 reports

the results of our DES experiments.

5. MDP Experiments

In this section, we use the MDP model to numerically assess the optimality gap for the

NSO, ASO, optimal-threshold (θ∗ = argminθL(θ)), and approximate-threshold (with θ̂ as

a linear function of lnβ) policies. The optimality gap is the percent increase in L relative

to the optimal policy.

We find that the parameter β is predictive of the performance of threshold policies. In

particular, we find that NSO and ASO perform poorly if | lnβ| < 1. In contrast, we find

that the approximate threshold policy is nearly optimal.

5.1 Problem Instances

We generate a full factorial experiment of MDP problem instances by varying six factors:

the average time the physician spends with a patient (τ), the target population proportion

(ηTT =ψ), the initial examination duration as a proportion of the total time the physician

spends with a target patient (κ), the overtesting rate under ASO (ηOT ), and the utilization

of resources under NSO (uNSO
phys and u

NSO
test ). Table 4 lists the factor values. With the exception

of τ , these factors are dimensionless. We fix the value of τ , without loss of generality. The

factors τ , ηTT =ψ, κ, and ηOT correspond directly to quantities that are typically reported

in medical studies, which helps us choose realistic values for those factors.

The experimental factors κ, τ,uNSO
phys , and u

NSO
test are related to the model primitives via:

τ = τ1+ψτ3, κ=
τ1

τ1+ τ3
, uNSO

phys = λτ, uNSO
test = λψτ2.

Primitives that are not given directly can be computed from the experimental factors:

λ=
uNSO
phys

τ
, ν = 1− ηOT

1−ψ
,

τ1 =
κτ

κ+(1−κ)ψ
, τ2 =

uNSO
test

uNSO
phys

τ

ψ
, τ3 =

(1−κ)τ

κ+(1−κ)ψ
.

The values for the experimental factors in Table 4 result in 35 = 243 problem instances,

which constitutes our training set. Table 12 in Appendix D shows minimum and maximum

values for the model primitives and the resource utilizations under ASO (uASO
phys = λ(ηOOτ1+

η∗T τ3) and uASO
test = λη∗T τ2) across the instances in the training set. In Section 5.2, we use

the training set to evaluate the performance of the optimal threshold policy and in Section

5.3 we use it to approximate the best threshold as a function of lnβ.
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Parameter Minimum Baseline Maximum Reference(s)

Average time physician spends with
a patient (τ)

— 22 min — Chonde et al. (2013)

Target population proportion
(ηTT =ψ)

10% 25% 70% Valtchinov et al. (2019),
Compeau et al. (2016), Ghanes
et al. (2015), Liu et al. (2014)

Initial examination duration as
proportion of total service time for
target patients (κ)

20% 35% 50% Yang et al. (2016), Ellis et al.
(2006), Graff et al. (1993)

Overtesting rate under ASO (ηOT ) 1% 5% 10% Yang et al. (2016), Thurston
and Field (1996), Lee et al.
(1996), Davies (1994), Macleod
and Freeland (1992)

Physician utilization under NSO
(uNSO

phys)
50% 80% 95% Yang et al. (2016), Ellis et al.

(2006), Graff et al. (1993)

Testing utilization under NSO
(uNSO

test )
50% 80% 95% Steindel and Howanitz (2001),

Edelstein et al. (2010)

Table 4 Experimental factors and their values.

To guard against overfitting, and in the spirit of the approaches used in Ehrhardt (1979)

and Bravo and Shaposhnik (2020), we measure the performance of different estimation

methods using a separate test set. The test set consists of additional problem instances

generated by randomly selecting values for the experimental factors from uniform distri-

butions with the minimum and maximum values in Table 4. We use the test set in Sections

5.3 and 5.4 to compare the performance of different policies.

As discussed in Appendix C, we truncate the state space by assuming that Q1 + · · ·+
Q4 ≤B = 15. All instances are stable because of the truncation, even instances for which

uASO
testing > 1 or uASO

phys > 1. The probability that the system is full, under the optimal policy,

is 0.033 on average for the training set.

5.2 Optimal Threshold Policy

The optimality gap in the training set is only 0.5% on average and 2.4% in the worst

case for the optimal threshold policy. Determining θ∗ requires determining steady-state

probabilities for 2B + 1 Markov chains, corresponding to θ = −B, . . . ,+B, with the size

of each chain growing exponentially with B. It would therefore be valuable to avoid this

computational effort by estimating θ∗ directly from the model primitives. Figure 10 shows

that, consistent with our discussion in Section 4.1, θ∗ and lnβ have a negative association.

In the next section, we formulate and evaluate approximate threshold policies, in which θ∗

is expressed as a linear or piece-wise linear function of lnβ.
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Figure 10 Optimal threshold (θ∗) and lnβ values in the
training set.
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Figure 11 Test-set optimality gap for NSO, ASO, and the
approximate threshold policy.

5.3 Approximate Threshold Policy

We use the lnβ and θ∗ values in the training set to estimate four regressions models. Table

13 in Appendix D shows complete results. For Models A and B, we utilize all 243 instances.

Model A is linear and Model B is piecewise linear, obtained by estimating one regression

models for the 133 instances with β ≤ 1 and another for the 113 instances with β ≥ 1. For

Models C and D, we discard 33 instances for which θ∗ =−B or +B, to reduce the impact

of state-space truncation. Similar to Model B, the coefficients in Model D are estimated

separately for 106 instances with β ≤ 1 and for 107 instances with β ≥ 1.

We compare the approximate threshold policies corresponding to the four regression

models in terms of their test-set optimality gaps, as shown in the bottom half of Table 13.

In computing the optimality gaps, threshold estimates are rounded to the nearest integer.

Model D performs best, with a 1.1% average test-set gap (compared to 0.7% for the optimal

threshold policy), and we use it for the remainder of our analysis:

Model D: θ̂=

{
−0.15− 7.22 lnβ, β ≤ 1,

0.90− 2.79 lnβ, β > 1.
(14)

5.4 Extreme Routing Policies: NSO and ASO

The NSO policy routes all ∗T patients to a physician. The ASO policy routes all ∗T patients

to testing. The medical literature that we reviewed indicates that these two extreme policies

are the ones most frequently used in clinical settings.

Figure 11 shows the test-set optimality gaps for NSO, ASO, and the approximate thresh-

old policy, as a function of lnβ. ASO performs well for lnβ > 1 and NSO performs well

for lnβ <−1. Outside these ranges, the performance of ASO and NSO is abysmal, with

optimality gaps exceeding 100% for many instances. The Model D approximate thresh-

old policy, in contrast, has optimality gaps below 3.9%. This indicates that hospitals can
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improve performance by using standing orders selectively, based on the number of patients

waiting for testing and the number of patients waiting for a physician.

6. DES Experiments

In earlier sections, using a series of analytical models, we developed tentative insights

regarding an effective threshold policy for routing ∗T patients, how to estimate the thresh-

old, and possible unintended consequences of using standing orders. These insights are

contingent, however, on the strong assumptions we used to formulate tractable analytical

models. In this section, we test the extent to which these insights hold in a more realistic

setting, namely, in a DES model with a time-varying arrival rate, a time-varying number

of physicians, and service time distributions that are based on real ED data.

We have one week of ED data from a mid-sized US hospital, consisting of records for

542 patient visits to the ED. Standing orders are not used in this ED, and therefore the

data corresponds to a system using the NSO policy. A CT scan was ordered for 21% of the

patients, and in our DES experiments we view this subgroup as the target population for

a standing orders protocol. We discuss the data in detail in Appendix E. Here, we briefly

outline the key model features that we have estimated from data.

Figure 12 shows the average number of patient arrivals and the scheduled number of

physicians for each hour of the day. On average, 65.9 patients arrived per day and 2.3

physicians were on duty. We assume a non-homogeneous Poisson arrival process with the

piece-wise constant rates shown in Figure 12. We use gamma distributions for the durations

of the initial physician evaluation, testing, and post-test physician evaluation. Table 5 lists

the means and squared coefficients of variation (SCVs) of the fitted distributions (fitting

the distributions required the imputation of missing values; see Appendix E). We route ∗T
patients according to (1), with the threshold calculated as follows. First, we compute β

using (7). Second, we use Model D (see (14)) to compute θ̂ and round the resulting value to

the closest integer. For the base case, the calculations are as follows, assuming ηOT = 0.01:

β =

(
1+

ηTT

ηOT

)
τ1

τ2+ τ3
=

(
1+

0.212

0.01

)
26.24

68.4+39.5
= 5.4

lnβ = 1.7

θ̂= 0.90− 2.79 lnβ =−3.8, rounded to θ̂=−4.

These calculations do not require information about the arrival rate or the number of

servers and therefore, the threshold does not vary with time.
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Figure 12 Arrival rates and number of physicians on

duty.

Service duration (min.) Mean SCV

Phys. initial exam 26.2 0.754

Phys. post-test exam 39.5 0.754

CT scan test 68.4 0.423

Table 5 Summary statistics for fitted gamma

service time distributions.

We use DES experiments to investigate how the impact of using standing orders depends

on such factors as the overtesting rate, service time variability, on whether a threshold

policy is used, the accuracy with which the threshold is estimated, and the level of ED

congestion. All results are based on 250 thirty-day replications. The confidence interval

half-width for the overall ED LOS for the base case, under NSO, is about 1.2%. For the

case where we increase the service time variability the half-width increases to 2.3%.

In the base case, we vary the overtesting rate (ηOT ): 1%, 5%, and 10% and we compare

three policies: NSO, the approximate threshold policy, and ASO. Table 6 shows the results.

We report the utilization of resources, the LOS for all patient types, and the improvement

in overall LOS over NSO resulting from the use of the ASO and the threshold policy.

Note that under NSO, there are no OT patients. Under ASO, TT and OT patients

should be treated the same. The fact that the average LOS is similar for these two patient

types serves as an accuracy check for the DES model.

If we focus on overall (∗∗) LOS, then we observe the following pattern: Using standing

orders selectively, based on a threshold policy, reduces ∗∗ LOS for all levels of overtesting,

but using standing orders for all patients reduces ∗∗ LOS if the rate of overtesting is low

(1%) but not if it is medium and high (5% and 10%). In particular, if the triage nurse

identifies 10% of patients as belonging to the target group even though they do not, then

using standing orders for all patients increases the testing utilization from 66.0% to 95.7%

and this results in more than doubling of the overall LOS (from 135.54 to 360.84 min.). In

contrast, routing ∗T patients to testing only when the testing resource is less congested,

by using the threshold policy, reduces overall LOS, despite the high overtesting rate.

To check the robustness of the overall pattern of reduction in ∗∗ LOS, we investigate a

series of variations of the base case. In each variation, we modify a small number of inputs

but keep all other inputs the same.
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Overtesting rate (ηOT ) 0% 1% 5% 10%

Policy NSO ASO Threshold ASO Threshold ASO Threshold

Physician utilization 69.9% 60.0% 60.5% 62.0% 64.6% 64.1% 67.7%

Testing utilization 66.0% 69.1% 69.3% 81.8% 76.1% 95.7% 77.8%

LOS (min.) by type

∗∗ 135.54 99.04 97.98 142.58 115.40 360.84 130.61

TT 355.22 269.23 267.35 391.10 311.06 1043.41 355.70

OT – 266.33 229.80 392.56 160.11 1042.45 128.21

OO 76.93 50.74 50.40 54.31 56.41 57.87 62.05

Improvement in ∗∗ LOS over NSO – 26.9% 27.7% -5.2% 14.9% -166.2% 3.6%

Estimated threshold (θ̂) – – -4 – 0 – 2

Proportion of ∗T routed to testing 0% 100% 94.0% 100% 63.3% 100% 37.3%

Table 6 Comparison of different policies for the base case under different overtesting rates.

We begin by varying the SCVs of the three service time distributions: We compare a no

variability (SCV = 0) case and a high variability (SCV = 2) case to the base case, in which

the SCVs are 0.423 or 0.754 (see Table 5). The mean service times remain unchanged.

Although varying the SCVs between 0 and 2 has a large impact on the LOS values (results

not shown), Table 7 demonstrates that the pattern of percent improvement in ∗∗ LOS over

NSO remain largely the same, regardless of the service time variability. The main exception

appears to be that for the high variability case (SCV = 2) and for high overtesting (10%),

the improvement from using the threshold policy almost disappears—but remains positive.

Overtesting rate (ηOT ) 1% 5% 10%

Policy ASO Threshold ASO Threshold ASO Threshold

Improvement in ∗∗ LOS
over NSO

Base case 26.9% 27.7% -5.2% 14.9% -166.2% 3.6%

SCV = 2 26.4% 26.3% -10.5% 14.2% -147.0% 0.2%

SCV = 0 23.2% 23.5% -7.4% 11.8% -179.5% 4.0%

Proportion of ∗T routed
to testing

Base case 100% 94.0% 100% 63.3% 100% 37.3%

SCV = 2 100% 87.6% 100% 62.4% 100% 42.9%

SCV = 0 100% 96.4% 100% 62.9% 100% 30.7%

Table 7 Changing SCVs of service times for the base case.

Next, we investigate the consequence of inaccurate estimation of the threshold used

to determine how to route ∗T patients. Table 8 shows that over- or underestimating the

threshold θ̂ by one unit does not greatly impact the ∗∗ LOS. The pattern that the improve-

ment from using the threshold policy decreases with the overtesting rate remains. We see
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Overtesting rate (ηOT )

Threshold 1% 5% 10%

Improvement
in ∗∗ LOS
over NSO

θ̂− 1 27.7% 14.4% 3.3%

θ̂ 27.7% 14.9% 3.6%

θ̂+1 27.4% 12.6% 2.3%

Table 8 Performance of the threshold policy for the

correct threshold θ̂, and for the thresholds

θ̂± 1, for the base case.

Overtesting rate (ηOT )

Policy 1% 5% 10%

Improvement
in ∗∗ LOS
over NSO

Threshold 27.7% 14.9% 3.6%

Random 26.4% 2.7% -9.0%

ASO 26.9% -5.2% -166.2%

Table 9 Comparison of the threshold policy to a ran-

dom routing policy.

an asymmetry, in that overestimating θ̂ by one unit appears to be more harmful than

underestimating by one unit, particularly for high overtesting rates.

Tables 6–8 show that as the overtesting rate increases, the threshold policy routes a

smaller proportion of ∗T patients to testing. One might wonder whether routing the “right”

proportion to testing is sufficient to obtain the benefits of the threshold policy. To that

end, we investigate the performance of a random routing policy, as in the Jackson network

model, in which each ∗T patient is routed to testing with probability ζ, independent of

the system state. We set ζ equal to the proportion of ∗T patient routed to testing by the

threshold policy (see Table 6). Table 9 shows the results. We see that the random routing

policy retains most of the performance benefit of the threshold policy if the overtesting

rate is 1%, it retains some of the benefit if the overtesting rate is 5%, but it performs worse

than NSO if the overtesting rate is 10%. This experiment demonstrates the importance

of taking system congestion into account in routing policies—an aspect that is largely

overlooked in the medical literature.

In our final set of experiments, we vary the average duration of initial evaluation and

testing by ±25%. Table 10 shows the results, for a 5% overtesting rate. As before, use of

the threshold policy reduces ∗∗ LOS both when mean service times are increased and when

they are decreased, although the percent improvement is less than in the base case.

A closer look at the results in Table 10 reveals that if service times are decreased by 25%

and ASO is used, target patients experience shorter LOS, but overall LOS increases. This

outcome corresponds to Region (f) in Figure 7 and illustrates the importance of assessing

the effect of the use of standing orders for the ED as a whole.

If service times are increased by 25% and the threshold policy is used, we see the

opposite—target patients experience longer LOS, but overall, LOS decreases by 4.9%. This

outcome corresponds to region (e) in Figure 7.



27

Initial evaluation and testing duration: -25% +25%

Policy NSO ASO Threshold NSO ASO Threshold

Physician utilization 56.4% 51.2% 53.7% 82.2% 70.5% 76.4%

Testing utilization 49.6% 61.4% 55.5% 82.3% 97.6% 92.7%

LOS (min.) by type

∗∗ 66.98 70.67 62.55 287.35 506.88 273.34

TT 190.44 183.69 170.85 724.68 1728.32 782.73

OT – 184.38 77.53 – 1731.76 355.51

OO 34.01 30.63 30.62 170.35 95.45 122.80

Improvement in ∗∗ LOS over NSO – -5.5% 6.6% – -76.4% 4.9%

Estimated threshold (θ̂) – – 1 – – 0

Proportion of ∗T routed to testing 0% 100% 49.6% 0% 100% 39.9%

Table 10 Varying the mean initial evaluation and testing duration by ±25% with overtesting rates of 5%.

The medical studies that we reviewed in Section 2 appear to take the viewpoint that the

aim is to reduce LOS and the means to do so is to reduce LOS for target patients. None of

the studies report the overall LOS, however, or otherwise measure possible spillover effects

on other patients. Our simulation results demonstrate that a negative finding for the target

patients could, paradoxically, occur even if overall ED performance is improved.

Combining the results from Tables 6 and 10, for a 5% overtesting rate, we see that as we

move from 25% lower service times to the base case to 25% higher service times, the testing

utilization under NSO increases from 50% to 65% to almost 98% (physician utilization

moves in the same direction, but not as drastically). The resulting percent improvements

from using the threshold policy are 6.6%, 14.9%, and 4.9%. This suggests that if the system

congestion is relatively low or high, there is less room for performance improvement via

standing orders. In other words, the benefit from the optimal use of standing orders has

an inverted U-shape relationship with resource utilization.

7. Conclusion

Standing orders allow an ED triage nurse to initiate certain medical tests for target patients

before they are seen by a physician. In the medical literature, standing orders are viewed

as a tool to reduce the ED LOS by reducing LOS for the target patients, without taking

a system-wide viewpoint. Only a few studies report on how and if triage nurses ascertain

the operational state of the ED in deciding whether to invoke standing orders.

We developed a series of models to investigate the impact of standing orders on the ED

as a whole and derived a simple but near-optimal policy, which uses a single threshold
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(θ̂) to determine whether to use standing orders. The threshold policy recommends that

patients triaged as target should be routed to testing if the difference between the number

of patients waiting for a physician and the number of patients waiting for testing is greater

than or equal to θ̂. We determine the value of θ̂ using a linear function of lnβ. The

parameter β is a simple function of a subset of the model primitives, which excludes the

arrival rate and the number of physicians on duty. Consequently, θ̂ does not depend on time

of day or day of the week, which should simplify use of the policy. Numerical results for a

simplified MDP model show that the performance of the approximate threshold policy is

within 1.0% of an optimal policy.

The use of the approximate threshold policy requires information on the operational

status of the ED, which could be obtained through direct observation of the queues in

the ED, or could be available through a computerized information system. The continuing

digitization of EDs facilitates availability of such information. For example, the Ministry

of Health and Wellbeing of South Australia informs constituents virtually in real time of

the operational status of the EDs in the region (Government of South Australia 2020).

Their ED dashboard is updated every 30 minutes, providing expected ED waiting times,

the number of patients waiting for consults, radiology services, inpatient beds, etc.

We used DES experiments to investigate in detail the impact of standing orders for differ-

ent patient categories. We found that using standing orders could improve the performance,

not by decreasing the ED LOS of the target patients, but rather through impacting other

patients. This happens as routing some target patients to testing after triage decreases the

physician load, which reduces wait times for physicians. We also found that the benefit

of using the approximate threshold policy—rather than always or never using standing

orders, regardless of operational status—is greater if resource utilizations are moderate.

The benefit of standing orders depends on how much their use can reduce the load

on physicians without overwhelming testing resources. Our models focus on one standing

order protocol. However, in practice, an ED could have multiple standing orders protocols.

We predict that multiple standing order protocols, whose use is controlled with congestion-

based policies will result in a larger reduction LOS reduction than any of the individual

protocols: The increased load on testing will be distributed over multiple testing services,

whereas the load on physicians is reduced even more. Investigating whether this is true is

an important avenue for further research.
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A. Summary of Empirical Medical Literature

Duration

Reference Location (months) LOS reduction for target population

Thurston and Field
(1996)

UK NR Overall: 4 min (4.3%)a, Sent for X-rays: 14
min (29.2%)a

Parris et al. (1997) Australia 5.5 With a fracture: 14 mina, Without a
fracture: 6 mina

Lindley-Jones and
Finlayson (2000)

UK 0.5 37.2 min (36%)*** in time from triage to
treatment decision

Fan and Woolfrey (2006) Canada 3 6.7 min (8.4%)a

Lee et al. (2016) Canada 12 28 min (19.6%)**

Ho et al. (2018) Hong Kong NR 13 min (14.9%)*

Lee et al. (1996) Hong Kong 3 Sent for X-rays: 18.59 min***

Pedersen and Storm
(2009)

Denmark NR For 75% patients: 21 min (60%) in time from
admittance to X-rays request; 24 min
(26.6%) in time from admittance to patient
returned from X-ray

Rosmulder et al. (2010) Netherlands 0.75 Overall: 14 min (14%); Those who require
additional diagnostic investigation: 27 min
(18%)

Ashurst et al. (2014) USA 10 6.5 min (6.3%)a

Than et al. (1999) Singapore 3 24.5 min

Hwang et al. (2016) USA 5 −212 min (−52.7%)***; 26 min (16.9%)* in
time from physician evaluation to disposition
time if all tests were completed before the
patient was seen by a physician

Li et al. (2018) China 5 15 min (6.2%)***

Settelmeyer (2018) USA 3 6 min

Cheung et al. (2002) Canada NR 46 min

Retezar et al. (2011) USA 32 52 min (18%) in time between placement of
the patient in treatment room and
disposition decision

Goldstein et al. (2018) South Africa 5.5 For a subset of tests: 20%* in time from first
physician evaluation to disposition decision

Table 11 Additional information from the medical studies on the impact of standing orders initiated by triage

nurse.

Legend: NR = not reported.

Legend for statistical significance of LOS reduction: *: p < 0.05, **: p < 0.01, ***: p < 0.001, a: not

statistically significant, no code: statistical significance not reported.

B. Proof of Proposition 3

We prove Proposition 3 using Theorem 8.10.7 for countable–state MDPs from Puter-

man (2014), by verifying that (a) the immediate reward, with the MDP formulated as a

maximization problem, is bounded above, and (b) the assumptions of Theorem 8.10.9 in
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Figure 13 Transition paths from (Q,R) to (Q,R′), for all pairs (R,R′)∈ {1,3,4}2

Puterman (2014) hold.

Part (a): We redefine the MDP in (13) as a maximization problem with immediate

reward defined as r(s, a) = r(s) = r(Q,R) =−
∑

iQi. Because −
∑

iQi ≤ 0, the assumption

that r(s, a) is bounded above is satisfied. In this proof, we work with policies that maximize

the average reward, rather than minimize the average cost. Our immediate rewards are the

negative of the total number of patients in the system. Therefore, the average reward is

non-positive: if under some policy, the average number in the system is L, then the average

reward is −L.
Part (b): Next, we verify the assumptions of Theorem 8.10.9. First, we show that there

exists a deterministic stationary policy that induces a positive-recurrent Markov chain. To

do so, we show that there exists a policy, namely, NSO, which results in a stable queueing

system and a Markov chain in which all states communicate (Bramson 2008). To prove

that all states of the NSO-induced Markov chain communicate, we show in Figure 13 that

there is a non-zero probability of transitioning in a finite number of steps from any feasible

origin state (Q,R) to any feasible destination state (Q,R′) that differs only in the queue

that the physician is serving (state variable R). Further, in Figure 14 we show that any

feasible state (Q+ qi,R′) is reachable from (Q,1) in a finite number of steps, that any

state (Q−qR,R′) is reachable from (Q,R) in a single step, and that any state (Q−q2,R′)

is reachable from (Q,3) in two steps. We conclude that by combining such “atomic state

changes” (Q to Q±qi and R to R′), any feasible state is reachable from any other feasible

state, and therefore all states communicate.

Next, we note that the queueing network of interest is a two-station multi-class network

in which the servers follow a work-conserving policy, and in which one of the stations
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Figure 14 Selected transition paths from (Q,R) to (Q−qR,R′), from (Q,3) to (Q−q2,R′), and from (Q,1) to

(Q+qi,R′). Details of transition paths between (Q,R) and (Q,R′), indicated here with dashed lines,

are shown in Figure 13.

serves only one class. The two stations are the physician server and the testing server;

the four classes are the patients in the four queues; and the station serving a single class

is the testing station. Bertsimas et al. (1996, Theorem 4) proved that such a queueing

network is stable if the total load on each station is less than 1. Under the NSO policy,

this requirement translates into an upper limit on the total arrival rate:

λ<min

{
1

τ1+ ηT∗ τ3
,

1

ηT∗ τ2

}
. (15)

This concludes our verification of the first assumption of Theorem 8.10.9: provided that (15)

is satisfied, there exists a deterministic stationary policy that induces a positive recurrent

Markov chain.

Stability of a queueing system is defined in terms of finite expected queue lengths for

all stations (Sigman 1990). System stability under NSO implies that gNSO is finite, which

is the second assumption of Theorem 8.10.9.

The last assumption of Theorem 8.10.9 is that the set Y (gNSO) = {(Q,R)∈X :−
∑

iQi >

gNSO} is non-empty and finite. To show that Y (gNSO) is non-empty, we observe that (0,0)∈
Y (gNSO), because gNSO < 0 (recall that gNSO is an average of negative rewards). To show

that Y (gNSO) is finite, we observe that gNSO is finite and that the Qi are non-negative

integers, and therefore the number of states that satisfy
∑

iQi <−gNSO is finite.
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C. Calculation of Optimal Policy and Optimal Threshold Policy

For the optimal policy results reported in Section 5, we modified the MDP from Section

4 by truncating the state space to Q1 + · · · + Q4 ≤ B = 15, and replacing arrivals with

self-transitions for states with Q1 + · · · + Q4 = B. We solved the modified MDP using

the relative value iteration algorithm, implemented using Python 3.6, with the stopping

criterion ϵ= 10−5 and a maximum of 10,000 iterations.

We evaluated system performance under the threshold policy defined in (1) by construct-

ing the transition probability matrix P (θ) for the Markov chain induced by a given thresh-

old θ. We obtained the stationary probability vector π for this Markov chain by solving

the system Aπ= b, using the SciPy Python library (Release 1.4.1), with the matrix A set

to P (θ)T −I and the last row replaced by a row of ones, and with b set to (0, . . . ,0,1)T . We

computed L(θ) as
∑

X π(X) (Q1(X)+ · · ·+Q4(X)), where X indexes states. We obtained

an optimal threshold θ∗ as argminθ∈{−B,...,+B}L(θ).

D. Additional Results from MDP Experiments

Table 12 shows minimum and maximum values for the model primitives and the resource

utilizations under ASO across all the problem instances in the training set used in the

MDP experiments in Section 5.

Parameter Minimum Maximum

Arrival rate (λ) 1.36 2.59

Initial examination service time(τ1) 5.8 20

Testing processing duration(τ2) 16.5 428.6

Post-test examination service time (τ3) 12.9 63.2

True negative rate (ν) 66.7% 98.9%

Physician utilization under ASO (uASO
phys) 29.4% 108.6%

Testing utilization under ASO (uASO
test ) 50.7% 190.0%

Table 12 Minimum and maximum values for the model primitives and resource utilizations under ASO, derived

from experimental factor values. All service processing times are in minutes.

The top half of Table 13 shows complete results for the four regression models we evaluate

for estimating θ∗ as a function of lnβ. We compare the approximate threshold policies

corresponding to the four regression models in terms of their test-set optimality gaps, as

shown in the bottom half of Table 13.
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Approximate threshold (θ̂) Optimal

Model A Model B Model C Model D threshold (θ∗)

β ≤ 1
Intercept 2.70 (0.19) 0.10 (0.33) 2.39 (0.19) -0.15 (0.36)

Slope -4.75 (0.13) -7.01 (0.26) -4.10 (0.16) -7.22 (0.37)

N/A
β ≥ 1

Intercept
as above

1.51 (0.48)
as above

0.90 (0.43)

Slope -3.62 (0.32) -2.79 (0.31)

β ≤ 1/β ≥ 1 R2 0.84 0.85/0.54 0.76 0.78/0.44

Test-set
optimality gap

Minimum 0.0% 0.0% 0.0% 0.0% 0.0%

Average 1.5% 1.1% 1.4% 1.1% 0.7%

Median 1.3% 0.9% 1.2% 0.9% 0.6%

Standard deviation 1.2% 0.7% 1.0% 0.7% 0.5%

Maximum 7.2% 3.9% 5.3% 3.9% 2.2%

Winning policy∗ 35.4% 68.7% 50.6% 70.0% N/A

Table 13 Four models for estimation of θ∗. Standard errors are shown in parentheses.
∗ The percentages do not add up to 100% because of ties.

E. ED Data

We have records for 542 patients treated at a mid-sized US hospital over the course of

one week. We removed 7 patient records because of missing data. Table 14 describes the

variables in the data set.

We did not have access to physician schedules but we knew who the treating physician

was for every patient. Using this information, we inferred the shift start and end time

for each physician. We inferred the following shifts: 8-hour shifts starting at 6 am and at

noon, a 9-hour shift starting at 9 am, 10-hour shifts starting at 1 pm and at 4 pm, and an

11-hour shift starting at 7 pm. Using these shifts, we calculated the scheduled number of

doctors for each hour of day, as shown in Figure 12.

We require information about initial physician evaluation, post-test physician evaluation,

and testing, but the data does not provide direct measurements of the durations of these

activities. In the remainder of this section, we discuss how we imputed values for these

durations.

Physician initial and post-test evaluations: Our procedure for imputing initial evaluation

durations is based on the principle that during a busy period for a particular server, the

server moves from one activity to the next with no delay. For each patient, we have some

or all of the following timestamps:

AR: Patient arrives to the ED.

IE: Physician initial evaluation begins.
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Description Data type Comments

Visit identifier Numeric ID 542 patient visits

AR = Patient arrival Timestamp

Primary complaint String 298 unique values; non-standardized free text, e.g.
“RLQ ABDOMINAL PAIN, FEVER, HA”

IE = Physician evaluation Timestamp Assumed to be recorded at the beginning of initial
evaluation

Evaluating physician Physician ID 14 different physicians worked in the ED during the
week for which the data was collected

DC = Discharge Timestamp

Scans ordered Numeric 115 patients (21% of 542) had one or more CT scans
ordered

CT scan type String 22 unique values; The three most commonly ordered
scan types represented 30%, 19%, and 13% of all
scans ordered

OR = CT scan order Timestamp Assumed to be recorded when CT scan order is
placed

RP = CT scan report completion Timestamp

Table 14 Variables in the ED data set.

Interval Count Min. Avg. Median Max. Std. Dev. SCV Time unit

Initial evaluation (imputed) 392 1 26.2 20 161 22.0 0.704 minutes

CT scan duration (imputed) 17 19 68.4 49 275 59.9 0.766 minutes

Frequency distribution for Scans ordered

number of scans:number of patients ≥ 1:115, 1:93, 2:16, 3:5, 4:1

Table 15 Summary statistics for the ED data.

OR: CT scan ordered (separate timestamp for each scan).

RP: CT scan report complete (separate timestamp for each scan report).

DC: Patient discharged.

We assume that IE, OR, and DC require the immediate attention of the patient’s physician,

but AR and RP do not. The imputation procedure is as follows:

1. For each Physician p and for each physician evaluation time stamp t1, corresponding

to Patient q: Identify the next timestamp t2 of any type for Physician p. The interval

(t1, t2) is a potential sample of an initial evaluation duration.

2. Eliminate interval (t1, t2) obtained in Step 1 if any of the following holds:

(a) Timestamp t2 is AR or RP, or timestamp t2 is OR for Patient q. In words, we only

keep intervals for which t2 corresponds to physician evaluation or discharge (IE or

DC) for any patient under Physician p’s care, or ordering a test (OR) for any patient

other than Patient q under Physician p’s care.
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Figure 15 Distribution of imputed initial evalua-

tion durations.
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Figure 16 Distribution of imputed test durations.

(b) The duration of (t1, t2) is zero.

(c) The number of patients (not counting Patient q) that were waiting for a physician

initial evaluation during (t1, t2) dropped below 1. In words, we eliminate intervals for

which there is a possibility that Physician p was idle between completing one initial

evaluation and starting their next task.

This procedure allows us to impute initial evaluation durations for 392 patients. The

resulting summary statistics are provided in Table 15. The SCV of 0.704 is considerably

less than 1—the value for an exponential distribution. Figure 15 shows that a gamma

distribution provides a good fit to the empirical distribution. The maximum-likelihood

parameter estimates for the gamma distribution are k̂ = 1.325 and θ̂ = 19.81, resulting in

a mean of k̂θ̂ = 26.24 minutes and SCV = 1/k̂ = 0.754 for the fitted distribution. We use

this gamma distribution in the DES base case.

Our data has no timestamps that allow us to impute the durations of post-test evalu-

ations for individual patients. We assume that post-test evaluations are 50% longer than

initial evaluations, on average, and that the distribution shape is the same for post-test

evaluations as initial evaluations. Thus, we assume a gamma distribution with parame-

ters k = 1.33 and θ = 19.81× 1.5, which leads to a mean of kθ = 39.5 minutes and SCV

= 1/k= 0.754. Assuming a proportion ηT∗ = 115/542 = 21.2% of target patients and NSO,

the base case simulated physician utilization is 70%.

CT scan duration: A total of 144 CT scans were ordered, for 115 of the 542 patients.

The number of scans per patient, for patients with one or more scans, ranged from 1 to

4 (see Table 15). Each CT scan had separate timestamps for the time of order and the

time of report completion. We combined all scans for a single patient into a single “test”,
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with the test order time set to the earliest scan order time and the report completion time

set to the latest scan report completion time. There were five exceptions, for which one

or more of the scan order times for the patient occurred after one or more of the scan

report completion times for the patient. For each of those five patients, we defined two or

more tests, with each test consisting of one or two scans. This procedure resulted in 120

test duration intervals. The hospital had a single CT scanner and we assume that a single

radiologist was on duty at all times, to prepare the scan reports. Therefore, each of these

intervals corresponds to the sojourn time in a two-station tandem queueing system, where

the first station is the single CT scanner and the second station is the single radiologist

who prepares the CT scan reports.

Next, for each test duration interval, call it (t1, t2), we eliminated the interval if one or

more other tests were completed within (t1, t2), which indicates that part of (t1, t2) could

represent waiting time for the CT scanner or the radiologist. This reduced the number of

tests from 120 to 45.

Finally, for each of the remaining test duration intervals, we kept only intervals for which

at least one other test was ordered before t1 and completed after t2, indicating that the test

of interest was given priority. This reduced the number of tests from 45 to 17. We assume

that these 17 tests were completed with minimal delay, and therefore their durations are

unbiased estimates of the total processing time for performing the CT scans and preparing

the reports, in the aforementioned tandem queueing system.

Table 15 provides summary statistics for the final sample of 17 test durations. Similar

to the initial evaluation durations, the SCV is less than 1. Figure 16 shows that a gamma

distribution provides a reasonable fit to the empirical distribution, taking into considera-

tion the small sample size. The maximum-likelihood parameter estimates for the gamma

distribution are k̂= 2.363 and θ̂= 28.95, resulting in a mean of k̂θ̂= 68.4 minutes and SCV

= 1/k̂= 0.423 for the fitted distribution. We use this gamma distribution in the DES base

case.

F. DES Model Details

We developed the DES model using the Arena software (Version 15.10.00001). All DES

results are based on 250 replications of 30 days, excluding a 2-day warm-up period.

The model (global) variables are:

• θ̂: threshold value

• ψ: proportion of TT patients
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Figure 17 DES model Arena flowchart.

• ν: proportion of O∗ patients triaged as OO

• vArrivalRate: an array of 24 hourly arrival rates

• vNumPhysicians: an array of 24 values for physician capacity

• κ1 and θ1: the shape and scale parameters for Gamma distribution for the initial

evaluation time

• κ2 and θ2: the shape and scale parameters for Gamma distribution for test time

• κ3 and θ3: the shape and scale parameters for Gamma distribution for the post test

evaluation time

The model has two resources: Physicians (with capacity that varies according to

vNumPhysicians) and Test (with a capacity of 1).

The model entities are patients. The attributes of a Patient are:

• patientType: Initialized to TT , OT , or OO, with probabilities ψ, (1 − ν)(1 − ψ), or

ν(1−ψ)

• bTestCompleted: Initialized to FALSE

• bRoutedToTest: Initialized to FALSE

• τi, i= 1,2,3: Initialized to a Gamma random variate with parameters κi and θi

• LOS: Computed immediately before the entity is disposed of

Figure 17 shows the Arena flowchart for the DES model. Patient entities are generated

through the Patient arrives create module, according to an arrivals schedule that uses the

hourly arrival rates in vArrivalRate. In Arena, an arrivals schedule generates arrivals from a
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non-homogeneous Poisson process with piece-wise constant arrival rates. Next, the entity’s

attributes are initialized, including the patientType attribute.

Patients of type OO are routed to the Seize physician queue. Patients of types OT and TT

are routed from the Route to test? decision block to the Perform test process module if the

difference between the number of patients waiting for or receiving service from Physicians

and the number of patients waiting for or receiving service from Test exceeds θ̂, and to the

Seize physician queue otherwise. If a patient is routed from Route to test? to Perform test,

then the patient’s bRoutedToTest attribute is set to TRUE in the Routed to test assignment

module.

A patient captures a Physicians resource according to the FCFS policy. If more than one

physician is available, the patient entering service is randomly assigned to one of the free

physicians.

After seizing a physician, the patient entity moves to the Initial eval? decision block.

If the patient’s bTestCompleted attribute equals TRUE, then the patient is routed to the

Post test eval delay/release module, delaying the captured physician for the duration of

the patient’s τ3 attribute. Otherwise, the patient is routed to the Initial eval delay/release

module, delaying the captured physician for the duration of the patient’s τ1 attribute.

Upon leaving the Post test eval module, the patient releases the captured physician. The

patient is then routed to the Compute LOS module, where the LOS attribute is calculated

as the time interval between the current simulated time and the entity’s creation time.

After that, the entity is disposed of in the Patient departs module.

Upon leaving the Initial eval module, the patient releases the captured physician. The

patient is then routed to the Test? decision block. Patients with a patientType of TT are

routed to the Perform test queue. Patients of the OT and OO type are routed to the

Compute LOS module, and then are disposed of.

Patients in the Perform test queue capture the Test resource in FCFS order. After cap-

turing the resource, the patient holds the resource for the duration of the patient’s τ2

attribute. From the Perform test module, the patient is routed to the Test completed assign-

ment module, where the bTestCompleted attribute is set to TRUE. The patient is then

routed to the Seize physician queue.

Six separate random number streams are used for the following purposes: Generate the

τ1 attribute, generate the τ2 attribute, generate the τ3 attribute, generate the patientType

attribute (two streams are used for this), and generate patient arrivals. A seventh random

number stream is used for routing, in the randomized routing experiment.


