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Introduction 

The purpose of this lab is to demonstrate some spatial processing in R using two 
classification techniques: LDA and Random Forest. This will be done using the 
“terra” package, an expanded replacement for the “raster” package that includes a 
wide variety of additional functions, like vector operations. You can find a list of terra 
functions here: https://cran.r-project.org/web/packages/terra/terra.pdf, or in the 
included terra.pdf.  

We will be using Landsat 8 imagery from a scene of the Central Valley in California 
captured on the 14th of June, 2017. Specifically, we will be using surface reflectance 
for bands 2 through 7. You can read more about Landsat 8 spectral bands here: 
https://www.usgs.gov/landsat-missions/landsat-8. Landsat data were downloaded 
from the Earth Explorer portal under Landsat Collection 2 Level-2: 
https://earthexplorer.usgs.gov/. You can learn more about this specific data product 
here: https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-
reflectance. The bands were converted from 16-bit to 8-bit rasters, clipped to the 
study area, and renamed. 

Spatial Rasters 

To get started, first load each band individually. We have 6 bands which will allow us 
to make predictions using a wide range of the electromagnetic spectrum. 

Band 2 (B2) Blue 

Band 3 (B3) Green 

Band 4 (B4) Red 

Band 5 (B5) Near Infrared (NIR) 

Band 6 (B6) Shortwave Infrared 1 (SWIR 1) 

Band 7 (B7) Shortwave Infrared 2 (SWIR 2) 

First, install and load terra. 

install.packages("terra") 

library(terra) 

Make sure you download the data for the lab and set your working directory to the 
data folder (You should have the land class symbology, a folder with the 6 bands, 
study area, and a .csv of training points). You can then load each band as a raster. 

setwd("[your saved directory]/terra/Data") 

B <- rast("Rasters/B2.tif") 

G <- rast("Rasters/B3.tif") 

R <- rast("Rasters/B4.tif") 

NIR <- rast("Rasters/B5.tif") 

SWIR1 <- rast("Rasters/B6.tif") 

SWIR2 <- rast("Rasters/B7.tif") 

B #Some information about the raster  

 

https://cran.r-project.org/web/packages/terra/terra.pdf
https://www.usgs.gov/landsat-missions/landsat-8
https://earthexplorer.usgs.gov/
https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance
https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance


terra allows for easy visualization of spatial data with the plot function. 

gscale <- colorRampPalette(c("black","white")) #An easy 

function to create a colour ramp for plots 

plot(B,col=gscale(256)) #256 represents the number of 

possible values (These are 8-bit rasters, so 0-255) 

To visualize a composite image, first you can create a raster stack (a raster with 
multiple bands). This can be done by stacking the rasters that you have already 
loaded, or loading multiple bands at once. 

Using loaded rasters: 

B.List <- list(B,G,R,NIR,SWIR1,SWIR2) 

B.Stack <- rast(B.List) #Same function as single band 

B.Stack #There are now 6 layers and names 

From file: 

B.List <- list.files(path="./Rasters" ,full.names=TRUE) 

B.Stack <- rast(B.List) 

We probably want simpler variable names. The current ones came from the original 

files. 

names(B.Stack) #Current names 

names(B.Stack) <- c("B","G","R","NIR","SWIR1","SWIR2") 

names(B.Stack) #Check for new names 

You can also plot a single band from a 
stack. 

plot(B.Stack,y=1, 

col=gscale(256)) 

With a raster stack, you can use 
plotRGB to plot a coloured image 
using the red, green, and blue bands 
(or substitute other bands for different 
compositions). 

data.frame(names(B.Stack)) 

#Check for band numbers 

plotRGB(B.Stack, 

r=3,g=2,b=1,stretch="lin", 

smooth=TRUE) 

You might notice that some of these colours do not look natural. To create a natural 
looking imagine, you would need another program to manually adjust the levels of 
each band.  

Spatial Vectors 

terra can also work with vector files. Try overlaying the last plot with a polygon for the 
study area. 

 

Greyscale plot of blue colour band 



S.Area <- vect("./Study Area") 

plot(S.Area,add=TRUE,border="yellow",lwd=5) 

Next we can look at the training data 

T.Points <- vect("./Training Points") 

plot(T.Points,add=TRUE) 

S.Area 

T.Points # Compare the 

projections (coord. ref.) 

As you can see, there are no error 
messages if the projection is off: the data 
just won’t be drawn. 

T.Points <- project( 

T.Points,S.Area) 

plot(T.Points,add=TRUE) 

Predictions 

Now that we’ve confirmed the sample points and rasters match spatially, we can 
extract the raster values to our points. 

T.Data <- extract(B.Stack,T.Points) #Only contains raster 

information 

T.LC <- as.data.frame(T.Points)[2] #Land class column 

T.LC$ID <- row.names(T.LC) #ID field for merge 

names(T.LC)[1] <- "LC" 

T.Data <- merge(T.Data,T.LC,by="ID") #Merge land class and 

extracted raster data 

T.Data <- T.Data[,-1] 

T.Data$LC <- as.factor(T.Data$LC) #Factors are considered as 

classes for prediction 

We will need the rest of our raster data in a format that LDA and randomForest can 
use to make predictions, that can also be converted back into a raster for 
visualization. If the prediction models were pre-generated, terra has an in-built 
predict function for spatial data. 

R.Grid <- data.frame(xyFromCell(B.Stack[[1]], 

1:ncell(B.Stack)[[1]])) #Creates data frame of coordinates  

R.Values <- cbind(R.Grid,values(B.Stack)) #Converts layer 

values into columns and binds to coordinates 

First, the LDA model and predictions: 

library(MASS) 

LC.lda <- lda(LC~.,T.Data) 

lda.P <- predict(LC.lda,R.Values) 

lda.P <- lda.P$class 

R.Values$lda <- lda.P 

RGB plot of study area and training data 



Then, randomForest: 

library(randomForest) 

LC.rf <- randomForest(data=T.Data,LC~.,ntree=100) 

rf.P <- predict(LC.rf,R.Values) 

R.Values$rf <- rf.P 

To compare the accuracy of the two methods, we can use a confusion matrix. This is 
a table that compares predicted classifications to the training data. randomForest 
can do this by running the randomForest object. 

LC.rf 

MASS does not have a built-in function for this, so the process is a bit more involved. 

T.lda.P <- predict(LC.lda,T.Data) 

T.lda.P <- T.lda.P$class 

library(biotools) 

C.Matrix <- confusionmatrix(T.Data$LC,T.lda.P) 

C.Matrix  

We do not have error rates yet, so we need to do some calculations. This is a bit 
easier in excel. 

write.csv(C.Matrix,"LDA_Confusion_Matrix.csv") 

In excel, you just need to divide the correct number of classifications by the total 
points in each class (the diagonal cell by the sum of the row) and subtract that from 1 
to get the error rate: 1-(d/total). You should get 43.69% for the full table.  

The two methods have fairly similar rates, but we should compare the rasters 
themselves. First create a raster using the previous data frame: 

LC.Raster <- rast(R.Values, 

type="xyz", 

crs=crs(B.Stack,proj=TRUE)) 

names(LC.Raster) #Check for 

colour bands and both land 

class predictions 

Then plot the maps. Here we plot the land 
classifications over the RGB plot. You can 
adjust the alpha level (0-1) to change 
transparency. 

LC.Symbol <- read.csv( 

"Landclass_Symbology.csv", 

row.names=1) #Land class 

labels and colours 

data.frame(names(LC.Raster)) 

#Confirm layer numbers 

 

 

randomForest predictions with 50% transparency 



LDA map: 

plotRGB(LC.Raster,r=3,g=2,b=1,stretch="lin",axes=TRUE, 

smooth=TRUE) 

plot(LC.Raster,y=7,alpha=0.5,add=TRUE,col=LC.Symbol$colors, 

levels=LC.Symbol$labels,legend="topright",type="classes", 

plg=list(text.col="white",border="white")) 

randomForest map: 

plotRGB(LC.Raster,r=3,g=2,b=1,stretch="lin",axes=TRUE, 

smooth=TRUE) 

plot(LC.Raster,y=8,alpha=0.5,add=TRUE,col=LC.Symbol$colors, 

levels=LC.Symbol$labels,legend="topright",type="classes", 

plg=list(text.col="white",border="white")) 

Switching between the two maps, you should see that while randomForest has a 
better accuracy rate, LDA appears to create less noise. Try comparing plotRGB with 
some other band combinations to help visually identify each land class:  
https://www.esri.com/arcgis-blog/products/product/imagery/band-combinations-for-
landsat-8/  

Natural Colour 4 3 2 (R, G, B) 

False Colour (urban) 7 6 4 (SWIR 2, SWIR 1, R) 

Color Infrared (vegetation) 5 4 3 (NIR, R, G) 

Agriculture 6 5 2 (SWIR 1, NIR, B) 

Atmospheric Penetration 7 6 5 (SWIR 2, SWIR 1, NIR) 

Healthy Vegetation 5 6 2 (NIR, SWIR 1, B) 

Land/Water 5 6 4 (NIR, SWIR 1, R) 

Natural With Atmospheric Removal 7 5 3 (SWIR 2, NIR, G) 

Shortwave Infrared 7 5 4 (SWIR 2, NIR, R) 

Vegetation Analysis 6 5 4 (SWIR 1, NIR, R) 

You can also plot the training points with the same symbology. Try comparing them 
with each prediction and the base imagery. 

LC.Points <- merge(T.Points[,2],LC.Symbol,by="id",all.x=TRUE)  

#Subset to land class field and merge symbology to points 

plot(LC.Points,y="id",add=TRUE,col=LC.Symbol$colors, 

levels=LC.Symbol,legend="topleft",plg=list(text.col="white")) 

For example, note that there are no wetlands in the bottom left. 

https://www.esri.com/arcgis-blog/products/product/imagery/band-combinations-for-landsat-8/
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