
Lab 5

Clustering and Ordination with Distances

This lab introduces a new set of techniques that are based on distance matrices that indicate
similarity between observations. All these techniques require a two step process: (1) create a
matrix of similarity between observations, choosing among dozens of ecological, genetic, or
mathematical distance measures, and (2) using this matrix to ordinate or cluster the observations,
choosing again among dozens of ordination and clustering techniques. This leaves you with
(dozens)² possible ways to view your data.

There is no objective way to guide the choice of distance matrix and the choice of ordination and
clustering techniques. Generally, Euclidean and Mahalanobis distances work well for normally
distributed environmental data. The Bray-Curtis distance is a favorite for community ecologists to
describe similarity in species composition in sample plots. The Bray-Curtis distance is a very
robust distance measure. If you have an intuitive sense of similarity of your study subjects (or
communities) spot-check the B-C distance matrix. The measure just seems to work on anything.

It is good practice to explore several distance metrics and clustering or ordination techniques: if
they give you completely different answers, then likely your observations do not fall into clear
groups. You can also test for significant differences among your groups (next lab) to confirm that
your classification is not a sampling artifact based on random variation in your measurements.

5.1. Creating and importing distance matrices

Download the dataset AB_Climate_Means.csv available at http://tinyurl.com/mv690/lab/5/data.
These are means of climate variables for ecosystem (natural subregions of Alberta) that were
derived from the spatial data you are familiar with from the previous labs. We want to explore
similarity with this simpler multivariate climate dataset. (Note: variable explanations on last page!)

 To set yourself up in R as usual, starting R from an empty workspace in a working directory,
and import the dataset AB_Climate_Means.csv. The option row.names=1 converts the
ecosystem column to row names, which facilitates automatic labeling. Note that row names
must be unique. Here, we don’t use the biome column, whch does not belong to the climate
data, so we need to drop it.

dat1=read.csv("AB_Climate_Means.csv", row.names=1)

head(dat1)

dat1=dat1[,-1]

head(dat1)

 An important consideration before applying distance metrics is whether or not to scale your
data. If you have different units (like in this case temperature in degree and precipitation in
mm), but you want each variable to have an equal influence on your distance metric, then
you should standardize your data (i.e., for each variable column, subtract it’s mean and divide
by the standard deviation). You may want to use other transformations used in your field of
research (e.g. “Hellinger” or “Wisconsin” in the field of community ecology, provided by the

function decostand of the vegan package)

dat2=data.frame(scale(dat1))

head(dat2)

 Now, we use the distance function to create distance matrices. The default for dist()

function is the normal Euclidean distance. You can exaggerate or reduce the relative
importance of the largest distances with transformations of the distance matrix. Squares or
the square root are commonly used:

http://tinyurl.com/mv690/lab/5/data

euclid=dist(dat2, method ="euclidean")

euclid_sq=euclid^2

euclid_sqrt=sqrt(euclid)

 For ecologists, there are other important distance measure. For this, you have to install the R
package “ecodist”, which allows you to calculate Bray-Curtis and Mahalanobis distances. The

distance() function of “ecodist” actually calculates the squared Mahalanobis, so you have

to take the square root to get the original.

library(ecodist)

braycurtis=distance(dat1, "bray-curtis")

mahal_sq=distance(dat1, "mahal")

mahal=sqrt(mahal_sq)

mahal # check how a distance matrix looks like

 Distance matrices are a special data format in R. If you ever need to import a distance matrix
or convert a data table to a distance matrix, you can do it with the code below. There are, for
example, specialized distance metrics for geneticists to describe similarities in DNA
sequences, etc. that may come from a different package or a different program. You can
practice this with the Custom_Distance_Matrix.csv file that is included in the data package:

custom1=read.csv("Custom_Distance_Matrix.csv")

head(custom1) # check it

rownames(custom1)= custom1$ID; # row name modification as above

custom1=custom1[,-1] # drop ID column

custom2=as.dist(custom1) # conversion to distance matrix

head(custom1) # check it

5.2. Agglomerative cluster analysis

OK, now that you know everything about generating and importing distance matrices, let’s use
them for building dendrograms. Below, I call the distance matrix uniformly “dm”. You have to

replace this with the distance matrix of your choice that you generated above (i.e., mahal,

mahal_sq, euclid, euclid_sq, euclid_sqrt or braycurtis).

 The code below builds dendrograms.

hclust stands for hierarchical

cluster analysis. There are many

methods. Ward’s method “ward.D”,

“ward.D2”, and “centroid” are

widely used and usually yields good

results, but you may try: "single",

"complete", "average",

"mcquitty", or "median" as well.

tree=hclust(dm,

method="ward.D")

plot(tree, hang=-1,

main="Alberta Natural

Subregions")

 Get a feel for the robustness of
cluster analysis by trying various
distances, transformations, and
clustering methods. Save a few
dendrograms and make up your mind

if they make biological sense. For reference, the Alberta Natural Subregion system is given
on the last page. For this dataset, the Mahalanobis distance is likely appropriate because
some of the climate variables are correlated.

5.3. Cluster Analysis with significance testing

You can run a bootstrap-version of cluster analysis that evaluates how consistently the same
clusters appear over hundreds or thousands of runs with randomly sub-sampled dataset omitting
one or few variables (columns) and observations (row) at a time

 Install the package pvclust and try out the following code.

dat1=read.csv("AB_Climate_Means.csv", row.names=1)

dat1=dat1[,-1]

head(dat1)

dat1t=t(dat1) # transpose dataset

head(dat1t) # check it

Install package "pvclust"

library(pvclust)

Be patient the next step may take a moment with larger datasets

tree=pvclust(dat1t, method.hclust="ward.D", nboot=1000,

method.dist="euclidean")

Create the dendrogram with p values

plot(tree, hang=-1, main="Alberta Natural Subregions")

add rectangles around groups highly supported by the data

pvrect(tree, alpha=.95)

 Groups with high AU
values, for example
>0.95, are strongly
supported by data. This
means they really are
very similar units that
form a natural cluster.
AU means
“Approximately Unbiased
P-value” whereas BP
refers to raw “Bootstrap
Probabilities” before
statistical adjustments.

For interpretation check
what the ecosystem
abbreviations stand for
on the last page.

5.4. Nonmetric multidimensional scaling (NMDS)

Instead of using a dendrogram, we can also use ordination techniques. NMDS is a very robust
technique for all kinds of normally and non-normally distributed data, including presence/absence
data. Similarity is implied by proximity:

 For this analysis we want to color by the BIOME variable, so we’ll pull that out before
deletion:

dat1=read.csv("AB_Climate_Means.csv", row.names=1)

BIOME= dat1[,1]
dat1=dat1[,-1]

head(dat1)

BIOME

library(ecodist)

dm=distance(scale(dat1), "euclidean") # standardized Euclidean

nmds_out=nmds(dm, mindim=2, maxdim=2) # runs NMDS

scores=nmds.min(nmds_out) # generate scores

nmds_out$stress # the last value indicates the final stress

 The stress value by itself is not informative, but it should be stable (i.e. for the last
permutations, and you should look at the stress values of 1, 2, 3, 4, 5, 6 or so dimensions
(modify maxdim). A scree-plot of stress values over the number of dimensions will tell you
how many dimensions you need to consider. Let’s look at the first 2 dimensions.

 In the plot below, we color by biome, guided by the first command that shows the order of
biomes. Then create a color legend in the same order, and plot with ecosystem labels. The
+0.2 offsets the labels, so you can still see the points. For different distance metrics or
datasets, you may need to adjust those offset values. Vectors are fitted as usual.

mygroups = sort(unique(BIOME)); mygroups # shows order

mycol = c("green","yellow","purple","orange") # color in order

plot(scores, pch=19, col=mycol[as.factor(BIOME)])

text(scores+0.2, labels=row.names(dat1)) # add offset labels

vectors = vf(scores, dat1, nperm=10) # calculate vectors

plot(vectors, len=0.1, col="red") # add vectors

 The overlay of vectors indicate how the
original variables are correlated with
observations. For example the “DMG”
ecosystem (Dry Mixed Grass) is associated
with high mean annual temperature (MAT)
and dryness (AHM).

 You can guide the reader eye by adding
ellipses that represent groups. The basic
command is requires your coordinates

(scores) the color criteria (BIOME), the

color scheme (mycol) and the group for

which you want to draw ellipses (mygroups).

The option for confidence interval conf

allows to scale the size of the ellipses to your
liking. 0.6 means that if the data were
multivariate normally distributed 60% of
observations would fall within:

library(vegan)

ordiellipse(scores, BIOME, conf=0.6, col=mycol, show.groups=mygroups)

If you run the NMDS code multiple times, you may often (but not always) notice that the plots
differ substantially in appearance. A big part of this is that the canvas is randomly rotated to a
new angle every time. As a consequence, loadings and variance explained by X1 and X2 are not
particularly informative. Variance explained by X1 and X2 is not informative for another reason:
NMDS is not an orthogonal rotation, and because X1 and X2 are not at right angles
(uncorrelated), only the cumulative variance explained should be reported.

Besides the random rotation, you will also see that the sample points shift relative to each other
and relative to the vectors by small amounts (hopefully). Thus, NMDS really provides a different
ordination every time you run it. There is nothing inherently wrong with this. It is equivalent to
looking at your dataset from slightly different angles as in PCA versus FACTOR analysis. If you
have a run that has substantially lower stress than all others, you should probably pick that one.
Otherwise, you are free to choose a run that you like for esthetic reasons.

5.5. MetaMDS

If you feel uncomfortable with a subjective decision what run you like best or what run is easiest
to interpret, the vegan package offers a metaMDS function that executes multiple runs and looks
for stable configurations. One advantage is that this package normally produces more repeatable
results in that you get the same or a similar ordination output every time.

 In addition to the number of dimensions (k), you can also specify the number of random start

configurations (trymax) that metaMDS executes in search of a stable solution. If it does not

find a stable solution, it will use PCA as starting point for consistency. Check ?metaNMDS for

all options in this package. You can see that metaMDS will also calculate distance matrices
for you, but for better control and transparency let’s keep doing it manually:

dat1=read.csv("AB_Climate_Means.csv", row.names=1)

BIOME= dat1[,1]
dat1=dat1[,-1]

head(dat1)

BIOME

library(ecodist)

dm=distance(scale(dat1), "euclidean") # standardized Euclidean

library(vegan)

out1 = metaMDS(dm, k=2, trymax=500)

out1

mygroups = sort(unique(BIOME)); mygroups # shows order

mycol = c("green","yellow","purple","orange") # color in order

plot(scores, pch=19, col=mycol[as.factor(BIOME)])

text(scores+0.2, labels=row.names(dat1)) # add offset labels

vectors = vf(scores, dat1, nperm=10) # calculate vectors

plot(vectors, len=0.1, col="red") # add vectors

ordiellipse(scores, BIOME, conf=0.6, col=mycol,

 show.groups=mygroups) # add ellipses

5.6. Principal Coordinate Analysis (PCoA)

Another well regarded and well behaved ordination technique is Principal Coordinate Analysis
(PCoA). Like NMDS it is an ordination that is based on a distance matrix of your choice, so you
are free to use a distance measure that is suits your data, i.e. Bray-Curtis for species community
data, which I am using in the example below (just because I can, and because I want to use
something that’s non-Euclidean, which is actually the point of this analysis).

The difference to NMDS is that I do not constrain this ordination to just few or two dimensions.
Instead, I allow as many dimensions as required to honor the relative position of all points in my
dataset, and that is (to be mathematically 100% on the safe side), n-1 dimensions. So, if you
have a dataset with n=50 observations (rows) and 10 variables (columns), we allow 49
dimensions for this ordination.

This makes the ordination procedure a no-brainer because I don’t need to make any
compromises. There is zero stress in my ordination and no complicated algorithms to minimize
stress are required. That said, if your objective is to reduce complexity, we have just made things
substantially worse, going from 10 original dimensions (or variables) to 49.

However, the party trick in the second step: I run a regular PCA on that 49 dimensional
ordination. So you can think of PCoA as a representation of non-Euclidean data (i.e. since you
normally would not use Euclidean distances for your distance matrix) in a Euclidean space.

 Here is the full code to run a PCoA with all customizations that we got used to, rather than
using the quick and dirty biplot functions. Sometimes, you may run into trouble with negative
Eigenvalues when trying to rotate your n-1 dimensional distance matrix, and there are some

corrections available for that (see the ?pcoa help file for references and details):

dat1=read.csv("AB_Climate_Means.csv", row.names=1)

BIOME= dat1[,1]
dat1=dat1[,-1]

head(dat1)

BIOME

library(ecodist)

dm = bcdist(dat1)

library(ape)

out1 = pcoa(dm, correction="none")

scores = out1$vectors[,1:2]

head(scores)

mygroups = sort(unique(BIOME)); mygroups # shows order

mycol = c("green","yellow","purple","orange") # color in order

plot(scores, pch=19, col=mycol[as.factor(BIOME)])

text(scores+0.003, labels=row.names(dat1)) # add offset labels

vectors = vf(scores, dat1, nperm=10) # calculate vectors

plot(vectors, len=0.1, col="red") # add vectors

ordiellipse(scores, BIOME, conf=0.6, col=mycol,

 show.groups=mygroups) # add ellipses

5.7. Divisive cluster analysis (e.g. k-means)

Another way to execute a cluster analysis is a top-down approach, where you start with the entire
dataset at once, and divide it into groups. In that case you don’t build a dendrogram up from
individual observations through agglomeration like we have done in sections 5.2 and 5.3 above
As such, a dendrogram is also not a visualization option. The outcome of a divisive cluster
analysis is just a vector of cluster membership that you can use to visualize in an ordination, as
we have done in sections 5.4 to 5.6 above.

There are a large number of divisive cluster algorithms. Popular ones include k-means (e.g.

function kmeans in the stats package) and PAM (e.g. function pam in the cluster package), which

both work very similarly. One partitions around averages, the other around a slightly different
metric of central tendency in multivariate space, medoids. Another well regarded and relatively

new clustering technique is t-distributed stochastic neighbor embedding (package tsne), which

works well for very high dimensionality datasets with hundreds or thousands of variables.

All of these methods have in common that you need to specify a priori how many clusters you
want as your outcome. That may be difficult to decide for you, but it’s even harder for a computer
algorithm to decide that. There are some useful plots that can help you with that decision, though.

A practical use-case for divisive clustering is if you have datasets with many experimental or
sampling units (rows). Dendrograms can get a bit crowded and ugly with more than one or two
dozen observations. You may be more interested in a prescribed number of higher level clusters.

 The code below executes a k-means divisive clustering algorithm. It is a recursive code, that
starts with a specified number of points (it just uses a random selection of k rows from your
dataset), then calculates which of all the other points are closest to it and assigns them to this
cluster. The second step is a re-calculation of the cluster center based on the newly assigned
points. Rinse and repeat, i.e. based on my new cluster center, I recalculate which
observations are closest, etc.

 The option centers=5 presets the number of clusters, iter.max=50 determines how

many times you would repeat the two steps at most. The option nstart=25 determines

how many repeat runs of the whole analysis you want to do with different starting points to
find the best solution.

dat1=read.csv("AB_Climate_Means.csv", row.names=1)

head(dat1)

dat1=dat1[,-1]

head(dat1)

dm=dist(scale(dat1), method ="euclidean")

library(stats)

kmeans5=kmeans(dm, centers=5, iter.max=50, nstart=25)

kmeans5$size; kmeans5$centers; kmeans5$cluster

 Since we can’t plot a dendrogram, you can visualize your clusters via an ordination. Choose
the most appropriate distance metric and ordination technique according to your type of data
and your objectives (PCA, Factor, CanDisk, NMDS, or PCoA are all options that we have
previously covered). I am going with the metaMDS here, using the same dm as for k-menas:

out1=metaMDS(dm, k=2)

scores=out1$points[,1:2]

mycol=c("pink2","yellow2","purple","green","orange")

plot(scores, pch=19, col=mycol[as.factor(kmeans5$cluster)])

text(scores+0.2, labels=row.names(dat1))

library(vegan)

mygroups = sort(unique(kmeans5$cluster))

ordiellipse(scores, as.factor(kmeans5$cluster),

 conf=0.6, col=mycol, show.groups=mygroups)

 Here is some additional analysis that you can try to help you determine the number of
clusters that may be best. This does scree plots based on different criteria. The
method="wss" will calculate the within cluster sums of squares (i.e. variance). More

clusters means less variance within clusters, which is good, but there will be a point of
diminishing returns where more clusters don’t do much. The other methods evaluate the
shape and distance between natural clusters. Sometimes, you don’t have natural clusters
where these metrics will not provide much guidance. This works for other cluster techniques
as well, e.g. FUNcluster=pam . Check: ?fviz_nbclust

library(factoextra)

dat2=data.frame(scale(dat1)) # forces a scaled Euclidean

fviz_nbclust(dat2, FUNcluster=kmeans, method="wss")

fviz_nbclust(dat2, FUNcluster=kmeans, method="silhouette")

fviz_nbclust(dat2, FUNcluster=kmeans, method="gap_stat")

 Since there is some space left on this page, another visualization that’s built into factoextra
using ggplot2. I don’t recommend it, because it makes choices for you. You don’t have
control over the distance metric and ordination technique. It does a PCA only. For

customization options, check ?fviz_cluster, ?ggscatter and ?ggpar.

fviz_cluster(kmeans5, data=dat2, shape=1,

 show.clust.cent=T, ellipse.type="t",

 ellipse.level=0.7, ellipse.alpha=0.1,

 palette=c("pink3","yellow3","purple","green","orange"),

 ggtheme=theme_classic())

Some Reference information, so that you can interpret the results more easily:

Abbreviations of Ecosystems:

Mountains

Alpine A
Subalpine SA
Montane M
Upper Foothills UF
Lower Foothills LF

 Grasslands
Dry Mixedgrass DMG
Mixedgrass MG
Northern Fescue NF
Foothills Fescue FF

Parklands
 Foothills Parkland FP
 Central Parkland CP
 Peace River Parkland PRP

Boreal Forest
Dry Mixedwood DM
Central Mixedwood CM
Lower Boreal Highlands LBH
Upper Boreal Highlands UBH
Athabasca Plain AP
Peace–Athabasca Delta Peac
Northern Mixedwood NM
Boreal Subarctic BSA

Abbreviations of Climate Variables:

MAT: mean annual temperature (°C),
MWMT: mean warmest month temperature (°C),
MCMT: mean coldest month temperature (°C),
TD: temperature difference between MWMT and MCMT, or continentality (°C),
MAP: mean annual precipitation (mm),
MSP: mean annual summer (May to Sept.) precipitation (mm),
AHM: annual heat:moisture index (MAT+10)/(MAP/1000))
SHM: summer heat:moisture index ((MWMT)/(MSP/1000))
DD0: degree-days below 0°C, chilling degree-days
DD5: degree-days above 5°C, growing degree-days
NFFD: the number of frost-free days
FFP: frost-free period
BFFP: the Julian date on which FFP begins
EFFP: the Julian date on which FFP ends
PAS: precipitation as snow (mm)

