Matching planting stock with environments for reforestation under changing climate

Laura Gray ¹ and Andreas Hamann ²

¹ PhD Student, Department of Renewable Resources, University of Alberta, Edmonton, Canada lgray@ualberta.ca
² Assistant Professor, Department of Renewable Resources, University of Alberta, Edmonton, Canada andreas.hamann@ualberta.ca

Planting the future forests
Revising seed zones and breeding regions to match planting stock to new climate realities will become an important tool in the future to maintain forest health and productivity. Two decisions have to be made when planting trees in forestry programs. First, an appropriate species has to be chosen for a planting site. Secondly, planting stock has to be selected that is genetically well-adapted to the target environment.

The objective of this project is to guide foresters in both species and genotype selection for 15 tree species of commercial importance in western Canada: Douglas-fir, lodgepole pine, western white pine, ponderosa pine, western hemlock, yellow cedar, western redcedar, pacific silver fir, black spruce, white spruce, Engelmann spruce, western larch and trembling aspen. Here we show results for the first step, species choice, using Douglas-fir as an example.

Modeling approach

56 Model Runs – Summarised
- 5 GCMs implemented by modeling groups (CGCM2, Canada; CSIRO2, Australia; HadCM3, UK; ECHAM4, Europe; PCM, USA)
- 4 Emission and population growth scenarios (ranging from extreme economic and population growth to low population growth and environmentally sustainable economies)
- Modeled under 2 current periods (1961-1990 normal period & 1997-2006 observed climate change period – 1 run each period)
- Modeled under 3 projected future periods (2020s, 2050s and 2080s – 1 run each period)

Model predictions under current climate

Model predictions under projected climate change

Evaluation for Alberta’s seed zones

There are 5 seed zones (M 4.3, 4.4, 5.3, 5.5, and 5.6) where Douglas-fir is currently planted in southern Alberta.

The evaluation below shows that three adjacent seed zones could be considered for reforestation with Douglas-fir (UF 1.5, LF 2.3, and FP 1.1). In those areas we see increased potential habitat under current and predicted climate change.

Predicted Douglas-fir habitat

Results show that under observed climate change over the last 25 years (represented by the 1997-2006 average) both the suitable habitat and frequency of Douglas-fir has increased and expanded north in British Columbia and Alberta.

The expansion is expected to continue for the 2020s, 2050s and 2080s. However, note that model agreement drops the further into the future we project, indicated by the light blue and yellow tones in the 2050 and 2080 maps.

Based on the current and 2020s projections, a reforestation recommendation for the Alberta foothills region is derived in the upper-right box.

Acknowledgements

Thank you to Alberta Sustainable Resources Development, Alberta FMA holders, the British Columbia Ministry of Forests and the US Forest Service for input data and thank you to Michael Mbogga, Evan Miller-Tait and Dave Roberts for their help with data analysis.