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Abstract
Bioclimate envelope models have been widely used to illustrate the discrepancy be-
tween current species distributions and their potential habitat under climate change. 
However, the realism and correct interpretation of such projections has been the sub-
ject of considerable discussion. Here, we investigate whether climate suitability pre-
dictions correlate to tree growth, measured in permanent inventory plots and inferred 
from tree-ring records. We use the ensemble classifier RandomForest and species oc-
currence data from ~200,000 inventory plots to build species distribution models for 
four important European forestry species: Norway spruce, Scots pine, European 
beech, and pedunculate oak. We then correlate climate-based habitat suitability with 
volume measurements from ~50-year-old stands, available from ~11,000 inventory 
plots. Secondly, habitat projections based on annual historical climate are compared 
with ring width from ~300 tree-ring chronologies. Our working hypothesis is that hab-
itat suitability projections from species distribution models should to some degree be 
associated with temporal or spatial variation in these growth records. We find that the 
habitat projections are uncorrelated with spatial growth records (inventory plot data), 
but they do predict interannual variation in tree-ring width, with an average correla-
tion of .22. Correlation coefficients for individual chronologies range from values as 
high as .82 or as low as −.31. We conclude that tree responses to projected climate 
change are highly site-specific and that local suitability of a species for reforestation is 
difficult to predict. That said, projected increase or decrease in climatic suitability may 
be interpreted as an average expectation of increased or reduced growth over larger 
geographic scales.
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1  | INTRODUCTION

Tree species distributions and forest productivity are strongly linked 
to climatic factors through direct effects of climate conditions on 
tree physiological processes (Running et al., 2004). As a conse-
quence, climate change is expected to affect forest growth and 
health in the short term (Boisvenue & Running, 2006), as well as 
geographic distribution of species in the long term through demo-
graphic processes (Davis & Shaw, 2001; Parmesan & Yohe, 2003). 
For temperature-limited boreal forests, the general expectation is a 
profound northward shift of suitable tree species habitat, while the 
situation in temperate regions tends to be more complex and varies 
between Mediterranean, continental, and maritime climates (Bonan, 
2008). Direct and indirect climate impacts, such as water shortage 
and increased risk of forest fires, appear to threaten Mediterranean 
forests (Allen et al., 2010; Schröter et al., 2005), while forest growth 
might benefit in continental and Atlantic forests, but only at sites 
where an increased evaporative demand can be compensated by 
sufficient water availability (Lindner et al., 2010; Spathelf, van der 
Maaten, van der Maaten-Theunissen, Campioli, & Dobrowolska, 
2014).

Although predictions of climate change (impacts) still carry un-
certainties regarding the magnitude of responses, there is grow-
ing awareness among forestry professionals worldwide that climate 
change potentially poses a large threat to the economic and ecological 
value of forest lands (Lindner et al., 2014). For Europe, Hanewinkel, 
Cullmann, Schelhaas, Nabuurs, and Zimmermann (2013) estimated 
that economic losses may total several hundred billion euros by the 
end of the century without appropriate adaptation strategies for the 
forestry sector. To guide species choice in reforestation and forest 
management prescriptions to address climate change, species distri-
bution models (SDMs) are potentially a useful tool. These correlative 
models employ a variety of statistical or machine learning techniques 
to relate species presence/absence data to relevant predictor variables 
such as climate data, topo-edaphic variables, or other habitat factors 
(e.g., Guisan & Zimmermann, 2000). Although there are exceptions 
(e.g., O’Neill, Hamann, & Wang, 2008), SDMs normally predict the re-
alized niche space of species.

The models have been widely used to illustrate the discrepancy 
between current tree species distributions and their predicted poten-
tial habitat under climate change (e.g., Iverson & Prasad, 1998; Loarie 
et al., 2008; Thomas et al., 2004; Thuiller, Lavorel, Araújo, Sykes, & 
Prentice, 2005). The realism and correct interpretation of such pro-
jections, however, has been the subject of considerable discussion 
(e.g., Botkin et al., 2007; García-Valdés, Zavala, Araújo, & Purves, 
2013; Hampe, 2004; Thuiller et al., 2008), and there is consensus in 
the scientific community that SDMs are conceptually inadequate to 
accurately predict demographic processes of species under climate 
change. Modeling the realized climatic niche does not reveal the full 
range of the species’ ecological tolerances and limitations, and pre-
dicted gain or loss of suitable climate habitat does not imply an imme-
diate threat to a species population or rapid expansion of a species’ 
range.

Despite the limitations of SDMs for climate change impact assess-
ments on complex ecological systems, it has been pointed out that 
species distribution models are conceptually well suited for simpler 
practical tasks: guiding climate change adaptation strategies that 
involve habitat restoration or choosing suitable tree species for re-
forestation (Gray & Hamann, 2011, 2013; Hamann & Aitken, 2013; 
Schelhaas et al., 2015). For such management applications, the pri-
mary task is to match source and target environments. Nevertheless, 
it is uncertain whether subsequent long-term forest growth and forest 
health are well described by species distribution models that may be 
used to guide initial decisions on species choice for a general geo-
graphic region.

Here, we contribute a retrospective analysis how SDM-derived 
habitat suitability projections for four major European tree species 
(Norway spruce—Picea abies (L.) Karst., Scots pine—Pinus sylvestris L., 
European beech—Fagus sylvatica L., and pedunculate oak—Quercus 
robur L.) correlate with forest growth data from long-term inventory 
plots and tree-ring chronologies. Our hypothesis is that periods of 
marginal growth observed in the tree-ring record (for example, during 
cold or dry episodes) may be predicted by annual hindcasts of habi-
tat suitability from species distribution models. Such correlations be-
tween growth and modeled habitat suitability may vary from site to 
site. For example, projected habitat loss during drought periods may 
correlate well with tree-ring records on water-limited sites but not on 
wet sites, which would point to important interactions between cli-
matic and nonclimatic abiotic factors. Notwithstanding large variation 
from nonclimatic site factors, projections of climatic habitat suitabil-
ity should to some degree correlate positively with long-term growth 
records. Strong spatial (inventory plots) or temporal (tree-ring-based) 
associations of growth with climate may increase our confidence in 
using species distribution models to guide climate change adaptation 
strategies in forestry and ecosystem management.

2  | METHODS

2.1 | Forest inventory and tree-ring data

We use a forest inventory database for 17 European countries, includ-
ing Belgium (9,075 plots), Croatia (39), Estonia (1,598), Finland (1,690), 
France (1,741), Germany (54,087), Italy (13,972), Lithuania (744), the 
Netherlands (1,442), Norway (8,629), Romania (196), Slovakia (1,410), 
Slovenia (38), Sweden (2,784), Ukraine (126), and the United Kingdom 
(19,166). The database was originally compiled by Brus et al. (2012) 
and Nabuurs (2009). In addition, we added a newly available Spanish 
forest inventory database (82,527) that is publicly available from 
the Spanish Ministry of Agriculture, Food and Environment (http://
www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/
inventario-cartografia/inventario-forestal-nacional).

For a subset of 12 countries that still represent a broad range of 
climate conditions throughout Europe, information on stand age and 
species-specific standing stock volumes was available (excluding Croatia, 
the Netherlands, Romania, Ukraine, and United Kingdom). Rather than 
attempting age-based adjustments, we only use volume data for 40- to 

http://www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-forestal-nacional
http://www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-forestal-nacional
http://www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-forestal-nacional
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60-year-old stands (hereafter referred to as ~50-year-old plot/volume 
data) resulting in 11,539 plots from a total of 199,264 inventory plots 
with species-specific presence/absence data. The presence/absence 
data were used for building species distribution models that predict 
habitat suitability, while the subset of ~50-year-old plot data was used 
to analyze associations between habitat suitability and forest growth.

To validate predictions of interannual variation in habitat suitability, 
we obtained tree-ring data from 295 sites both from the International 
Tree-Ring Data Bank (ITRDB) (NOAA, 2016), as well as from previous 
studies by van der Maaten (2012) and van der Maaten-Theunissen, 
Kahle, & van der Maaten (2013). We detrended all individual tree-ring 
series by fitting a cubic smoothing spline with a 50% frequency cutoff 
at 30 years in order to remove nonclimatic growth responses (see also 
Cook & Peters, 1981), such as biological age trends or effects of for-
est management. Indices were calculated dividing the observed by the 
predicted values, resulting in standardized series that are dimension-
less and have a mean of one. Finally, the standardized chronologies for 
individual trees were averaged per site in so-called site chronologies 
using a bi-weight robust mean.

2.2 | Climate data

Climate data were generated using the software package ClimateEU 
(Hamann, Wang, Spittlehouse, & Murdock, 2013; Wang, Hamann, 
Spittlehouse, & Murdock, 2012), available for anonymous download 
at http://tinyurl.com/ClimateEU. The ClimateEU package is a soft-
ware front-end for interpolated climate databases generated with 
the Parameter-elevation Regressions on Independent Slopes Model 
(PRISM) (Daly et al., 2008). The software allows to query monthly his-
torical climate data from 1901 to 2013, as well as to generate gridded 
climate surfaces for Europe for habitat suitability modeling. The soft-
ware implements downscaling algorithms that use empirically derived 
local lapse rates for individual climate variables to adjust for any dis-
crepancies between the elevation of sample locations (tree-ring chro-
nologies and inventory plots) and gridded climate databases that the 
ClimateEU software queries (Hamann et al., 2013; Wang et al., 2012).

We use the 30-year climate normal period from 1961 to 1990 as 
a climate reference period, and a 15-year climate average from 1995 
to 2009 to represent recent observed climate change (inventory plot 
and tree-ring data were not available for more recent years). We use 
10 biologically relevant climate variables that account for most of the 
variance in climate data while avoiding multicollinearity: mean an-
nual temperature, the mean temperatures of the warmest and cold-
est month, the difference between July and January temperature 
as an indicator of continentality, mean annual precipitation, May to 
September (growing season) precipitation, growing degree days above 
5°C, frost-free days, and two dryness indices after Hogg (1997): an an-
nual climate moisture index and a June–August summer climate mois-
ture index. The variables are explained in detail by Wang et al. (2012).

For spatial habitat modeling, we use 1-km resolution climate grids 
in Albers Equal Area projection. Species distribution models were built 
based on a widely used reference period that largely predates a signif-
icant anthropogenic warming signal (the 1961–1990 climate normal). 

Projections were made for this reference normal period, a more recent 
average (1995–2009), as well as for the 2020s (2011–2040) and 2050s 
(2041–2070) using an ensemble average from the CMIP3 multimodel 
dataset corresponding to the fourth IPCC assessment report (Meehl 
et al., 2007). Similar to Fordham, Wigley, & Brook (2011), we excluded 
poorly validated AOGCMs (MIROC3.2, MRI-CGCM2.3.2, MIROC3.2, 
IPSL-CM4, FGOALS-g1.0, GISS-ER, GISS-EH, and GISS-AOM) and re-
tained the remaining CMIP3 models. The study was initiated before 
the CMIP5 dataset corresponding to the fifth IPCC assessment report 
became available. However, we note that the two AOGCM genera-
tions yield remarkably similar projections in magnitude, uncertainty, 
and spatial resolution (Knutti & Sedláček, 2013). Accounting for dif-
ferent approaches to describe emission scenarios (SRES versus RCP), 
we find that the projections at the level of multimodel ensemble aver-
ages remain largely the same for both temperature and precipitation 
variables.

2.3 | Species distribution modeling

We built species distributions using the RandomForest ensemble 
classifier (Breiman, 2001) implemented by the randomForest pack-
age (Liaw & Wiener, 2002) for the R programing environment (R 
Development Core Team, 2016). This ensemble classifier grows mul-
tiple classification trees (here, n = 500) from bootstrapped samples of 
the training data and determines its prediction by majority vote over 
all developed classification trees (Cutler et al., 2007). Importance val-
ues for the predictor variables were calculated as the frequency that 
a particular climate variable contributed to a correct classification. 
Habitat projections were made (1) for climate data for the 1961–1990 
period to analyze associations between projected habitat suitability 
and growth observed on forest inventory plots, (2) for climate data for 
individual years from 1901 to 2009 to analyze associations between 
projected habitat suitability and growth tree-ring width, and (3) for a 
recent climate average (1995–2009) and future periods (2020s and 
2050s) to infer future trends in growth patterns across Europe.

The RandomForest algorithm was preferred over other algorithms, 
like maxent, because we had a rather unproblematic dataset with a 
high number of census records. To account for nonlinearity in the 
species response across climate gradients and for interactions among 
climate variables, RandomForest is generally considered the most 
powerful implementation of regression tree techniques.

We also made an attempt to use the regression tree (rather than 
classification tree) functionality of RandomForest to model a con-
tinuous response variable (i.e., ~50-year-old plot volume data) as a 
function of climate. For the volume models, we built, for each of the 
studied tree species, a training dataset of approximately 9,000 sam-
ples, which were climatically characterized and comprised equal num-
bers of plots with volume data, absence plots, and random absences. 
Random absences were only selected for countries without plot-data 
availability by using an overlay with tree species distributions from the 
European Forest Genetic Resources Programme (EUFORGEN, 2012). 
We removed pseudo-absences using a p > .5 threshold for species 
presence using RandomForest habitat projections based on presence/

http://tinyurl.com/ClimateEU
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absence variants of the training datasets. This analysis did not yield 
acceptable validation statistics, and we briefly report on this negative 
result for the inventory data-climate modeling attempt.

Model performance was evaluated using the area under the re-
ceiver operating characteristic curve (AUC of ROC) to evaluate the 
statistical accuracy of the species distribution models for individual 
tree species. The AUC statistic is a common measure of the perfor-
mance of classification rules; it balances the ability of a model to de-
tect a species when it is present (sensitivity) against its ability to not 
predict a species when it is absent (specificity) (e.g., Fawcett, 2006; 
Fielding & Bell, 1997). We further report model sensitivity (calculated 
as TP/(TP + FN) with TP as true positives and FN as false negatives) 
and model specificity (TN/(TN + FP) with TN as true negatives and FP 
as false positives). All ROC and AUC calculations were implemented 
with the ROCR package (Sing, Sander, Beerenwinkel, & Lengauer, 
2005) for the R programming environment.

2.4 | Statistical analysis

To assess whether habitat projections of our species distribution 
models are associated with observed forest growth, we conducted a 
Pearson correlation analysis between the probability of presence es-
timates from the RandomForest-based habitat suitability projections 
and growth measurements from two data sources: inventory plots 
(to represent spatial variation) or growth increments from tree-ring 
data (to represent temporal variation). All correlations were visually 
checked for linearity, and transformations were judged as unlikely to 
have any notable or consistent effect on the results. Habitat projec-
tions for correlations with ~50-year-old plot volume data were based 
on one long-term projection for the 1961–1990 normal period (to 
analyze spatial growth−climate associations). Habitat projections for 

comparison with tree-ring increments were based on habitat projec-
tions for 109 individual years, from 1901 to 2009 (to analyze temporal 
growth−climate associations).

Because tree-ring chronologies are known to display temporal au-
tocorrelations (Fritts, 1976), we allowed for a maximum lag of 3 years 
for the correlation analysis between annual habitat projections and 
site chronologies. Further, because forest ecosystems can be well 
buffered against short-term climate fluctuations, we also evaluated 
correlations based on 3-, 5-, 7-, and 9-year moving averages of both 
habitat projections and site chronologies. Generally, 5-year moving av-
erages generated the strongest correlation coefficients (both negative 
and positive), and was therefore applied to all chronologies. To deter-
mine whether the average correlation coefficient was larger than zero, 
a single-sample one-tailed t-test across all correlation coefficients 
from each species was carried out, testing to our overall scientific null 
hypothesis that there was no positive association between growth 
and climatic habitat suitability.

3  | RESULTS

3.1 | Variable importance and model statistics

RandomForest importance values indicate that climate predictors of 
species ranges are quite species-specific, with a notable contrast be-
tween coniferous and deciduous trees (Table 1). For spruce and pine, 
the mean warmest month temperature contributes strongly to cor-
rectly predicting presence and absence of these species in inventory 
plot data. Further, the summer and annual climate moisture indices 
were important predictor variables for spruce. In contrast, variable 
importance values for summer heat and moisture variables were very 
low for the broadleaved tree species oak and beech. For these species, 

Climate variable

RF importance

Norway spruce Scots pine European beech Pedunc. oak

Mean annual temperature 
(°C)

2.8 2.0 1.8 1.7

Mean warmest month 
temperature (°C)

7.8 8.9 3.2 3.0

Mean coldest month 
temperature (°C)

5.6 2.0 4.9 2.3

Continentality (°C) 4.9 4.1 8.0 4.6

Mean annual precipita-
tion sum (mm)

3.1 2.5 3.2 1.2

Growing season 
precipitation sum (mm)

4.3 4.3 2.2 1.9

Growing degree days 
>5°C (days)

5.8 6.0 2.4 2.8

Frost-free period (days) 4.6 2.0 2.6 3.0

Annual climate moisture 
index (cm)

6.7 5.1 2.0 2.6

June–August climate 
moisture index (mm)

8.5 4.9 2.1 2.8

TABLE  1  Importance values of 
RandomForest climate predictor variables, 
calculated as the number of times that a 
particular variable contributed to a correct 
classification. Reported values are divided 
by 100 for readability
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continentality and other cold-related variables stand out as the best 
predictors of species ranges. Continentality is the most important pre-
dictor for both broadleaves, with mean coldest month temperature 
the second most important predictor for beech occurrences and sev-
eral variables, including frost-free period, being secondary predictors 
for oak.

Accuracy statistics for the presence/absence predictions are 
shown in Table 2. Total error rates of false positives and false nega-
tives range between 0.13 and 0.32, with the widespread coniferous 
species having the highest error rates. AUC values are fairly high rang-
ing from 0.72 to 0.90, with beech and oak having the best predictive 
accuracy. For all species, the number of false-negative errors is higher 
than the number of false-positive errors, which indicates that model 
prediction errors are mainly driven by falsely predicting species ab-
sence. Similarly, model sensitivity is low and model specificity is high, 
showing that true species absences were well modeled.

The results of the distribution model for Norway spruce are shown 
in Figure 1, with corresponding maps for Scots pine, European beech, 

and pedunculate oak provided as Supporting information (Figs S1–S3). 
A comparison of both the presence data and the predicted species dis-
tribution with the approximate natural distribution (after EUFORGEN, 
2012; see inset Figure 1) reveals substantial differences. Today’s dis-
tribution of spruce across Europe has a distinctively wider range than 
its natural distribution suggests, due to Norway spruce being widely 
planted as a highly valued forestry species for timber production in 
Europe.

3.2 | Habitat projections versus growth

The analysis of temporal growth–climate associations based on 
habitat suitability predictions and annual growth increments in 295 
tree-ring chronologies reveals that these correlations are highly vari-
able in magnitude and even direction. Overall, we found an average 
correlation across all four species of .22 but with correlation coeffi-
cients from individual chronologies as high as .82, often approaching 
zero, and regularly being negative with values up to −.31 (Table 3). 
Examples for time series with positive, neutral, and negative associa-
tions are shown in Figure 2, and a map of the resulting correlation 
coefficients for all individual chronologies of Norway spruce is shown 
in Figure 3. No spatial patterns are apparent, and elevation or climate 
normal variables for the origin of sample locations were not associ-
ated with the strength or directions of correlation coefficients (data 
not shown).

Even though there are no apparent associations of correlation 
coefficients with geographic or climatic variables of the sample loca-
tions, the average association between climate suitability and growth 
inferred from ring width is positive and overall highly significant. The 

TABLE  2 Predictive accuracy statistics for the projected 
distribution areas of the four study species

Species  Error rate Specificity Sensitivity AUC

Norway spruce 0.25 0.71 0.65 0.81

Scots pine 0.32 0.63 0.60 0.72

European beech 0.16 0.85 0.62 0.90

Pedunculate oak 0.13 0.79 0.70 0.90

Error rate = (False Positive + False Negative)/(Total Positive + Total 
Negative).

F IGURE  1 Sample plot data for the 
Norway spruce presence (●) and inventory 
plots that also contained height, diameter, 
and volume data (Δ). The modeled species 
distribution is based on probability of 
presence estimate above .4 ( ), where 
false-positive and false-negative presence/
absence predictions are minimized (see 
Table 2 for statistics). Note that absence 
data were omitted from the figure. The 
inset shows the approximate natural 
distribution of the species according to 
EUFORGEN (2012)

Picea abies (Norway spruce)
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probability of the true average correlation having a value of zero or 
smaller (one-sided t-test) is negligible, except for European beech, 
where we lack the sample size to reject the null hypothesis with con-
fidence (Table 3).

Habitat projections for inventory plot locations based on the 30-
year climate normal period (1961–1990) for each location were not 
significantly correlated with standing volume at age ~50. In fact, visual 
examinations suggest no associations at all with correlation coeffi-
cients approaching zero for all species (data not shown). Similarly, cor-
relations between direct RandomForest model predictions of standing 
volume trained with ~50-year-old plot volume data and validated 
against a withheld dataset of plot measurements approach zero (data 
not shown).

3.3 | Future habitat suitability projections

The above analysis shows that model outputs must be interpreted 
with caution. Our validations against growth data from tree rings 
and inventory plots suggest that habitat projections are not informa-
tive at a forest stand level and only represent average expectations 
over larger geographic areas. We remind the reader that stand level 
variation in effects of climate change on tree growth may be very 
large (and occasionally reversed) when compared to the general 
expectation of growth trends under climate change. With these ca-
veats clearly stated, Figure 4 illustrates changes in modeled habitat 
suitability and by inference also expected changes in tree growth 
for Norway spruce under recently observed climate change (1995–
2009) and future climate periods (2020s and 2050s). Figures S4–S6 
show corresponding projections for Scots pine, European beech, and 
pedunculate oak.

Within the current extent of the species range, habitat suitability of 
spruce generally decreases in southern and central Europe, whereas it 
increases (or remains stable) in the north or at higher elevation. Similar 
trends are observed for pine, beech, and oak (Figs S4–S6). Further, our 
model projections indicate that climate change is happening as fast as 
or faster than projected by general circulation models. Namely, hind-
cast projections for 1995–2009 period already appear approximately 
equal to 2020s projections.

4  | DISCUSSION

4.1 | Species distribution model evaluation

Our species distribution models appear to be reasonably accurate 
when validated against withheld presence/absence data. The two 
broadleaved tree species (oak and beech) had very good validation 
statistics with AUCs of .9, while the two conifers (pine and spruce) 
had moderate predictive accuracies with AUCs between .7 and .8. The 
importance values of predictor variables appear largely sensible: The 
coniferous species had no range limitations toward cold northern cli-
mates and their ranges within the study area were therefore best pre-
dicted by warm temperatures and dryness, delineating the southern 
and low-elevation range limits (Table 1, Figures 1 and S1). In contrast, 
the species range of the two broadleaved trees were bound toward 
northern and high-elevation range limits within the study area as well. 

Species N

Distribution of correlation coefficients (r)

p (r ≤ 0)Minimum Mean Maximum

Norway spruce 126 −.31 .25 .82 <.0001

Scots pine 128 −.27 .18 .61 <.0001

European beech 4 −.10 .31 .49 .1083

Pedunculate oak 37 −.22 .19 .72 <.0001

Correlation coefficients (r) were calculated between 5-year moving averages of the habitat hindcasts 
(1901–2009), and corresponding 5-year moving averages of site chronologies. The number of chro-
nologies (N), the minimum, mean, and maximum r, as well as the probability that the mean correlation 
coefficient for each species is smaller or equal to zero, are reported.

TABLE  3 Results of Pearson correlation 
analyses between site chronologies of 
tree-ring data and annual habitat suitability 
hindcasts

F IGURE  2 Time series of tree-ring indices and predictions of 
habitat suitability for three sample chronologies of Norway spruce 
with a high (a), a low (b), and a negative (c) correlation coefficient. For 
a map of Norway spruce correlation coefficients see Figure 3. For 
distribution statistics of all correlation coefficients for all species, see 
Table 3
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Therefore, a broader range of climate variables had predictive value 
(Table 1, Figs S2 and S3).

Notably, when comparing the insets of Figure 1 and the corre-
sponding Figs S1–S3, which reflect the original native species ranges 
(EUFORGEN 2016) with the modeled species ranges and the occur-
rence records (shown in the main map of the same figures), it appears 
that the species distribution model generally overpredicts. However, 
tree species in Europe have been planted outside of their natural range 
for centuries (Lindner et al., 2014), and the species distribution model 
therefore likely reflects the larger fundamental niche of the species. 
While the fundamental niche (i.e., the absolute environmental toler-
ances) cannot be comprehensively inferred from plot data (because 
we do not know which environments were never tested), our modeling 

effort might approach the species’ fundamental niche (because of 
planting efforts outside the natural range). Habitat loss projected 
by the models in this study (putatively approaching the fundamen-
tal niche) should therefore be of higher concern than projections of 
a more restricted realized niche model (based on a just the natural 
species’ range). Habitat loss in this study could imply that projected 
climates are outside the species tolerances rather than just favoring 
competitors in the long term.

4.2 | SDM projections versus growth records

In correlating model outputs of habitat suitability with growth records 
from tree rings, all species showed a very similar range of correlation 

F IGURE  3 Correlation coefficients between predictions of the Norway spruce species distribution model for 5-year moving averages of 
habitat suitability hindcasts (1901–2009), and corresponding 5-year moving averages of site chronologies. The location of site chronologies is 
indicated by circles, the size of circles represents the strength of the correlation, and chronologies from sites higher than 1,500 m are marked by 
thick borders
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coefficients (Table 3), which reflects a similarly balanced set of pro-
jections of changes (compare Figures 4 and S4–S6). The species do 
not differ dramatically in their sensitivity to climate change based on 
continental-scale projections, nor do they differ dramatically in their 
response to interannual climate variation at the specific sites where 
they occur based on tree-ring chronologies. Further, the range of cor-
relation coefficients is surprisingly large and includes negative as well 
as positive associations with climate suitability projections. This result 
may not be unexpected if the analysis was carried out for individual 
climate variables. For example, a high-temperature anomaly would 

be expected to yield good growth at the northern edge of the spe-
cies distribution but lower than average performance at the southern 
range limit. This is, however, not a plausible explanation for the result 
at hand. RandomForest is a regression tree classifier and therefore 
well capable of modeling nonlinear growth responses to predictor 
variables, as well as interactions among those variables. The negative 
result further conforms to Figure 3 which does not show any spatial 
patterns that are associated with the strength of the correlations.

We conclude that tree responses to projected climate change 
are highly site-specific and that local suitability of a species for 

FIGURE  4 Predicted climatic habitat suitability for Norway spruce based on the climate period of the training dataset (1961–1990), and changes 
in habitat suitability for a recent 15-year climate period (1995–2009), and ensemble projections for the 2020s and 2050s of the CMIP3 multimodel 
dataset for the emission scenario A2. Note that predictions for all climate periods have been limited to the current extent of the species range. If the 
absolute probability of presence was predicted to be below .4, the habitat is marked as lost relative to the 1961–1990 baseline projection

Picea abies (Norway spruce)

PoP difference
for 1995-2009
climate

Probability of
presence (PoP) 
for 1961-1990
climate

PoP difference
for 2050s
climate

PoP difference
for 2020s
climate

Probability of
Presence (PoP)          <0.4   0.4                     1.0

Difference                 
in  PoP             –1.0          0         +1.0     Loss



     |  2593van der MAATEN et al.

reforestation is difficult to predict. This is further confirmed by our un-
successful attempt to predict standing volume at an age of ~50 years 
directly with a RandomForest classifier. RandomForest projections 
explained less than 5% of the overall variance in this continuous pre-
dictor variable, indicating that local site factors overwhelm climate 
variables as predictors. It should be noted, however, that this applies 
to sites where the species occurs and has been growing ~50 years. 
Thus, the inference that climate has no influence on tree growth 
should not be made from this observation. Rather, we conclude that 
for well-established trees at local sites, the cumulative volume over 
a period of 50 years is not a function of climate but predominantly a 
function of other site factors.

4.3 | Regional-scale growth projections

Despite the wide range of correlation coefficients between habitat 
suitability projections and tree-ring records (Table 3), we have strong 
indications that they do not represent random noise, but real climate 
habitat–growth associations. The correlation coefficients are gener-
ally positive with an average of .22 and differ highly significantly from 
zero. The probability to obtain an equal or larger average correlation 
coefficient by random chance is extremely small for all species, except 
for European beech, where we were only able to evaluate four tree-
ring chronologies. Thus, while local site factors such as soils, topo-
graphic exposure, and ground water availability may account for how 
climate change may affect forest growth at individual sites, significant 
positive correlations across multiple sites (Table 2) suggest that habi-
tat projections are capable of correctly predicting growth trends on 
average. Therefore, we conclude that SDM projections should be 
interpreted as average expectations of increased or reduced growth 
over larger geographic scales.

Model predictions for the 1995–2009 climate period compared to 
the 1961–1990 baseline, representing a 28-year warming trend (i.e., 
midpoint 2002 minus midpoint 1975), reveal that habitat suitability 
of Norway spruce declined in the more southern and drier parts of 
its current distribution, whereas it increased in the north (Figure 4). 
Interestingly, projections driven by already observed climate change 
very closely resemble the 2020s projection. This implies that climate 
change appears to materialize faster than projected even under the 
pessimistic A2 SRES scenario, which is the basis for the revised RCP 
8.5 scenario, that is, an emission storyline that assumes high popula-
tion growth and lower incomes in developing countries (van Vuuren 
et al., 2011). While this outlook should raise concern, we show in this 
paper that the climate impacts on forest growth will be highly variable 
at local scales. As a consequence, climate change adaptation strategies 
for the forestry sector that aim at moving species to appropriate local 
site conditions appear at least as promising as large-scale geographic 
assisted migration efforts.
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