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Abstract
Bioclimate	envelope	models	have	been	widely	used	to	illustrate	the	discrepancy	be-
tween	current	species	distributions	and	their	potential	habitat	under	climate	change.	
However,	the	realism	and	correct	interpretation	of	such	projections	has	been	the	sub-
ject	of	considerable	discussion.	Here,	we	investigate	whether	climate	suitability	pre-
dictions	correlate	to	tree	growth,	measured	in	permanent	inventory	plots	and	inferred	
from	tree-	ring	records.	We	use	the	ensemble	classifier	RandomForest	and	species	oc-
currence	data	from	~200,000	inventory	plots	to	build	species	distribution	models	for	
four	 important	 European	 forestry	 species:	 Norway	 spruce,	 Scots	 pine,	 European	
beech,	and	pedunculate	oak.	We	then	correlate	climate-	based	habitat	suitability	with	
volume	measurements	 from	~50-	year-	old	stands,	available	 from	~11,000	 inventory	
plots.	Secondly,	habitat	projections	based	on	annual	historical	climate	are	compared	
with	ring	width	from	~300	tree-	ring	chronologies.	Our	working	hypothesis	is	that	hab-
itat	suitability	projections	from	species	distribution	models	should	to	some	degree	be	
associated	with	temporal	or	spatial	variation	in	these	growth	records.	We	find	that	the	
habitat	projections	are	uncorrelated	with	spatial	growth	records	(inventory	plot	data),	
but	they	do	predict	interannual	variation	in	tree-	ring	width,	with	an	average	correla-
tion	of	.22.	Correlation	coefficients	for	individual	chronologies	range	from	values	as	
high	as	.82	or	as	low	as	−.31.	We	conclude	that	tree	responses	to	projected	climate	
change	are	highly	site-	specific	and	that	local	suitability	of	a	species	for	reforestation	is	
difficult	to	predict.	That	said,	projected	increase	or	decrease	in	climatic	suitability	may	
be	interpreted	as	an	average	expectation	of	increased	or	reduced	growth	over	larger	
geographic	scales.
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1  | INTRODUCTION

Tree	species	distributions	and	forest	productivity	are	strongly	linked	
to	 climatic	 factors	 through	 direct	 effects	 of	 climate	 conditions	 on	
tree	 physiological	 processes	 (Running	 et	al.,	 2004).	 As	 a	 conse-
quence,	 climate	 change	 is	 expected	 to	 affect	 forest	 growth	 and	
health	 in	 the	 short	 term	 (Boisvenue	 &	 Running,	 2006),	 as	well	 as	
geographic	distribution	of	species	 in	 the	 long	term	through	demo-
graphic	processes	 (Davis	&	Shaw,	2001;	Parmesan	&	Yohe,	2003).	
For	temperature-	limited	boreal	forests,	the	general	expectation	is	a	
profound	northward	shift	of	suitable	tree	species	habitat,	while	the	
situation	in	temperate	regions	tends	to	be	more	complex	and	varies	
between	Mediterranean,	continental,	and	maritime	climates	(Bonan,	
2008).	Direct	and	 indirect	climate	 impacts,	such	as	water	shortage	
and	increased	risk	of	forest	fires,	appear	to	threaten	Mediterranean	
forests	(Allen	et	al.,	2010;	Schröter	et	al.,	2005),	while	forest	growth	
might	 benefit	 in	 continental	 and	Atlantic	 forests,	 but	 only	 at	 sites	
where	 an	 increased	 evaporative	 demand	 can	 be	 compensated	 by	
sufficient	water	 availability	 (Lindner	 et	al.,	 2010;	 Spathelf,	 van	 der	
Maaten,	 van	 der	 Maaten-	Theunissen,	 Campioli,	 &	 Dobrowolska,	
2014).

Although	 predictions	 of	 climate	 change	 (impacts)	 still	 carry	 un-
certainties	 regarding	 the	 magnitude	 of	 responses,	 there	 is	 grow-
ing	 awareness	 among	 forestry	 professionals	worldwide	 that	 climate	
change	potentially	poses	a	large	threat	to	the	economic	and	ecological	
value	of	 forest	 lands	 (Lindner	et	al.,	 2014).	For	Europe,	Hanewinkel,	
Cullmann,	 Schelhaas,	 Nabuurs,	 and	 Zimmermann	 (2013)	 estimated	
that	economic	 losses	may	total	 several	hundred	billion	euros	by	 the	
end	of	the	century	without	appropriate	adaptation	strategies	for	the	
forestry	 sector.	 To	 guide	 species	 choice	 in	 reforestation	 and	 forest	
management	prescriptions	to	address	climate	change,	species	distri-
bution	models	(SDMs)	are	potentially	a	useful	tool.	These	correlative	
models	employ	a	variety	of	statistical	or	machine	learning	techniques	
to	relate	species	presence/absence	data	to	relevant	predictor	variables	
such	as	climate	data,	topo-	edaphic	variables,	or	other	habitat	factors	
(e.g.,	 Guisan	 &	 Zimmermann,	 2000).	Although	 there	 are	 exceptions	
(e.g.,	O’Neill,	Hamann,	&	Wang,	2008),	SDMs	normally	predict	the	re-
alized	niche	space	of	species.

The	models	have	been	widely	used	to	 illustrate	the	discrepancy	
between	current	tree	species	distributions	and	their	predicted	poten-
tial	habitat	under	climate	change	(e.g.,	Iverson	&	Prasad,	1998;	Loarie	
et	al.,	2008;	Thomas	et	al.,	2004;	Thuiller,	 Lavorel,	Araújo,	Sykes,	&	
Prentice,	2005).	The	realism	and	correct	 interpretation	of	such	pro-
jections,	 however,	 has	 been	 the	 subject	 of	 considerable	 discussion	
(e.g.,	 Botkin	 et	al.,	 2007;	 García-	Valdés,	 Zavala,	 Araújo,	 &	 Purves,	
2013;	Hampe,	2004;	Thuiller	et	al.,	2008),	and	there	is	consensus	in	
the	scientific	community	that	SDMs	are	conceptually	inadequate	to	
accurately	 predict	 demographic	 processes	of	 species	 under	 climate	
change.	Modeling	the	realized	climatic	niche	does	not	reveal	the	full	
range	of	the	species’	ecological	tolerances	and	 limitations,	and	pre-
dicted	gain	or	loss	of	suitable	climate	habitat	does	not	imply	an	imme-
diate	threat	to	a	species	population	or	rapid	expansion	of	a	species’	
range.

Despite	the	limitations	of	SDMs	for	climate	change	impact	assess-
ments	 on	 complex	 ecological	 systems,	 it	 has	 been	pointed	out	 that	
species	 distribution	models	 are	 conceptually	well	 suited	 for	 simpler	
practical	 tasks:	 guiding	 climate	 change	 adaptation	 strategies	 that	
involve	 habitat	 restoration	 or	 choosing	 suitable	 tree	 species	 for	 re-
forestation	 (Gray	&	Hamann,	2011,	2013;	Hamann	&	Aitken,	 2013;	
Schelhaas	 et	al.,	 2015).	 For	 such	management	 applications,	 the	 pri-
mary	task	is	to	match	source	and	target	environments.	Nevertheless,	
it	is	uncertain	whether	subsequent	long-	term	forest	growth	and	forest	
health	are	well	described	by	species	distribution	models	that	may	be	
used	 to	 guide	 initial	 decisions	 on	 species	 choice	 for	 a	 general	 geo-
graphic	region.

Here,	 we	 contribute	 a	 retrospective	 analysis	 how	 SDM-	derived	
habitat	 suitability	 projections	 for	 four	 major	 European	 tree	 species	
(Norway	spruce—Picea abies	(L.)	Karst.,	Scots	pine—Pinus sylvestris	L.,	
European	 beech—Fagus sylvatica	L.,	 and	 pedunculate	 oak—Quercus 
robur	L.)	correlate	with	forest	growth	data	from	 long-	term	 inventory	
plots	 and	 tree-	ring	 chronologies.	 Our	 hypothesis	 is	 that	 periods	 of	
marginal	growth	observed	in	the	tree-	ring	record	(for	example,	during	
cold	or	dry	episodes)	may	be	predicted	by	annual	hindcasts	of	habi-
tat	suitability	from	species	distribution	models.	Such	correlations	be-
tween	growth	and	modeled	habitat	suitability	may	vary	from	site	to	
site.	For	example,	projected	habitat	loss	during	drought	periods	may	
correlate	well	with	tree-	ring	records	on	water-	limited	sites	but	not	on	
wet	sites,	which	would	point	 to	 important	 interactions	between	cli-
matic	and	nonclimatic	abiotic	factors.	Notwithstanding	large	variation	
from	nonclimatic	site	factors,	projections	of	climatic	habitat	suitabil-
ity	should	to	some	degree	correlate	positively	with	long-	term	growth	
records.	Strong	spatial	(inventory	plots)	or	temporal	(tree-	ring-	based)	
associations	of	 growth	with	 climate	may	 increase	our	 confidence	 in	
using	species	distribution	models	to	guide	climate	change	adaptation	
strategies	in	forestry	and	ecosystem	management.

2  | METHODS

2.1 | Forest inventory and tree- ring data

We	use	a	forest	inventory	database	for	17	European	countries,	includ-
ing	Belgium	(9,075	plots),	Croatia	(39),	Estonia	(1,598),	Finland	(1,690),	
France	(1,741),	Germany	(54,087),	Italy	(13,972),	Lithuania	(744),	the	
Netherlands	(1,442),	Norway	(8,629),	Romania	(196),	Slovakia	(1,410),	
Slovenia	(38),	Sweden	(2,784),	Ukraine	(126),	and	the	United	Kingdom	
(19,166).	The	database	was	originally	compiled	by	Brus	et	al.	 (2012)	
and	Nabuurs	(2009).	In	addition,	we	added	a	newly	available	Spanish	
forest	 inventory	 database	 (82,527)	 that	 is	 publicly	 available	 from	
the	Spanish	Ministry	of	Agriculture,	 Food	 and	Environment	 (http://
www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/
inventario-cartografia/inventario-forestal-nacional).

For	a	 subset	of	12	countries	 that	 still	 represent	a	broad	 range	of	
climate	 conditions	 throughout	Europe,	 information	on	 stand	age	and	
species-	specific	standing	stock	volumes	was	available	(excluding	Croatia,	
the	Netherlands,	Romania,	Ukraine,	and	United	Kingdom).	Rather	than	
attempting	age-	based	adjustments,	we	only	use	volume	data	for	40-		to	
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60-	year-	old	stands	(hereafter	referred	to	as	~50-	year-	old	plot/volume	
data)	resulting	in	11,539	plots	from	a	total	of	199,264	inventory	plots	
with	 species-	specific	 presence/absence	 data.	 The	 presence/absence	
data	were	 used	 for	 building	 species	 distribution	models	 that	 predict	
habitat	suitability,	while	the	subset	of	~50-	year-	old	plot	data	was	used	
to	analyze	associations	between	habitat	suitability	and	forest	growth.

To	validate	predictions	of	interannual	variation	in	habitat	suitability,	
we	obtained	tree-	ring	data	from	295	sites	both	from	the	International	
Tree-	Ring	Data	Bank	(ITRDB)	(NOAA,	2016),	as	well	as	from	previous	
studies	 by	van	 der	Maaten	 (2012)	 and	van	 der	Maaten-	Theunissen,	
Kahle,	&	van	der	Maaten	(2013).	We	detrended	all	individual	tree-	ring	
series	by	fitting	a	cubic	smoothing	spline	with	a	50%	frequency	cutoff	
at	30	years	in	order	to	remove	nonclimatic	growth	responses	(see	also	
Cook	&	Peters,	1981),	such	as	biological	age	trends	or	effects	of	for-
est	management.	Indices	were	calculated	dividing	the	observed	by	the	
predicted	values,	resulting	in	standardized	series	that	are	dimension-
less	and	have	a	mean	of	one.	Finally,	the	standardized	chronologies	for	
individual	trees	were	averaged	per	site	in	so-	called	site	chronologies	
using	a	bi-	weight	robust	mean.

2.2 | Climate data

Climate	data	were	generated	using	the	software	package	ClimateEU	
(Hamann,	 Wang,	 Spittlehouse,	 &	 Murdock,	 2013;	 Wang,	 Hamann,	
Spittlehouse,	&	Murdock,	2012),	available	for	anonymous	download	
at	 http://tinyurl.com/ClimateEU.	 The	 ClimateEU	 package	 is	 a	 soft-
ware	 front-	end	 for	 interpolated	 climate	 databases	 generated	 with	
the	Parameter-	elevation	Regressions	on	 Independent	Slopes	Model	
(PRISM)	(Daly	et	al.,	2008).	The	software	allows	to	query	monthly	his-
torical	climate	data	from	1901	to	2013,	as	well	as	to	generate	gridded	
climate	surfaces	for	Europe	for	habitat	suitability	modeling.	The	soft-
ware	implements	downscaling	algorithms	that	use	empirically	derived	
local	lapse	rates	for	individual	climate	variables	to	adjust	for	any	dis-
crepancies	between	the	elevation	of	sample	locations	(tree-	ring	chro-
nologies	and	inventory	plots)	and	gridded	climate	databases	that	the	
ClimateEU	software	queries	(Hamann	et	al.,	2013;	Wang	et	al.,	2012).

We	use	the	30-	year	climate	normal	period	from	1961	to	1990	as	
a	climate	reference	period,	and	a	15-	year	climate	average	from	1995	
to	2009	to	represent	recent	observed	climate	change	(inventory	plot	
and	tree-	ring	data	were	not	available	for	more	recent	years).	We	use	
10	biologically	relevant	climate	variables	that	account	for	most	of	the	
variance	 in	 climate	 data	 while	 avoiding	 multicollinearity:	 mean	 an-
nual	 temperature,	 the	mean	temperatures	of	 the	warmest	and	cold-
est	 month,	 the	 difference	 between	 July	 and	 January	 temperature	
as	 an	 indicator	 of	 continentality,	mean	 annual	 precipitation,	May	 to	
September	(growing	season)	precipitation,	growing	degree	days	above	
5°C,	frost-	free	days,	and	two	dryness	indices	after	Hogg	(1997):	an	an-
nual	climate	moisture	index	and	a	June–August	summer	climate	mois-
ture	index.	The	variables	are	explained	in	detail	by	Wang	et	al.	(2012).

For	spatial	habitat	modeling,	we	use	1-	km	resolution	climate	grids	
in	Albers	Equal	Area	projection.	Species	distribution	models	were	built	
based	on	a	widely	used	reference	period	that	largely	predates	a	signif-
icant	anthropogenic	warming	signal	(the	1961–1990	climate	normal).	

Projections	were	made	for	this	reference	normal	period,	a	more	recent	
average	(1995–2009),	as	well	as	for	the	2020s	(2011–2040)	and	2050s	
(2041–2070)	using	an	ensemble	average	from	the	CMIP3	multimodel	
dataset	corresponding	to	the	fourth	IPCC	assessment	report	 (Meehl	
et	al.,	2007).	Similar	to	Fordham,	Wigley,	&	Brook	(2011),	we	excluded	
poorly	validated	AOGCMs	(MIROC3.2,	MRI-	CGCM2.3.2,	MIROC3.2,	
IPSL-	CM4,	FGOALS-	g1.0,	GISS-	ER,	GISS-	EH,	and	GISS-	AOM)	and	re-
tained	the	remaining	CMIP3	models.	The	study	was	 initiated	before	
the	CMIP5	dataset	corresponding	to	the	fifth	IPCC	assessment	report	
became	available.	However,	we	note	 that	 the	 two	AOGCM	genera-
tions	yield	 remarkably	 similar	 projections	 in	magnitude,	 uncertainty,	
and	spatial	 resolution	 (Knutti	&	Sedláček,	2013).	Accounting	for	dif-
ferent	approaches	to	describe	emission	scenarios	(SRES	versus	RCP),	
we	find	that	the	projections	at	the	level	of	multimodel	ensemble	aver-
ages	remain	largely	the	same	for	both	temperature	and	precipitation	
variables.

2.3 | Species distribution modeling

We	 built	 species	 distributions	 using	 the	 RandomForest	 ensemble	
classifier	 (Breiman,	 2001)	 implemented	 by	 the	 randomForest	 pack-
age	 (Liaw	 &	 Wiener,	 2002)	 for	 the	 R	 programing	 environment	 (R	
Development	Core	Team,	2016).	This	ensemble	classifier	grows	mul-
tiple	classification	trees	(here,	n	=	500)	from	bootstrapped	samples	of	
the	training	data	and	determines	its	prediction	by	majority	vote	over	
all	developed	classification	trees	(Cutler	et	al.,	2007).	Importance	val-
ues	for	the	predictor	variables	were	calculated	as	the	frequency	that	
a	 particular	 climate	 variable	 contributed	 to	 a	 correct	 classification.	
Habitat	projections	were	made	(1)	for	climate	data	for	the	1961–1990	
period	 to	 analyze	associations	between	projected	habitat	 suitability	
and	growth	observed	on	forest	inventory	plots,	(2)	for	climate	data	for	
individual	years	from	1901	to	2009	to	analyze	associations	between	
projected	habitat	suitability	and	growth	tree-	ring	width,	and	(3)	for	a	
recent	climate	average	 (1995–2009)	and	 future	periods	 (2020s	and	
2050s)	to	infer	future	trends	in	growth	patterns	across	Europe.

The	RandomForest	algorithm	was	preferred	over	other	algorithms,	
like	maxent,	 because	we	had	a	 rather	unproblematic	dataset	with	 a	
high	 number	 of	 census	 records.	 To	 account	 for	 nonlinearity	 in	 the	
species	response	across	climate	gradients	and	for	interactions	among	
climate	 variables,	 RandomForest	 is	 generally	 considered	 the	 most	
powerful	implementation	of	regression	tree	techniques.

We	also	made	an	attempt	to	use	the	regression	tree	(rather	than	
classification	 tree)	 functionality	 of	 RandomForest	 to	 model	 a	 con-
tinuous	 response	 variable	 (i.e.,	 ~50-	year-	old	 plot	 volume	 data)	 as	 a	
function	of	climate.	For	the	volume	models,	we	built,	for	each	of	the	
studied	tree	species,	a	training	dataset	of	approximately	9,000	sam-
ples,	which	were	climatically	characterized	and	comprised	equal	num-
bers	of	plots	with	volume	data,	absence	plots,	and	random	absences.	
Random	absences	were	only	selected	for	countries	without	plot-	data	
availability	by	using	an	overlay	with	tree	species	distributions	from	the	
European	Forest	Genetic	Resources	Programme	(EUFORGEN,	2012).	
We	 removed	 pseudo-	absences	 using	 a	 p >	.5	 threshold	 for	 species	
presence	using	RandomForest	habitat	projections	based	on	presence/

http://tinyurl.com/ClimateEU
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absence	variants	of	 the	 training	datasets.	This	analysis	did	not	yield	
acceptable	validation	statistics,	and	we	briefly	report	on	this	negative	
result	for	the	inventory	data-	climate	modeling	attempt.

Model	 performance	was	 evaluated	using	 the	 area	 under	 the	 re-
ceiver	 operating	 characteristic	 curve	 (AUC	of	 ROC)	 to	 evaluate	 the	
statistical	 accuracy	 of	 the	 species	 distribution	models	 for	 individual	
tree	species.	The	AUC	statistic	 is	a	common	measure	of	 the	perfor-
mance	of	classification	rules;	it	balances	the	ability	of	a	model	to	de-
tect	a	species	when	it	is	present	(sensitivity)	against	its	ability	to	not	
predict	 a	 species	when	 it	 is	 absent	 (specificity)	 (e.g.,	 Fawcett,	2006;	
Fielding	&	Bell,	1997).	We	further	report	model	sensitivity	(calculated	
as	TP/(TP	+	FN)	with	TP	as	true	positives	and	FN	as	false	negatives)	
and	model	specificity	(TN/(TN	+	FP)	with	TN	as	true	negatives	and	FP	
as	false	positives).	All	ROC	and	AUC	calculations	were	 implemented	
with	 the	 ROCR	 package	 (Sing,	 Sander,	 Beerenwinkel,	 &	 Lengauer,	
2005)	for	the	R	programming	environment.

2.4 | Statistical analysis

To	 assess	 whether	 habitat	 projections	 of	 our	 species	 distribution	
models	are	associated	with	observed	forest	growth,	we	conducted	a	
Pearson	correlation	analysis	between	the	probability	of	presence	es-
timates	from	the	RandomForest-	based	habitat	suitability	projections	
and	 growth	measurements	 from	 two	 data	 sources:	 inventory	 plots	
(to	 represent	 spatial	 variation)	or	 growth	 increments	 from	 tree-	ring	
data	 (to	 represent	 temporal	variation).	All	 correlations	were	visually	
checked	for	linearity,	and	transformations	were	judged	as	unlikely	to	
have	any	notable	or	consistent	effect	on	the	results.	Habitat	projec-
tions	for	correlations	with	~50-	year-	old	plot	volume	data	were	based	
on	 one	 long-	term	 projection	 for	 the	 1961–1990	 normal	 period	 (to	
analyze	spatial	growth−climate	associations).	Habitat	projections	for	

comparison	with	tree-	ring	increments	were	based	on	habitat	projec-
tions	for	109	individual	years,	from	1901	to	2009	(to	analyze	temporal	
growth−climate	associations).

Because	tree-	ring	chronologies	are	known	to	display	temporal	au-
tocorrelations	(Fritts,	1976),	we	allowed	for	a	maximum	lag	of	3	years	
for	 the	 correlation	 analysis	 between	 annual	 habitat	 projections	 and	
site	 chronologies.	 Further,	 because	 forest	 ecosystems	 can	 be	 well	
buffered	 against	 short-	term	 climate	 fluctuations,	we	 also	 evaluated	
correlations	based	on	3-	,	5-	,	7-	,	and	9-	year	moving	averages	of	both	
habitat	projections	and	site	chronologies.	Generally,	5-	year	moving	av-
erages	generated	the	strongest	correlation	coefficients	(both	negative	
and	positive),	and	was	therefore	applied	to	all	chronologies.	To	deter-
mine	whether	the	average	correlation	coefficient	was	larger	than	zero,	
a	 single-	sample	 one-	tailed	 t-	test	 across	 all	 correlation	 coefficients	
from	each	species	was	carried	out,	testing	to	our	overall	scientific	null	
hypothesis	 that	 there	was	 no	 positive	 association	 between	 growth	
and	climatic	habitat	suitability.

3  | RESULTS

3.1 | Variable importance and model statistics

RandomForest	 importance	values	 indicate	that	climate	predictors	of	
species	ranges	are	quite	species-	specific,	with	a	notable	contrast	be-
tween	coniferous	and	deciduous	trees	(Table	1).	For	spruce	and	pine,	
the	mean	warmest	month	 temperature	 contributes	 strongly	 to	 cor-
rectly	predicting	presence	and	absence	of	these	species	in	inventory	
plot	data.	Further,	 the	 summer	and	annual	 climate	moisture	 indices	
were	 important	 predictor	 variables	 for	 spruce.	 In	 contrast,	 variable	
importance	values	for	summer	heat	and	moisture	variables	were	very	
low	for	the	broadleaved	tree	species	oak	and	beech.	For	these	species,	

Climate variable

RF importance

Norway spruce Scots pine European beech Pedunc. oak

Mean	annual	temperature	
(°C)

2.8 2.0 1.8 1.7

Mean	warmest	month	
temperature	(°C)

7.8 8.9 3.2 3.0

Mean	coldest	month	
temperature	(°C)

5.6 2.0 4.9 2.3

Continentality	(°C) 4.9 4.1 8.0 4.6

Mean	annual	precipita-
tion	sum	(mm)

3.1 2.5 3.2 1.2

Growing	season	
precipitation	sum	(mm)

4.3 4.3 2.2 1.9

Growing	degree	days	
>5°C	(days)

5.8 6.0 2.4 2.8

Frost-	free	period	(days) 4.6 2.0 2.6 3.0

Annual	climate	moisture	
index	(cm)

6.7 5.1 2.0 2.6

June–August	climate	
moisture	index	(mm)

8.5 4.9 2.1 2.8

TABLE  1  Importance	values	of	
RandomForest	climate	predictor	variables,	
calculated	as	the	number	of	times	that	a	
particular	variable	contributed	to	a	correct	
classification.	Reported	values	are	divided	
by	100	for	readability
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continentality	and	other	cold-	related	variables	stand	out	as	the	best	
predictors	of	species	ranges.	Continentality	is	the	most	important	pre-
dictor	 for	 both	broadleaves,	with	mean	 coldest	month	 temperature	
the	second	most	important	predictor	for	beech	occurrences	and	sev-
eral	variables,	including	frost-	free	period,	being	secondary	predictors	
for	oak.

Accuracy	 statistics	 for	 the	 presence/absence	 predictions	 are	
shown	 in	Table	2.	Total	error	 rates	of	 false	positives	and	false	nega-
tives	range	between	0.13	and	0.32,	with	the	widespread	coniferous	
species	having	the	highest	error	rates.	AUC	values	are	fairly	high	rang-
ing	from	0.72	to	0.90,	with	beech	and	oak	having	the	best	predictive	
accuracy.	For	all	species,	the	number	of	false-	negative	errors	is	higher	
than	the	number	of	false-	positive	errors,	which	indicates	that	model	
prediction	errors	 are	mainly	 driven	by	 falsely	 predicting	 species	 ab-
sence.	Similarly,	model	sensitivity	is	low	and	model	specificity	is	high,	
showing	that	true	species	absences	were	well	modeled.

The	results	of	the	distribution	model	for	Norway	spruce	are	shown	
in	Figure	1,	with	corresponding	maps	for	Scots	pine,	European	beech,	

and	pedunculate	oak	provided	as	Supporting	information	(Figs	S1–S3).	
A	comparison	of	both	the	presence	data	and	the	predicted	species	dis-
tribution	with	the	approximate	natural	distribution	(after	EUFORGEN,	
2012;	see	inset	Figure	1)	reveals	substantial	differences.	Today’s	dis-
tribution	of	spruce	across	Europe	has	a	distinctively	wider	range	than	
its	natural	distribution	suggests,	due	to	Norway	spruce	being	widely	
planted	as	 a	highly	valued	 forestry	 species	 for	timber	production	 in	
Europe.

3.2 | Habitat projections versus growth

The	 analysis	 of	 temporal	 growth–climate	 associations	 based	 on	
habitat	 suitability	predictions	 and	annual	 growth	 increments	 in	295	
tree-	ring	chronologies	reveals	that	these	correlations	are	highly	vari-
able	in	magnitude	and	even	direction.	Overall,	we	found	an	average	
correlation	across	all	four	species	of	 .22	but	with	correlation	coeffi-
cients	from	individual	chronologies	as	high	as	.82,	often	approaching	
zero,	 and	 regularly	being	negative	with	 values	up	 to	−.31	 (Table	3).	
Examples	for	time	series	with	positive,	neutral,	and	negative	associa-
tions	 are	 shown	 in	 Figure	2,	 and	 a	map	of	 the	 resulting	 correlation	
coefficients	for	all	individual	chronologies	of	Norway	spruce	is	shown	
in	Figure	3.	No	spatial	patterns	are	apparent,	and	elevation	or	climate	
normal	variables	for	 the	origin	of	sample	 locations	were	not	associ-
ated	with	the	strength	or	directions	of	correlation	coefficients	 (data	
not	shown).

Even	 though	 there	 are	 no	 apparent	 associations	 of	 correlation	
coefficients	with	geographic	or	climatic	variables	of	the	sample	loca-
tions,	the	average	association	between	climate	suitability	and	growth	
inferred	from	ring	width	is	positive	and	overall	highly	significant.	The	

TABLE  2 Predictive	accuracy	statistics	for	the	projected	
distribution	areas	of	the	four	study	species

Species Error rate Specificity Sensitivity AUC

Norway	spruce 0.25 0.71 0.65 0.81

Scots	pine 0.32 0.63 0.60 0.72

European	beech 0.16 0.85 0.62 0.90

Pedunculate	oak 0.13 0.79 0.70 0.90

Error	 rate	=	(False	 Positive	+	False	 Negative)/(Total	 Positive	+	Total	
Negative).

F IGURE  1 Sample	plot	data	for	the	
Norway	spruce	presence	(●)	and	inventory	
plots	that	also	contained	height,	diameter,	
and	volume	data	(Δ).	The	modeled	species	
distribution	is	based	on	probability	of	
presence	estimate	above	.4	( ),	where	
false-	positive	and	false-	negative	presence/
absence	predictions	are	minimized	(see	
Table	2	for	statistics).	Note	that	absence	
data	were	omitted	from	the	figure.	The	
inset	shows	the	approximate	natural	
distribution	of	the	species	according	to	
EUFORGEN	(2012)

Picea abies (Norway spruce)
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probability	of	 the	 true	average	correlation	having	a	value	of	zero	or	
smaller	 (one-	sided	 t-	test)	 is	 negligible,	 except	 for	 European	 beech,	
where	we	lack	the	sample	size	to	reject	the	null	hypothesis	with	con-
fidence	(Table	3).

Habitat	projections	for	inventory	plot	locations	based	on	the	30-	
year	climate	normal	period	 (1961–1990)	 for	each	 location	were	not	
significantly	correlated	with	standing	volume	at	age	~50.	In	fact,	visual	
examinations	 suggest	 no	 associations	 at	 all	 with	 correlation	 coeffi-
cients	approaching	zero	for	all	species	(data	not	shown).	Similarly,	cor-
relations	between	direct	RandomForest	model	predictions	of	standing	
volume	 trained	 with	 ~50-	year-	old	 plot	 volume	 data	 and	 validated	
against	a	withheld	dataset	of	plot	measurements	approach	zero	(data	
not	shown).

3.3 | Future habitat suitability projections

The	above	analysis	 shows	 that	model	outputs	must	be	 interpreted	
with	 caution.	 Our	 validations	 against	 growth	 data	 from	 tree	 rings	
and	inventory	plots	suggest	that	habitat	projections	are	not	informa-
tive	at	a	forest	stand	level	and	only	represent	average	expectations	
over	larger	geographic	areas.	We	remind	the	reader	that	stand	level	
variation	 in	 effects	 of	 climate	 change	on	 tree	 growth	may	be	 very	
large	 (and	 occasionally	 reversed)	 when	 compared	 to	 the	 general	
expectation	of	growth	trends	under	climate	change.	With	these	ca-
veats	clearly	stated,	Figure	4	 illustrates	changes	in	modeled	habitat	
suitability	 and	 by	 inference	 also	 expected	 changes	 in	 tree	 growth	
for	Norway	spruce	under	recently	observed	climate	change	(1995–
2009)	and	future	climate	periods	(2020s	and	2050s).	Figures	S4–S6	
show	corresponding	projections	for	Scots	pine,	European	beech,	and	
pedunculate	oak.

Within	the	current	extent	of	the	species	range,	habitat	suitability	of	
spruce	generally	decreases	in	southern	and	central	Europe,	whereas	it	
increases	(or	remains	stable)	in	the	north	or	at	higher	elevation.	Similar	
trends	are	observed	for	pine,	beech,	and	oak	(Figs	S4–S6).	Further,	our	
model	projections	indicate	that	climate	change	is	happening	as	fast	as	
or	faster	than	projected	by	general	circulation	models.	Namely,	hind-
cast	projections	for	1995–2009	period	already	appear	approximately	
equal	to	2020s	projections.

4  | DISCUSSION

4.1 | Species distribution model evaluation

Our	 species	 distribution	 models	 appear	 to	 be	 reasonably	 accurate	
when	 validated	 against	 withheld	 presence/absence	 data.	 The	 two	
broadleaved	 tree	 species	 (oak	 and	beech)	 had	 very	 good	 validation	
statistics	with	AUCs	of	 .9,	while	 the	 two	conifers	 (pine	and	spruce)	
had	moderate	predictive	accuracies	with	AUCs	between	.7	and	.8.	The	
importance	values	of	predictor	variables	appear	largely	sensible:	The	
coniferous	species	had	no	range	limitations	toward	cold	northern	cli-
mates	and	their	ranges	within	the	study	area	were	therefore	best	pre-
dicted	by	warm	temperatures	and	dryness,	delineating	the	southern	
and	low-	elevation	range	limits	(Table	1,	Figures	1	and	S1).	In	contrast,	
the	species	range	of	the	two	broadleaved	trees	were	bound	toward	
northern	and	high-	elevation	range	limits	within	the	study	area	as	well.	

Species N

Distribution of correlation coefficients (r)

p (r ≤ 0)Minimum Mean Maximum

Norway	spruce 126 −.31 .25 .82 <.0001

Scots	pine 128 −.27 .18 .61 <.0001

European	beech 4 −.10 .31 .49 .1083

Pedunculate	oak 37 −.22 .19 .72 <.0001

Correlation	coefficients	(r)	were	calculated	between	5-	year	moving	averages	of	the	habitat	hindcasts	
(1901–2009),	and	corresponding	5-	year	moving	averages	of	site	chronologies.	The	number	of	chro-
nologies	(N),	the	minimum,	mean,	and	maximum	r,	as	well	as	the	probability	that	the	mean	correlation	
coefficient	for	each	species	is	smaller	or	equal	to	zero,	are	reported.

TABLE  3 Results	of	Pearson	correlation	
analyses	between	site	chronologies	of	
tree-	ring	data	and	annual	habitat	suitability	
hindcasts

F IGURE  2 Time	series	of	tree-	ring	indices	and	predictions	of	
habitat	suitability	for	three	sample	chronologies	of	Norway	spruce	
with	a	high	(a),	a	low	(b),	and	a	negative	(c)	correlation	coefficient.	For	
a	map	of	Norway	spruce	correlation	coefficients	see	Figure	3.	For	
distribution	statistics	of	all	correlation	coefficients	for	all	species,	see	
Table	3
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Therefore,	a	broader	range	of	climate	variables	had	predictive	value	
(Table	1,	Figs	S2	and	S3).

Notably,	when	 comparing	 the	 insets	 of	 Figure	1	 and	 the	 corre-
sponding	Figs	S1–S3,	which	reflect	the	original	native	species	ranges	
(EUFORGEN	2016)	with	the	modeled	species	ranges	and	the	occur-
rence	records	(shown	in	the	main	map	of	the	same	figures),	it	appears	
that	the	species	distribution	model	generally	overpredicts.	However,	
tree	species	in	Europe	have	been	planted	outside	of	their	natural	range	
for	centuries	(Lindner	et	al.,	2014),	and	the	species	distribution	model	
therefore	 likely	 reflects	 the	 larger	 fundamental	niche	of	 the	species.	
While	the	fundamental	niche	 (i.e.,	 the	absolute	environmental	 toler-
ances)	 cannot	 be	 comprehensively	 inferred	 from	plot	 data	 (because	
we	do	not	know	which	environments	were	never	tested),	our	modeling	

effort	 might	 approach	 the	 species’	 fundamental	 niche	 (because	 of	
planting	 efforts	 outside	 the	 natural	 range).	 Habitat	 loss	 projected	
by	 the	models	 in	 this	 study	 (putatively	 approaching	 the	 fundamen-
tal	niche)	should	 therefore	be	of	higher	concern	 than	projections	of	
a	more	 restricted	 realized	 niche	model	 (based	 on	 a	 just	 the	 natural	
species’	 range).	Habitat	 loss	 in	 this	study	could	 imply	 that	projected	
climates	are	outside	the	species	tolerances	rather	than	 just	 favoring	
competitors	in	the	long	term.

4.2 | SDM projections versus growth records

In	correlating	model	outputs	of	habitat	suitability	with	growth	records	
from	tree	rings,	all	species	showed	a	very	similar	range	of	correlation	

F IGURE  3 Correlation	coefficients	between	predictions	of	the	Norway	spruce	species	distribution	model	for	5-	year	moving	averages	of	
habitat	suitability	hindcasts	(1901–2009),	and	corresponding	5-	year	moving	averages	of	site	chronologies.	The	location	of	site	chronologies	is	
indicated	by	circles,	the	size	of	circles	represents	the	strength	of	the	correlation,	and	chronologies	from	sites	higher	than	1,500	m	are	marked	by	
thick	borders
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coefficients	 (Table	3),	which	 reflects	a	similarly	balanced	set	of	pro-
jections	of	changes	 (compare	Figures	4	and	S4–S6).	The	species	do	
not	differ	dramatically	in	their	sensitivity	to	climate	change	based	on	
continental-	scale	projections,	nor	do	they	differ	dramatically	in	their	
response	to	 interannual	climate	variation	at	the	specific	sites	where	
they	occur	based	on	tree-	ring	chronologies.	Further,	the	range	of	cor-
relation	coefficients	is	surprisingly	large	and	includes	negative	as	well	
as	positive	associations	with	climate	suitability	projections.	This	result	
may	not	be	unexpected	if	the	analysis	was	carried	out	for	individual	
climate	 variables.	 For	 example,	 a	 high-	temperature	 anomaly	 would	

be	expected	to	yield	good	growth	at	 the	northern	edge	of	 the	spe-
cies	distribution	but	lower	than	average	performance	at	the	southern	
range	limit.	This	is,	however,	not	a	plausible	explanation	for	the	result	
at	 hand.	 RandomForest	 is	 a	 regression	 tree	 classifier	 and	 therefore	
well	 capable	 of	 modeling	 nonlinear	 growth	 responses	 to	 predictor	
variables,	as	well	as	interactions	among	those	variables.	The	negative	
result	further	conforms	to	Figure	3	which	does	not	show	any	spatial	
patterns	that	are	associated	with	the	strength	of	the	correlations.

We	 conclude	 that	 tree	 responses	 to	 projected	 climate	 change	
are	 highly	 site-	specific	 and	 that	 local	 suitability	 of	 a	 species	 for	

FIGURE  4 Predicted	climatic	habitat	suitability	for	Norway	spruce	based	on	the	climate	period	of	the	training	dataset	(1961–1990),	and	changes	
in	habitat	suitability	for	a	recent	15-	year	climate	period	(1995–2009),	and	ensemble	projections	for	the	2020s	and	2050s	of	the	CMIP3	multimodel	
dataset	for	the	emission	scenario	A2.	Note	that	predictions	for	all	climate	periods	have	been	limited	to	the	current	extent	of	the	species	range.	If	the	
absolute	probability	of	presence	was	predicted	to	be	below	.4,	the	habitat	is	marked	as	lost	relative	to	the	1961–1990	baseline	projection
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reforestation	is	difficult	to	predict.	This	is	further	confirmed	by	our	un-
successful	attempt	to	predict	standing	volume	at	an	age	of	~50	years	
directly	 with	 a	 RandomForest	 classifier.	 RandomForest	 projections	
explained	less	than	5%	of	the	overall	variance	in	this	continuous	pre-
dictor	 variable,	 indicating	 that	 local	 site	 factors	 overwhelm	 climate	
variables	as	predictors.	It	should	be	noted,	however,	that	this	applies	
to	sites	where	 the	species	occurs	and	has	been	growing	~50	years.	
Thus,	 the	 inference	 that	 climate	 has	 no	 influence	 on	 tree	 growth	
should	not	be	made	from	this	observation.	Rather,	we	conclude	that	
for	well-	established	trees	at	 local	sites,	 the	cumulative	volume	over	
a	period	of	50	years	is	not	a	function	of	climate	but	predominantly	a	
function	of	other	site	factors.

4.3 | Regional- scale growth projections

Despite	 the	wide	 range	 of	 correlation	 coefficients	 between	 habitat	
suitability	projections	and	tree-	ring	records	(Table	3),	we	have	strong	
indications	that	they	do	not	represent	random	noise,	but	real	climate	
habitat–growth	associations.	The	correlation	coefficients	are	gener-
ally	positive	with	an	average	of	.22	and	differ	highly	significantly	from	
zero.	The	probability	to	obtain	an	equal	or	larger	average	correlation	
coefficient	by	random	chance	is	extremely	small	for	all	species,	except	
for	European	beech,	where	we	were	only	able	to	evaluate	four	tree-	
ring	 chronologies.	 Thus,	while	 local	 site	 factors	 such	 as	 soils,	 topo-
graphic	exposure,	and	ground	water	availability	may	account	for	how	
climate	change	may	affect	forest	growth	at	individual	sites,	significant	
positive	correlations	across	multiple	sites	(Table	2)	suggest	that	habi-
tat	projections	are	capable	of	correctly	predicting	growth	trends	on	
average.	 Therefore,	 we	 conclude	 that	 SDM	 projections	 should	 be	
interpreted	as	average	expectations	of	increased	or	reduced	growth	
over	larger	geographic	scales.

Model	predictions	for	the	1995–2009	climate	period	compared	to	
the	1961–1990	baseline,	representing	a	28-	year	warming	trend	(i.e.,	
midpoint	2002	minus	midpoint	1975),	 reveal	 that	 habitat	 suitability	
of	Norway	 spruce	declined	 in	 the	more	 southern	 and	drier	parts	of	
its	 current	distribution,	whereas	 it	 increased	 in	 the	north	 (Figure	4).	
Interestingly,	projections	driven	by	already	observed	climate	change	
very	closely	resemble	the	2020s	projection.	This	implies	that	climate	
change	appears	 to	materialize	 faster	 than	projected	even	under	 the	
pessimistic	A2	SRES	scenario,	which	is	the	basis	for	the	revised	RCP	
8.5	scenario,	that	is,	an	emission	storyline	that	assumes	high	popula-
tion	growth	and	 lower	 incomes	 in	developing	countries	 (van	Vuuren	
et	al.,	2011).	While	this	outlook	should	raise	concern,	we	show	in	this	
paper	that	the	climate	impacts	on	forest	growth	will	be	highly	variable	
at	local	scales.	As	a	consequence,	climate	change	adaptation	strategies	
for	the	forestry	sector	that	aim	at	moving	species	to	appropriate	local	
site	conditions	appear	at	least	as	promising	as	large-	scale	geographic	
assisted	migration	efforts.
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