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Abstract
Questions: Can probability of occurrence and
dominance be accurately estimated for six impor-
tant conifer species with varying range sizes? Does
range size impact the accuracy of species probability
of occurrence models? Is species predicted probabil-
ity of occurrence significantly related to observed
dominance?
Location: Pacific Northwest region, North America
(601–401N, 1401–1101W).
Methods: This study develops near range-wide pre-
dictive distribution maps for six important conifer
species (Pseudotsuga menziesii, Tsuga heterophylla,
Pinus contorta, Thuja plicata, Larix occidentalis, and
Picea glauca) using forest inventory data collected
across the United States and Canada. Species model
accuracies are compared with range size using a
rank scoring system. A suite of climate and topo-
graphic predictor variables are used to investigate
environmental constraints that limit species range
and quantify relationships between species predicted
probability of occurrence and dominance at both
plot and landscape scales.
Results: Evaluation statistics revealed significant
and accurate probability of occurrence models were
developed for all six species. Based on ranked
evaluation statistics, Tsuga heterophylla had highest
overall model accuracy (statistic rank score5 5) and
Pinus contorta the lowest (statistic rank score5 17).
Across species, ranked evaluation statistics also
revealed a pattern of decreasing model accuracy
with increasing range size. At plot level, correlations
between dominance and probability of occurrence

were weakly positive for all species with only half of
the species having statistically significant correla-
tions. Pseudotsuga menziesii had the highest
correlation (r5 0.36, Po0.001) and Thuja plicata
lowest (r5 0.038, P5 0.799). At the 50-km scale,
correlations between dominance and probability of
occurrence improved for all species except Pinus
contorta. Pseudotsuga menziesii displayed the high-
est correlation (r5 0.68, Po0.001) and Thuja
plicata the lowest (r5 0.07, P40.709).
Conclusions: Species probability of occurrence mod-
el accuracy decreased with increasing range size. The
strength and significance of correlations between
probability of occurrence and dominance varied
considerably by species and across spatial scales.
Apart from Pseudotsuga menziesii and L. occidenta-
lis, the results suggest that probability of occurrence
is not a consistently reliable surrogate for species
dominance in Pacific Northwest forests. We demon-
strate how the degree of correlation between species
occurrence and dominance can be used as an indi-
cator of how well predictions of occurrence
characterize the optimal niche of a species.

Keywords: Bioclimatic envelope modeling; Non-
parametric multiplicative regression (NPMR); Prob-
ability of occurrence; Realized niche; Tree species
dominance.

Nomenclature: Flora of North America Editorial
Committee (1993)

Introduction

Ecological niche models have been used to effec-
tively predict both the current and potential future
distribution of tree species at various spatial scales
(Iverson et al. 1999; Shafer et al. 2001; Hamann &
Wang 2006; Rehfeldt et al. 2006). Although these
habitat models can take a variety of statistical forms
(e.g., generalized additive models, logistic regression,
classification and regression tree), they all work un-
der the same premise that a set of abiotic factors
exerts dominant control over the natural distribution
of plant species. Biotic interactions, such as competi-
tion or pests and diseases, are implicitly included in
these models, because they model the realized niche
as implied by species census data (Hutchinson 1957,
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1965). High-quality soil and topographic data are
often not available as predictor variables, and there-
fore models are often built exclusively on correlations
between observed species distributions and climate
variables, which is why they are commonly referred
to as bioclimatic envelope models.

Models of the realized niche of a species can be
problematic and difficult to interpret because cur-
rent species distributions may not be in equilibrium
with climate. Since the current realized niche of a
species does not fully represent the extreme limits
necessary for survival and growth (Pearson & Daw-
son 2003), it is likely that the future realized niche of
a species will almost certainly be different under
changing climatic conditions. As such, actual shifts
in species ranges and plant communities may be
quite different from those predicted by envelope
models, even if given time to restore approximate
equilibrium conditions (Iverson & Prasad 1998).
However, rather than literally predicting future spe-
cies distributions, bioclimatic envelope models can
be useful to match management objectives to an-
ticipated future climate, and they have been
proposed as useful tools for guiding ecosystem re-
storation, plantation forestry, and genetic resource
management (Hamann & Wang 2006).

In this paper, we emphasize another aspect of
bioclimatic envelope models. While correlations do
not imply causation, the relationship among prob-
ability of occurrence, abundance, and predictor
variables can provide useful information about po-
tential abiotic factors that govern range limits,
dominance of species, and, potentially, forest pro-
ductivity. Forest productivity models could benefit
from this type of correlative information, as they
require species-specific definitions of precipitation
and temperature limits to accurately estimate pho-
tosynthetic capacity and net primary production
(e.g., 3-PG model, Landsberg & Waring 1997).
Additionally, spatial estimates of probability of oc-
currence could be used to complement incomplete
forest inventory records or enhance remote-sensing
data with information about tree species composi-
tion for regional and continental-scale models
of forest growth. To be effectively used for this pur-
pose, species probability of occurrence must in some
way be related to its dominance on the landscape.

Previous studies exploring this relationship
have produced mixed results. Studying both plant
(bracken fern) and animal (moose) distributions,
Nielson et al. (2005) cautioned against extrapolating
abundance from probability of occurrence predic-
tions, citing that environmental factors influencing
abundance may differ from those limiting distribu-

tion. Others have suggested that, on average, there is
a positive relationship between abundance and
distribution simply as a result of chance agreement
between two mutually occurring phenomena
(Wright 1991; Gaston 1996). The strength of corre-
lation observed between species probability of
occurrence and dominance is also influenced by re-
gionally specific factors such as forest type,
management activities, disturbance regimes, and the
quality and accuracy of the data used for compar-
isons. As the data used for comparison are spatially
explicit, it is important that spatial autocorrelation
be properly accounted for prior to interpreting the
strength and significance of observed relationships
(Fortin & Payette 2002; Kühn 2007). Methods such
as geographically adjusting the effective number of
degrees of freedom (e.g., Clifford et al. 1989; Du-
tilleul 1993) have been shown to be a simple yet
effective solution for testing correlation coefficients
in the presence of autocorrelation.

Here, we investigate the relationship between
species occurrence and dominance of six coniferous
tree species commonly found in Pacific Northwest
forests using an integrated database of field plots
(n5 38 598) concatenated from tree measurements
collected across both the United States and Cana-
dian portions of the study area. Both ground data
and spatial predictions of occurrence and dom-
inance are used to explore two primary objectives.
First, maps of probability of occurrence are eval-
uated using three separate accuracy metrics. As
range size increases, it becomes more likely a species
will inhabit a wider array of climatic gradients,
making it more difficult to fit an accurate distribu-
tion model. Thus, we hypothesize that probability of
occurrence model accuracy will decrease as species
range size increases. Second, we examine the corre-
lation between species occurrence and dominance at
the plot and 50-km scales. In Pacific Northwest for-
ests, species dominance is strongly governed by
anthropogenic and natural disturbance regimes.
Thus, we hypothesize that correlations between
probability of occurrence and dominance will be
weak (e.g., r � 4.0), especially after accounting for
spatial autocorrelation.

Methods

Study area and tree species

Ranging from 601 to 401N and 1401 to 1101W,
the study area contains approximately 1.3 million
km2 of forest land (based on 1-km resolution land
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cover from the 2003 Moderate Resolution Imag-
ing Spectroradiometer MOD12Q1 data product)
(Fig. 1). This large tract of forested land is made up
of several mountain ranges, including the Coastal
Mountains, Cascade Range, Columbia Mountains,
Olympic Mountains, and the Canadian Rocky
Mountains. Air masses originating over the Pacific
Ocean typically gather large quantities of moisture.
As these air masses make landfall, large deposits of
precipitation are released as the warm, moist air ri-
ses over the windward side of the mountain ranges.
Due to rain shadow effects, the leeward side of the
mountain ranges receives substantially less rainfall
and is characterized by broad semi-arid and arid
plateaus (e.g., Interior Plateau in British Columbia
and the Columbia Plateau in central Oregon and
Washington). The combination of rugged topo-
graphy and seasonal Pacific air masses creates two
distinct climate regions (see Fig. 1 Climate Space
inset): (1) the coast cordilleras (dominated mostly by
moisture) and (2) the interior plateaus (dominated
mainly by temperature).

The six conifer species selected for analysis in
this study are among the most abundant and com-
mercially important species in this region:
Pseudotsuga menziesii (Douglas-fir), Tsuga hetero-
phylla (western hemlock), Pinus contorta (lodgepole
pine), Thuja plicata (western redcedar), Picea glauca
(white spruce), and Larix occidentalis (western
larch). The distribution, life history characteristics,
including temperature and precipitation patterns of
each species, are well described in Franklin & Dyr-
ness (1988). In general, Pseudotsuga menziesii, Tsuga

heterophylla, Pinus contorta, and Thuja plicata are
more adaptable species, as expressed by their occu-
pancy of both the coast cordilleras and interior
plateau environmental gradients. Of these species
Tsuga heterophylla and Thuja plicata have distinct
limits in minimum required precipitation. On the
other hand, Picea glauca and Larix occidentalis oc-
cupy smaller, more narrowly defined regions of the
temperature-dominated portion of climate space.
Picea glauca has a distinct maximum temperature
limit of �71C, whereas Larix occidentalis is not
found when precipitation exceeds 2000mm. Overall,
the six conifer species selected for analysis represent
a wide range of niche environments, making for an
interesting subset to evaluate the relationship be-
tween species probability of occurrence and
dominance.

Tree species data

For Canada, tree species data were assembled
from a variety of sources. In Alberta (AB), data
were taken from provincial permanent sample plots1

(AB-PSP, n5 393) used to monitor timber growth
and yield over time (Alberta Sustainable Resource
Development 2005), and from ecological site in-
formation plots2 (AB-ESIS, n5 6951), which are a
standardized collection of plots from ecological land

Fig. 1. The Pacific Northwest study area showing forest land based on 2003 Moderate Resolution Imaging Spectro-
radiometer (MODIS) land-cover data. Inset shows the two distinct climate gradients, were MAT5mean annual
temperature in 1C and MAP5mean annual precipitation in mm.

1http://www.srd.gov.ab.ca/forests/pdf/PSP%20FIELD%20
PROCEDURE%20MANUAL%20Mar%2005.pdf
2http://srd.alberta.ca/lands/geographicinformation/resource
dataproductcatalogue/esis.aspx
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classification and stand management studies. In
British Columbia (BC), data were taken from the
centroids of stand-level polygons located in pro-
tected forested areas (BC-PA, n5 11 865) and from
vegetation resource inventory plots (BC-INV,
n5 15 557; B.C. Ministry of Forests 2001) collected
across all forest lands using a three-phase, photo-
and ground-based sampling design. Coordinates for
BC-INV plots were not directly available to this
study, but were used by a third party to sample the
predictor grids for use in modeling and validation.
For all Canadian plots, estimates of species percen-
tage cover were used to obtain presence–absence
(presence5% cover40), as well as to estimate
dominance (D), which was calculated as percentage
cover for an individual species divided by the total
percentage cover of all species �100. Only trees
greater than the DBH cut-off for seedlings were in-
cluded. Since each data source used different criteria
to define and sample seedlings, we opted not to in-
clude seedlings in our analysis. Locational accuracy
of the Canadian plot coordinates was estimated at
roughly � 500m.

For the United States, tree species data were
taken from U.S. Forest Service, Forest Inventory
and Analysis plots3 (US-FIA, n5 3482). FIA data
are recorded on a permanent sampling grid estab-
lished across the conterminous United States at a
density of approximately one plot per 2400 ha
(Bechtold & Patterson 2005). To match as closely as
possible the type of forest land sampled by the Ca-
nadian data, only single condition, forested FIA
plots were used. Thus, only plots falling entirely
within a particular forested land class were included
in the sample. All other plots that contained only
partial forest cover or non-forested land cover were
excluded from the analysis. Only trees with
DBH42.54 cm were considered in the sample (i.e.,
to match the Canadian data, no seedlings were in-
cluded). Estimates of basal area were used to obtain
presence–absence (presence5 basal area40), as
well as to estimate dominance (D), which was cal-
culated as basal area for an individual species
divided by total basal area of all species �100. Ac-
tual FIA plot locations are confidential, so we opted
to use the publically available coordinates which
have similar spatial accuracy to the Canadian data
(i.e., � 500m).

To represent the forest conditions occurring
between 2000 and 2005, tree data from both Canada
and the United States were assembled into one da-
tabase. To minimize uncertainty resulting from

locational inaccuracies, we compared the elevation
recorded in each plot’s respective database to that
taken from a 250-m digital elevation model (DEM).
All plots found to have an elevation difference
greater than � 150m were discarded from the ana-
lysis (n5 6842). The remaining plots (n5 38 428,
Table 1) were used to further evaluate the relation-
ship between probability of occurrence and
dominance.

Climate data

Climate surfaces were developed for the study
area through downscaling of PRISM4 (Parameter-
elevation Regressions on Independent Slopes Mod-
el, Daly et al. 2000, 2002) climate data. The
downscaling approach from 4-km resolution to 250-
m resolution recovers small-scale temperature gra-
dients in mountainous regions and is based on
regional lapse rate adjustments for individual
monthly temperature variables (Hamann & Wang
2005, Wang et al. 2006). The downscaling procedure
was used to derive 48 base variables, including
monthly maximum, minimum, and average tem-
perature and average precipitation. Separate

Table 1. Tree species presence–absence data used to mod-
el probability of occurrence.

Species Presence Absence Prevalence Range
(km2)

Pseudotsuga menziesii 8248 30 000 0.27 808 305
Tsuga heterophylla 4490 33 758 0.13 430 982
Pinus contorta 11 127 27 121 0.41 1 356 620
Picea glauca 6840 31 408 0.20 1 040 368
Larix occidentalis 879 37 369 0.20 162 346
Thuja plicata 4745 33 503 0.14 410 494

Table 2. The 12 climate and topographic predictor vari-
ables used to model species probability of occurrence.

Variable Description, unit

MAT Mean Annual Temperature, 1C
MWMT Mean Warmest Month Temperature, 1C
MCMT Mean Coldest Month Temperature, 1C
EMT Extreme Minimum Temperature, 1C
DDo0 Estimated number of Growing Degree-Dayso01C
DD45 Estimated number of Growing Degree-Days 451C
TD MWMT – MCMT
MAP Mean Annual Precipitation, sum of monthly

precipitation, mm
MSP Mean Summer Precipitation, sum of summer

precipitation (May–Sept), mm
AHMI Annual HeatMoisture Index, (MAT110)/(MAP�1000)
DEM Elevation, m
PRR Potential Relative Radiation, unitless

3http://www.fia.fs.fed.us/ 4http://www.prism.oregonstate.edu/
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equations were used to transform the 48 base vari-
ables into fewer, biologically relevant climate
predictors. The 10 derived climate variables used to
describe the coldness, warmness, and wetness of the
study area are shown in Table 2. For additional de-
tails regarding development of the derived climate
variables see Wang et al. (2006).

Topographic data

To describe the physiography of the study area
we used two topographic predictor variables (Table
2). First, a DEMwas assembled from Shuttle Radar
Topography Mission (SRTM) data downloaded
from the Consortium for Spatial Information.5 In-
dividual tiles of hydrologically corrected DEM data
were mosaiced in ArcInfo Grid, then resampled
from 90-m resolution to 250-m using nearest neigh-
bor resampling. The final DEM for the study area
was then used to calculate potential relative radia-
tion (PRR), a relative estimate of the effect of solar
orientation caused by local topography (e.g., sha-
dowing) (Pierce et al. 2005). To estimate the effects
of monthly Earth–Sun movements, the day closest
to the average solar period for each month was used,
together with hourly specific solar azimuth and in-
clination angles to produce a series of hillshade grids
in ArcInfo. These hillshade grids were summed to
form ‘‘potential’’ relative radiation surfaces for each
month. The monthly grids were summed to produce
an ‘‘annual’’ relative radiation grid for the study area.

Species probability of occurrence mapping

Non-parametric multiplicative regression
(NPMR) models were fitted and applied to GIS
predictor variables using the Hyperniche software
package6 (McCune & Mefford 2004). A type of
kernel smoother, NPMR is non-parametric; hence,
it requires no advanced knowledge regarding the
shape of species response to environmental gra-
dients. In addition, predictor variables are
considered multiplicatively, allowing the effect of
one predictor to covary in complex ways with other
predictors. NPMR is a local mean estimator, mean-
ing that the proportion of a species occurrence in a
locally defined environmental neighborhood is used
to estimate the probability of the species occurring
at a new target site. The environmental neighbor-
hood consists of plots that lie close to the target site
in multidimensional predictor space. The size of the

neighborhood is defined by a tolerance range
around the target site. The shape of the neighbor-
hood can have sharp edges if all observations falling
within the neighborhood are given equal weight
(e.g., uniform window where all sites inside the
neighborhood5 1, all sites outside the neighbor-
hood5 0); or can diminish gradually from the target
point using weights based on a smoothing para-
meter (e.g., standard deviation of the Gaussian
distribution).

The NPMRmodel is expressed in mathematical
notation in McCune (2006) and a thorough ex-
planation of the modeling process can also be found
in Yost (2008). Using the default NPMR settings
(i.e., improvement criterion5 0, step size5 5, max-
imum allowable missing estimates5 10%, data
predictor ratio5 10, and minimum neighborhood
size for acceptable model5 n plots�0.05), we calcu-
lated probability of occurrence by taking the local
mean based on a Gaussian weighting function.
Models were fitted separately for each species
through a leave-one-out, cross-validation process. A
hold-out dataset consisting of 20% of presence and
20% of absence plots (n5 7650) was used to validate
the accuracy of each species model. The validation
data were taken at random for each species, so
slightly different subsets of the full dataset were used
to train and validate each of the species models.

Preferred models for each species were identi-
fied using three evaluation statistics. First, log
likelihood ratios (logB), which are similar to Bayes
factors, were used to evaluate the models. Expressed
in powers of 10, this ratio is the likelihood of cross-
validated estimates from the fitted model to esti-
mates from the ‘‘naı̈ve’’ model. The naı̈ve model in
this case is the species average frequency of occur-
rence (i.e., prevalence) in the dataset. LogB is an
unbounded measure, thus it can become very large
when strong relationships are modeled with large
data sets. Its utility as a descriptive statistic lies in
the fact that it increases as the weight of evidence for
the model increases. Second, we used the improve-
ment %, or the ratio of plots that receive probability
estimates considered improvements over the naı̈ve
model (i.e., observed species prevalence). Therefore,
improvements are considered as the percentage of
presence plots that have a higher probability esti-
mate than observed prevalence; or plots with species
absence having a lower probability estimate than
observed prevalence. Third, we used the area-under-
the-curve (AUC) statistic, which provides a thresh-
old independent measure of presence–absence
model quality (Hanley &McNeil 1982). Taken as an
integrated measure of area under the receiver oper-

5http://csi.cgiar.org/index.asp
6http://home.centurytel.net/�mjm/hyperniche.htm
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ating curve, AUC represents the chance that a ran-
domly selected presence plot will have a predicted
probability higher than a randomly selected absence
plot. Strong models have AUC near 1.0, while poor
models have AUC near 0.5.

As model selection can be a major source of
uncertainty in predicting species distributions (Dor-
mann et al. 2008), we elected to use an ensemble
approach (Araújo & New 2006), where the final
probability of occurrence maps were derived by
averaging the top three NPMR models for each
species. Areas of non-forest land cover were re-
moved from the final probability of occurrence
maps using the MODIS 1-km forest/non-forest
mask.

To help uncover the relationship between range
size and model accuracy, we opted to combine the
evaluation statistics using a rank scoring system.
For each of the three evaluation statistics (taken
from the ensemble surfaces), we assigned the species
with the most accurate model a rank score of 1, and
the species with the least accurate model a rank
score of 6. The rank scores were summed, yielding a
relative measure of overall model accuracy. For ex-
ample, a rank score of 3 would be given to a species
that had the most accurate model across all three
evaluation statistics, whereas a rank score of 18
would be given to a species that had the least accu-
rate model across all three measures. For
comparison, we similarly rank-scored the species
according to range size (e.g., 15 smallest range,
65 largest range).

Species dominance mapping

Species dominance is highly variable at the plot
level, and thus requires a smoothing approach for
use at broader spatial scales. To map dominance, we
used a four-step process of resampling and inter-
polation. First, a systematic 50-km grid was laid
over the study area. Second, the plot data falling
within each 50-km grid cell were used to calculate
average dominance (see Tree species data section for
more details regarding dominance calculation).
Third, a smooth continuous surface was created
using the centroid points of each 50-km grid cell and
natural neighbor interpolation (Sibson 1981). All
grid cells with at least one presence plot were used in
the interpolation process, ensuring that the final
dominance maps adhered closely to observed pre-
sence–absence. In the final step, the dominance
maps for each species were masked using the 1-km
forest/non-forest map from MODIS, and then clip-
ped to adhere to the Little Jr. (1971) range

boundary. Since dominance was upscaled and in-
terpolated directly from the plot data, and since
dominance maps were derived solely for comparison
with probability of occurrence, no accuracy assess-
ment was performed.

Species probability of occurrence versus dominance

For each species, probability of occurrence and
dominance are compared at both the plot and 50-km
scale. At the plot scale, dominance is taken directly
from the plot database and probability of occur-
rence is taken from the NPMR maps. At the 50-km
scale, the comparison is made using only the 50-km
grid cells that have at least five or more presence
plots. Although arbitrary in nature, this cutoff value
helped ensure a more accurate upscaling of dom-
inance by focusing the analysis on the grid cell
locations that contained a sufficient number of plots
to suitably estimate dominance at the 50-km scale
(e.g., approximately one plot every 10 km). Here, a
corresponding probability of occurrence was de-
rived by averaging the NPMR pixel values falling
within each qualifying 50-km cell. Both the dom-
inance and probability of occurrence maps were
masked using the same MODIS forest/non-forest
mask, thus the same number of pixels were used in
calculating the averages of both metrics. The re-
lationship between probability of occurrence and
dominance was quantified using Pearson correlation
coefficients (r) adjusted for spatial autocorrelation
using Dutilleul’s modified t-test (Dutilleul 1993).

Results

Species probability of occurrence mapping

Using between two and four predictor variables,
the top three NPMR models successfully estimated
probability of occurrence for each of the six conifer
species (Appendix S1). Four of the six species mod-
els required the use of only two predictor variables.
Except for Picea glauca, each of the two variable
models utilized one precipitation- and one tempera-
ture-related predictor. Elevation was the only
topographic predictor found useful in predicting
species probability of occurrence. The most fre-
quently used predictors were AHMI (an annual
index of dryness) and DDo0 (a measure of winter
length and harshness). The range in probability of
occurrence estimates varied considerably by species,
as can be seen in the maps in Appendix S2.
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The evaluation statistics for the ensemble sur-
faces (i.e., average of top three NPMR models per
species) are presented in Table 3. As each of the
species was modeled and validated with the same
number of samples, the logB statistic can be used as
a relative measure of model strength. Of the six spe-
cies models, Pseudotsuga menziesii had the highest
logB (417.01) and L. occidentalis the lowest (93.57).
The percentage improvement was used to quantify
the extent to which the species probability of occur-
rence estimates could be considered improvements
over their naı̈ve models (naı̈ve model5 observed
species prevalence in Table 1). Of the six species,
Tsuga heterophylla had the largest improvement
(85.20%) over its naı̈ve model, whereas Pinus con-
torta offered improved estimates of occurrence in
barely half (55.33%) of its validation samples. The
AUC statistic was used to evaluate the extent to
which the species probability of occurrence esti-
mates could be accurately separated into discrete
presence–absence categories. The results showed
that L. occidentalis had the highest AUC (0.91) and
Pinus contorta the lowest (0.71).

The ranked evaluation statistics presented in
Table 4 show that Tsuga heterophylla had the
highest overall accuracy (statistic rank score5 5)
and Pinus contorta the lowest (statistic rank score5

17). To help visualize the relationship between
model accuracy and range size, we plotted the
ranked statistic scores against the range rank scores
and fitted a second-order polynomial equation
(y5 0.9286x2� 4.9x113.4, R2 5 0.90) to the data
points (Fig. 2).

Species probability of occurrence versus species
dominance

Although not quantitatively validated, the
dominance maps adhere well to the presence–
absence data and reveal interesting and physically
plausible patterns of species dominance at the land-
scape scale (Appendix S3). The range in modeled
dominance varied by species, although not as much
as probability of occurrence. At the plot level, cor-
relations between dominance and probability of
occurrence were found to be weakly positive for
all species (Table 5). Only half of the six species
at the plot level had statistically significant cor-
relations after accounting for spatial autocorrela-
tion. Pseudotsuga menziesii displayed the highest
correlation (r5 0.36, Po0.001) and Thuja plicata
the lowest (r5 0.038, P5 0.799). At the 50-km
scale, correlations between dominance and prob-
ability of occurrence improved for all species except
Pinus contorta (Table 5). Tsuga heterophylla swit-
ched from significant correlation at the plot level to
insignificant correlation at 50 km, whereas L. occi-
dentalis switched from insignificant to significant
correlation. Again Pseudotsuga menziesii displayed
the highest correlation (r5 0.68, Po0.001) and

Table 3. Evaluation statistics for species probability of
occurrence ensemble surfaces.

Species logB Improvement (%) AUC

Pseudotsuga menziesii 417.01 73.47 0.83
Tsuga heterophylla 317.30 85.20 0.87
Pinus contorta 156.79 55.33 0.71
Picea glauca 271.51 61.73 0.80
Larix occidentalis 93.57 75.91 0.91
Thuja plicata 272.13 75.80 0.84

Table 4. Species evaluation statistic rank scores and range size rank scores.

Species logB Improvement (%) AUC Statistic rank Range rank

Pseudotsuga menziesii 1 4 4 9 4
Tsuga heterophylla 2 1 2 5 3
Pinus contorta 5 6 6 17 6
Picea glauca 3 5 5 13 5
Larix occidentalis 6 2 1 9 1
Thuja plicata 4 2 3 9 2

Fig. 2. Scatter plot of species range rank scores versus
evaluation statistic rank scores. See Table 4 for individual
species scores.
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Thuja plicata the lowest (r5 0.07, P40.709). L. oc-
cidentalis displayed the largest improvement in
correlation from the plot to 50-km scale, followed
by Pseudotsuga menziesii.

Discussion

Species probability of occurrence mapping

Overall, we found NPMR to be a useful method
for predicting probability of occurrence for each of
the six conifer specie. Although we do not explicitly
compare the results of NPMR with results devel-
oped with other statistical approaches, we found
that the reported NPMR accuracies are similar to
other studies that have modeled species presence–
absence over large areas (e.g., Moisen et al. 2006).
The NPMRmodels were parsimonious in that many
of the developed models required only two predictor
variables. Aside from elevation, the best NPMR
models almost exclusively utilized temperature- and
moisture-related predictor variables.

Each of the three evaluation statistics used to
validate the NPMR models focused on a slightly
different aspect of presence–absence accuracy.
While the accuracy measures were useful for select-
ing preferred statistical models, they did not
individually uncover a salient relationship between
model accuracy and range size. Combining the ac-
curacy measures with a rank-scoring system helped
lead to a clearer interpretation of the rela-
tionship between range size and model performance
(Fig. 2). Although not conclusive, our results
indicate that as range size increases, model perfor-
mance decreases. This provides some evidence
supporting our initial hypothesis that there might be
a threshold of range size where species exceeding
this threshold would yield lower model accuracies.
Our initial hypothesis was based on the notion that
species covering large areas would likely occupy

larger, more diverse regions of climate space, thus
making it more difficult for NPMR to fit an accurate
distribution model using primarily climate-based
predictors. This notion is not entirely supported by
our results as Picea glauca has the second-largest
range size yet occupies a relatively small, well-
defined region of climate space. Still, despite its
small climate space, Picea glauca was found to
have the second-highest statistic rank score, in-
dicating the possibility that range size (or other
unmeasured factors) might be contributing to low
model accuracies.

Species probability of occurrence versus species
dominance

Four of the six conifer species were found to
have weakly positive correlations between dom-
inance and probability of occurrence (Table 5). As
the strength and significance of correlation varied
considerably by species and across spatial scales, we
conclude that, aside from Pseudotsuga menziesii and
L. occidentalis, probability of occurrence is not a
consistently reliable surrogate for species dominance.
This supports our initial hypothesis that correlation
between probability of occurrence and dominance
would be weak in Pacific Northwest forests, likely the
result of spatial variability in species dominance re-
sulting from frequent disturbance events (e.g., fire
and harvesting) and forest management activities.
These factors, along with chance agreement, likely
contributed to the observed correlations, but ascrib-
ing the degree to which these driving forces affected
the strength of the relationships is beyond the scope
of this study. However, we do believe one important
contributing factor to the weak correlations is the
difficulty of species models (such as NPMR) to assign
high probability of occurrence predictions across
both climatic gradients found in the study area.

For example, broadly tolerant species such as
Tsuga heterophylla, Thuja plicata, and Pinus con-

Table 5. Correlation statistics (adjusted for spatial autocorrelation using Dutilleul’s modified t-test) comparing species
probability of occurrence and dominance at the plot and 50-km scales. Bold indicates model is not significant at the 0.05
level.

Species Plot scale 50-km scale

n r t df P-value n r t df P-value

Pseudotsuga menziesii 8248 0.36 8.27 461.44 o0.001 353 0.68 4.87 26.97 o0.001
Tsuga heterophylla 4490 0.2 2.5 128.06 0.012 208 0.3 1.2 12.15 0.254

Pinus contorta 11 127 0.27 5.37 380.47 o0.001 598 0.23 2.96 156.38 0.04
Picea glauca 6840 0.15 1.3 56.94 0.265 246 0.23 0.8 13.77 0.396

Larix occidentalis 879 0.13 1.79 196.66 0.075 31 0.59 2.37 10.72 0.38
Thuja plicata 4745 0.4 0.26 46.07 0.799 367 0.7 0.38 26.58 0.709
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torta exhibited high dominance across portions of
both climate gradients yet tended to have prob-
ability of occurrence predictions that were higher in
one of the gradients than in the other. Although this
geographic imbalance of predicted occurrences
should not affect the models ability to correctly
resolve presence–absence categories, it does con-
tribute to the weak correlations observed between
probability of occurrence and dominance. Although
NPMR is fully capable of capturing a variety of
simple and complex species response shapes (in-
cluding bimodal), it is possible that the Gaussian
weighting function smoothed over important sec-
ondary peaks in climate space where species
occurrence was high. Future work will explore the
use of the uniform weighting function in NPMR
(previously described under Species probability of
occurrence mapping) as this may help produce
models that yield higher probability of occurrence
predictions across both climate gradients. Another
option for potentially improving correlations with
dominance would be to model species probability of
occurrence separately for each of the distinct climate
gradients found in the study area.

Both the dominance and probability of occur-
rence maps presented here are useful for
conservation and planning, as well as for quantify-
ing the realized niche of a species. If correlations are
reasonably strong between the two metrics, as is the
case with Pseudotsuga menziesii, the qualitative op-
timal niche (Austin et al. 1990) defined by the upper
quartile of occurrence and dominance will yield si-
milar temperature and precipitation limits (Fig. 3a).
If little or no correlation exists, as is the case with
Thuja plicata (Fig. 3b), probability of occurrence
predictions will not sufficiently characterize the full
niche space of a species. Reasonably strong levels of
correlation would also permit occurrence predic-
tions to be combined to estimate species
composition or habitat types (Yost 2008). While

quantifying reasonable correlation is difficult, we
believe the results presented for Pseudotsuga men-
ziesii represent a practical baseline of minimum
correlation required to effectively use probability of
occurrence as a surrogate measure of species dom-
inance. If defining optimal growth limits for use in
forest productivity models, dominance may be the
preferred measure as it better identifies the areas on
the landscape where a species has gained a natural
or managed advantage over other species. If the goal
is to estimate the geographical range of a species
(i.e., presence/absence), occurrence may be the pre-
ferred measure of choice.

Acknowledgements. Funding for this research was provided

by the NSERC Strategic Project: STPGP 336174-06. We

thank the anonymous reviewers for their insightful sugges-

tions that helped improve the overall quality of the paper.

References

Anon. (Alberta Sustainable Resource Development) 2005.

Permanent sample plot (PSP) field procedures manual.

Public Lands and Forests Division, Forest

Management Branch, Edmonton, AB, CA.

Anon. (B.C. Ministry of Forests) 2001. Mensuration data

from the provincial ecology program. B.C. Ministry of

Forests Workshop paper 62.
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Supporting Information

Additional supporting information may be
found in the online version of this article:

Appendix S1. Species probability of occurrence
maps for a.) Pseudotsuga menziesii, b.) Tsuga het-
erophylla, c.) Pinus contorta, d.) Thuja plicata, e.)
Larix occidentalis, and f.) Picea glauca.

Appendix S2. Predictor variables and evalua-
tion statistics for the top three NPMR models per
species.

Appendix S3. Dominance maps for a.) Pseu-
dotsuga menziesii, b.) T.suga heterophylla, c.) Pinus

contorta, d.) Thuja plicata, e.) Larix occidentalis, and
f.) Picea glauca. Bold lines indicate Little Jr. (1971)
range boundary.
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