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Abstract

Remote-sensing based vulnerability assessments to climate change are a research priority of critical
importance for landscape-scale efforts to prioritize conservation and management of ecosystems.
Limiting climatic factors can serve as a proxy for quantifying ecosystem vulnerability, since theory
predicts that ecosystems close to critical climate thresholds will be more sensitive to interannual
variation in limiting climate factors. Here, we analyze time series of enhanced vegetation index data
for continental-scale vulnerability assessments. The analytical approach is a lagged monthly
correlation analysis that accounts for memory effects from the previous growing season. Mapping
multivariate correlation coefficients reveals that drought vulnerabilities can be found across the
continent, including a distinct geographic band across the western boreal forest. The analytical
approach reveals climate dependencies at high spatial and temporal resolution, with the direction
and strength of correlation coefficients indicating the risk of threshold transgressions at the edge of
species and ecosystem tolerance limits. The approach is further useful for hypothesis testing of
contributing non-climatic factors to climatic vulnerability, allowing locally targeted management

interventions to address climate change.

1. Introduction

As a tool for assessing the vulnerability of ecosys-
tems to climate change, the strength of correlations
between interannual climate variability and vegeta-
tion response can be a useful proxy for quantifying
ecosystem vulnerability. Ecosystems or species close
to critical climate thresholds will be more sensitive
to anomalies (Dakos et al 2012), which is an essen-
tial element of edge detection theory (Bathiany et al
2020). Critical climate thresholds can apply relatively
uniformly to members of natural species assemblages,
allowing for ecosystem-level detection of vulnerab-
ilities to climate change (Trisos et al 2020). While
natural resource managers and conservationists are
primarily concerned with abrupt ecological disrup-
tion due to threshold transgressions at the edge of
species and ecosystem tolerance limits (Millar and
Stephenson 2015), the importance of gradual trans-
itions has recently been pointed out in a meta-
analysis of 4600 empirical climate change impact
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reports (Hillebrand et al 2020). While threshold
transgressions threaten profound changes to ecosys-
tems, they are less frequent than gradual ecosystem
and species responses to climate change. Compre-
hensive vulnerability assessments should therefore
detect both response types, threshold transgressions
and gradual changes, to infer vulnerability of species
or ecosystems.

Remote-sensing based vulnerability assessments
to climate change is a research priority of critical
importance, as few other methodological approaches
could guide conservation and management priorit-
ies at continental or global scales. Previous works
on developing remote-sensing based metrics to assess
vulnerability include a number of valuable meth-
ods. Seddon et al (2016) developed a vegetation sens-
itivity index based on seasonally detrended mul-
tivariate climate time series, where coefficients of
variables were weighted by their significance in a prin-
cipal component regression. Another widely applied
method estimates resistance (response to climate
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anomaly) and resilience (speed of recovery) met-
rics from a normalized difference vegetation index
(NDVI) time series (de Keersmaecker et al 2015).
Li et al (2018) added interpretative values by eval-
uating resistance and resilience of vegetation in the
context of climatic exposure. Li et al (2020) added
a stability component to resistance and resilience
metrics to arrive at a more comprehensive vulnerab-
ility score. Another comparable approach relies on a
linear mixed-effects model to quantify the strength
of the association between precipitation/aridity and
an estimation of primary productivity based on the
enhanced vegetation index (EVI) (Maurer et al 2020).
All these methods yield a single metric of vulnerabil-
ity for decision support. While these indices deliver
valuable information, they generally do not allow
inferring the nature of the vulnerability because the
indices are not time- and variable-specific.

A conceptually different approach to vulnerability
assessments is to evaluate long-term historical trends
in ecosystem health and productivity. In the con-
text of remote sensing, these trends are referred to as
greening and browning. For example, Sulla-Menashe
et al (2018) observed greening in the eastern North
American boreal forests, which is more humid, and
browning in the western boreal, where forests are
more prone to moisture stress. Pan et al (2018) doc-
umented the risk of reversal from long-term green-
ing to browning in the warmer future due to evapo-
transpiration demand. Both of these remote sensing
based observations have also been confirmed through
historical tree ring records suggest observed global
warming shifted climatic drivers of tree growth from
temperature-limited to moisture-constrained (Babst
et al 2019), and showing that western North America
has seen declines in growth, while the northeast
has been described as a climate change refugium
(e.g. D’Orangeville et al 2018). The studies gener-
ally point to the importance of a multivariate cli-
mate gradient from cold/wet to warm/dry condi-
tions, which is a key criterion for assessing ecosystem
vulnerability.

In summary, previous remote sensing indices that
were developed have focused on evaluating stabil-
ity based on short term responses to interannual
climate variation, or by tracking trends over time.
Both approaches have identified evapotranspiration
demand as one major climatic drivers of tree growth
in a warming world. Furthermore, while the poten-
tial of threshold transgression of species and ecosys-
tems is well grounded in ecological theory, gradual
responses (positive and negative) as well as their
causes should also be quantified. This justifies the
need for different approach to assessing ecosystem
sensitivity and vulnerability. Our objectives are there-
fore to: (a) develop a multivariate vegetation response
descriptor that conveys where and when forests
are likely becoming vulnerable to climate-induced
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physiological stress associated with drought and high
temperatures; (b) apply this multivariate index to
the North American continent, mapping the beha-
vior of growth and the underlying climatic driv-
ing factors; and (c) to associate these patterns of
vegetation response with regional long-term climatic
conditions, as well as non-climatic factors, such as
forest stand age, elevation, and topo-edaphic factors,
with the purpose of testing hypotheses of interactions
among climatic and non-climatic factors. We discuss
applications for natural resource management in the
context of climate change.

2. Materials and methods

2.1. Remote sensing data

As a proxy for annual vegetation productivity, we use
a remotely sensed vegetation index. Among available
vegetation indices with long time series and high res-
olution, the EVI was selected because it is less sens-
itive to noise from soil and atmospheric conditions
and is less saturated in high-biomass areas than the
NDVI (Huete et al 2002). Also, as a measure of veget-
ation greenness, EVI has been used to derive metrics
related to primary productivity and to reflect vegeta-
tion responses to drought (e.g. Anderson et al 2010,
Seddon et al 2016, Vicca et al 2016). Here, we use
17 years (January 2003—December 2019) of 16 days
500 m EVI records accessed from Moderate Resol-
ution Imaging Spectroradiometer Vegetation Indices
(MOD13A1, Collection 6) as described by Huete
et al (2002) and Didan et al (2015). The dataset was
obtained through NASA Land Processes Distributed
Active Archive Centre, U.S. Geological Survey/Earth
Resources Observation and Science Centre (https://
Ipdaac.usgs.gov), comprising 391 layers (layer for 1
August 2016 was missing from the database, but
imputed for this study as explained below).

The quality of EVI records varied among seasons
and regions, usually showing a high percentage of
missing values across high latitudes areas and dur-
ing winter months. Records flagged as poor quality
(classified as ‘Lowest quality, ‘Quality so low that
it is not useful, ‘L1B data faulty, ‘Not useful for
any other reason/not processed’) were excluded from
further analysis. Also excluded from this analysis
were human-managed ecosystems and grasslands,
according to the vegetation classification accord-
ing to the MCDI12Q1 International Geosphere-
Biosphere Programme classification (Sulla-Menashe
and Friedl 2018). Thus, the analysis includes needle
leaf, broadleaf and mixed forests with tree cover
above 60%, as well as shrub lands and savannas with
at least 10% tree coverage, as defined in classes 1
through 9 in Sulla-Menashe and Friedl (2018). To
be included in the analysis, a pixel required at least
ten eligible annual classifications for the study period
(2003-2019).
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After filtering out low-quality observations, agri-
culture areas and rangeland land cover, we rescaled
the spatial resolution from original 500 m to 2 km
by averaging the available measurements per tem-
poral interval. This step resulted in more complete
time series for a given 2 km pixel. Incomplete time
series with less than 300 (out of 391) observations
were removed. The remaining missing values of grid
cells were estimated with the seasonally decomposed
missing value imputation, implemented with the
na_seadec() function of the imputeTS package for the
R programming environment (R Core Team 2020).
This data cleaning approach resulted in gap filling of
1.5% of all data over the entire study area and 17 year
time period. To quantify the annual productivity for
correlation analysis, we summed the EVI value above
0 per 2 km pixel per year, for each year from 2003 to
2019.

2.2. Climate data

We generated spatially interpolated monthly climate
grids from 2002 (a year prior to the start of EVI
data coverage) to the end of 2019 using the soft-
ware ClimateNA v7.01 (Wang et al 2016), which
is available at http://climatena.ca. The ClimateNA
software extracts monthly historical time series of
interpolated climate data for particular locations
and variables of interest. The interpolated climate
grids are based on the Parameter Regression of
Independent Slopes Model interpolation method
for weather station data (Daly et al 2008). In
this study, we used six monthly variables, includ-
ing three temperature variables: maximum, min-
imum and average monthly temperature (Tmax> T'min>
Tavg)> and three sets of precipitation-related vari-
ables: monthly precipitation (PPT), monthly relat-
ive humidity and a monthly climate moisture index
(CMI) developed by Hogg (1997). In total, the cor-
relation analysis relies on 1224 monthly climate grids
(6 variables x 12 months x 17 years) for the North
American continent.

2.3. Analysis of climatic limiting factors

Plant response to climate has lagged effects that vary
with vegetation type, soil conditions, variable type
and general geographic and macroclimatic region.
One widely used approach to flexibly allow for dif-
ferent delayed effects for different variables is a lagged
correlation analysis, where Pearson’s correlation coef-
ficients between an annual response variable and
multiple monthly predictor variables are evaluated.
The temporal window of this analysis is usually spe-
cified from the end of the last growing season (e.g. last
year’s September) to the end of current year’s grow-
ing season (e.g. current August). We implemented
this approach in a per pixel analysis of EVI values
across 17 year study period. Note that similar types
of analysis exist for dendrochronology data, referred
to as response function analysis in this field, using a

3

Z Sang and A Hamann

multivariate regression approach, which also allows
for statistical inference from individual tree response
to populations (Fritts et al 1971, Zang and Biondi
2015). However, in this case we work directly with the
statistical population of EVI values and applications
of inferential statistics would not be appropriate.

For the purpose of concise reporting, we clustered
EVI grid cells with similar response coefficients using
recursive partitioning for 14 groups. The cluster ana-
lysis was carried out through multivariate recursive
partitioning implemented with the mvpart() func-
tion of the mvpart package for the R programming
environment (R Core Team 2020). The number of
groups was pre-set with the rpart.control() option to
obtain 14 clusters that explained over 40% of the
total variance in response coefficients. To confirm the
robustness of this approach, another divisive cluster-
ing technique (k-means) was also used with the same
number of clusters, yielding similar results. However,
we used recursive partitioning for its speed and ability
to handle very large datasets.

3. Results

3.1. Climatic response on a continental scale

To visualize continental patterns of limiting cli-
mate factors, we mapped remotely sensed vegeta-
tion response summarized into 14 clusters of grid
cells that show similar vegetation response to interan-
nual climate anomalies (figure 1). To allow a regional
discussion of results, we further impose an arbit-
rary delineation into regions with similar vegeta-
tion response to climate anomalies (figure 1(a) and
table 1). This delineation is simply meant to com-
municate a geographic location on the map and is
not used in analysis. For a first visualization of broad
continental patterns, cluster means from recursive
partitioning were colored based on a scale generated
by subtracting temperature from precipitation coef-
ficients. Grid cells limited by high temperature and
low precipitation are located on the red end of the
color ramp and grid cells limited by cold temperat-
ures and high precipitation values are indicated in
blue (figures 1(b) and (c)).

Although other combinations are possible, most
clusters (or geographic regions) can be ordered along
a gradient from being limited by warm temperat-
ure and low precipitation (figure 1(c), upper left)
to being primarily limited by cold temperature, with
precipitation having smaller additional negative effect
(figure 1(c), lower right). Two regions deviate to some
extent from this diagonal positioning: the Taiga West
(TW) region showed positive correlation of both tem-
perature and precipitation with EVI, and Boreal East
(BE) has stronger negative association with mois-
ture condition. An important consideration in read-
ing this map correctly is that response coefficients
(colors) only indicate how vegetation responds to
a local annual climate anomaly, relative to average
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Figure 1. Vegetation response to climate, summarized into 14 clusters across North America. General geographic areas with
similar cluster composition (a) were used to analyze regional variation in cluster composition (table 1). Clusters are colored from
most to least limited by high temperatures and low precipitations (b), and subsequently mapped (c). Gray areas represent no data

climate conditions. The coefficients (colors) do not
allow an inference on absolute values of vegetation
response, nor do they represent the effect absolute
climate values at different locations. To give a sim-
plified, univariate example, a positive (blue) tem-
perature coefficient indicates a relative increase of
EVI-inferred productivity at this location in response
to a year with higher temperature than average for this
location.

Broad geographic trends in limiting climate
factors are readily apparent (figure 1(b)), with expec-
ted patters of northern and high elevation ecosys-
tems cold-limited and southern interior regions of
the continent most drought limited. However, there
is also a remarkable regional diversity of clusters,
which is summarized in table 1. Generally, there are
few landscapes with high uniformity of vegetation
response, such as arctic ecoregions that are domin-
ated by only a few clusters with similar thermal lim-
itations, resulting in the lowest within-region vari-
ance in vegetation response across the North America
study area (table 1, TW, Hudson Plain (HP), and
Pacific North (PN)). In contrast, southern and moun-
tainous regions cover almost all clusters from 1 to
14, resulting higher variances (table 1, Sierra US
(SU), Temperate South (TS), and Tropical (T)). Given

similar latitude, eastern boreal forest ecosystems have
a more homogenous response than the western and
interior ones, with about half the variance in veget-
ation response (table 1, Boreal West (BW), Boreal
Southwest (BSW), Boreal Central (BC) versus BE,
Temperate North (TN), Taiga East (TE)). This is also
visible in the map, with discrete moisture-constrained
patches in the central and western portions of the
boreal forest apparent (figure 1(b), red patches).

3.2. Monthly response function analysis

Monthly response functions for specific climate vari-
ables reveal in greater detail at what time of the year
specific variables have a positive or negative impact on
vegetation productivity (figure 2). While continent-
wise responses function clusters are provided as
supplement figure S1, we focus here on a num-
ber of regional examples to illustrate the analyt-
ical approach. For instance, the southern savannas
and dry forests (region DM: Dry forest, Mexico) are
predominantly drought limited. In this region, only
drought-limited clusters 1, 2 and 5 occur with signi-
ficant frequency (table 1, last row). A specific example
is shown in figure 2(a) for cluster #1, which has strong
negative correlations with temperature and high pos-
itive correlations for moisture variables, especially
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Figure 2. Region-specific vegetation response to monthly climate variables for selected clusters. Graphs show the correlation of
monthly climate variables with cumulative annual EVI values. The correlation coefficients of clusters may vary slightly among
different regions, and continental cluster averages for all 14 clusters are provided as electronic supplement figure S1.

for the CMI, which indicates water deficits between
March and August.

At the opposite end of the spectrum, the regions
Pacific Central (PC), PN, and taiga ecosystems of
the Hudson Bay (TH) are dominated by cluster #14
(table 1, upper right), with year-round limitations
by cold temperatures, and with precipitation having
slightly negative effects in June and July (figures 2(b)
and S1 for cluster #14 across all regions). In the more
southern regions influenced by Pacific climate, cluster
#14 still occurs at lower frequencies, but at lower elev-
ation, there are strong drought limitations with the
most frequent cluster being #5 for the sierras of the
southern United States (Region SU, figure 2(c)). In
these oak or pine dominated forests, drought is a pre-
valent limiting factor throughout the year, especially
in July.

For eastern temperate forest ecosystems from
south to north, TS, Temperate Central (TC), TN, a
gradient of limiting factors emerges from the veget-
ation response to climate (figures 2(d)—(f)). South-
ern pine forests of the United States have diverse
response with the dominant clusters being #1 and
#3 (other clusters found in this region are discussed
below). These clusters are moisture limited from April
to August (figure 2(d)). This moisture limitation is
reduced for TC region, where cluster #3 is domin-
ant (figure 2(e)), followed by temperate mixed forests
of the Great Lakes, with further reduced moisture
limitations (figure 2(f)). For northeastern regions we
see increasing cold limitations and negative effects

of moisture variables during the growing season
(figure 2(g)).

Another notable continental pattern is the latit-
udinal sequence of BSW, to BW to TW, with both
the northern and southern adjoining regions less lim-
ited by evapotranspirative demand (figure 1(b)). The
red patches in the western boreal represent cluster #3,
indicating growth limitations driven by warm sum-
mer temperatures (figure 2(h)).

4, Discussion

4.1. Inferring vulnerability to climate change

Both our analysis and other research approaches
suggest that drought may play an important role
in limiting growth of forested ecosystems in the
future for a variety of regions of North America.
Climate change impacts for high latitudes of North
America, where the warming signal is strongest, have
already been relatively well documented. While high-
latitude boreal ecosystems are generally expected to
benefit from warming trends, widespread greening
trends that were initially observed in remote sens-
ing in response to climate change have in many cases
reversed to browning trends in the most recent decade
(Phoenix and Bjerke 2016). For the North American
boreal, browning, or trend reversals from greening to
browning are prevalent in western Canada and Alaska
(de Jong et al 2011, Ju and Masek 2016, Pan et al
2018). This corresponds to diagonal band (domin-
ated by response cluster #3) across the western boreal
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Figure 3. Forest age structure and the distribution of clusters in (a) western boreal and (b) eastern boreal region. Given the
correlation values, 14 clusters were plotted from moist limited (red colors) to thermal limited (blues). Forest age estimation from
Pan et al (2011) has been cut into three categories: 0-20, 21-50, and over 51. The 0-20 aged forest areas fit the records from
Canadian National Fire Database. For each group, pixels in corresponding age class will be covered by black color.
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forest that we also see in this study, where warm
summer temperatures and water deficits in spring
and fall are limiting factors (figures 1(b) and 2(h)).
Our interpretation is that initial greening observed
in the 1980s—1990s reversed to browning because of
drought limitations by increasing evapotranspiration
demands, as inferred by response cluster #3.

Tree ring studies have also pointed to drought-
limitations in the western boreal of Alaska (Barber
et al 2000, Trugman et al 2018) and western Canada
(Girardin et al 2016, Hogg et al 2017). In contrast
to western boreal forest ecosystems, eastern boreal
forest suggests the forest productivity could benefit
from up to 2 °C warming, and the Northeast might
serve as a climate refugia for boreal forest species
(D’Orangeville et al 2016, 2018). This is generally also
supported by our analysis that suggests a favorable
growth response to higher temperatures in the east
(figures 1(b) and 2(g)).

4.2. Inferring causes of local response

Seddon et al (2016) pointed out that a remote sens-
ing index can serve as the first step towards address-
ing why some regions and locations appear to be more
sensitive than others, and with the detailed informa-
tion from monthly vegetation response to climate, we
can interpret the results in the context of candidate
variables and test hypotheses regarding the causes of
local sensitivity of forest ecosystems and forest stands.
A good example is the central boreal forest, where we
find a patchwork of forest stands that are cold lim-
ited versus summer-drought limited in close proxim-
ity. A comparison with stand age (figure 3(a)) reveals

a striking ‘lock and key’ pattern, where drought
limitations are most pronounced in medium-aged
stands (20-50 years) that are growing fast and have
high transpiration rates during the growing sea-
son. Both young forest stands (0-20 years) and older
forests (>50 years) appear less vulnerable to drought,
which could be due to young stands having not yet
developed a significant transpiration capacity and
older stands having a lower density of larger trees, or
possibly better access to groundwater. The response
is region-specific, and age class structure has for
example no effect on vegetation response in most
regions of the eastern boreal forest (figure 3(b)),
also apparent at larger scales (figure 1(b)). Age class
structure has also been documented as an important
driver of how forest stands respond to climate change
in western Canada in research that relies on forest
inventory plots (McMillan and Goulden 2008, Peng
et al 2011, Luo and Chen 2013). Responses can vary
significantly due to region, topo-edaphic factors, and
species composition.

Another example for high local variability in
vegetation response can also be found throughout
the western montane regions from Alaska to Mexico,
which generally contain the same response clusters
but at different frequencies (figure 4). Here, the type
of vegetation responses is driven by steep gradients
of climatic and topo-edaphic factors associated with
elevation gradients. High elevation positions gener-
ally fall into thermal-limited clusters (in blue toned
colors), but low elevations show stronger drought
sensitivity (in orange colors). Such response gradi-
ents have, for example been documented for dry
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Figure 4. Distribution of climatic response clusters in six western montane regions from north (a) to most southern (e). The same
vegetation response clusters occur in all regions at different frequencies, with low-elevation drought-limited.

I moisture

| limited
B thermal
B limited

forest and Sierra ecoregions (Herrmann et al 2016),
using a remote sensing-based approach. Also, Davis
et al (2019) document threshold transgressions for
tree regeneration at low elevation due to drought
limitations.

4.3. Implications and management applications
Our analysis revealed high spatial heterogeneity of cli-
matic response coefficients across most ecosystems.
As a consequence, response to anthropogenic climate
change will almost always be locally variable, and mit-
igation strategies need to be carefully developed con-
sidering local circumstances. For example, to mitig-
ate drought sensitivity of fast growing or dense forest
stands (e.g. Young et al 2017), silvicultural inter-
ventions may including thinning to reduce overall
evapotranspiration rates of fast growing forest stands
and thereby make the trees overall more resistant to
drought episodes (Sohn et al 2016, Wang et al 2019).
Such a prescription would, however, only be effective
where response coefficients have identified this type
of vulnerability during the growing season.

The high local and regional diversity in growth
climate responses also offers an explanation for con-
tradictory findings in studies from the same gen-
eral region using similar methods. One example is
research across the interior boreal forest of Alaska,
where some studies report declines of spruce growth
(Barber et al 2000), while others documented over-
all increases in productivity (e.g. Sullivan et al 2017).
We find this particular region very diverse in local
response coefficients, so that a diversity of vegeta-
tion response from individual research studies would
not be unexpected. Climate change impacts and

corresponding management interventions to mitigate
those impacts would similarly need to be tailored to
local circumstances in this region.

This study indicates that time series records of
remotely sensed vegetation response are now of suf-
ficient length and quality to infer limiting climatic
factors, and map them at high resolution. We further
provided examples how vegetation response types
can be linked non-climatic factors, such as forest
stand age, drainage, nutrient regimes and other topo-
edaphic factors, which may contribute to resilience
or exacerbate vulnerabilities. We believe this analyt-
ical approach could prove useful for mapping climate
vulnerabilities at spatial scales that can support local
management interventions to mitigate climate change
impacts, especially when validated by ground obser-
vations such as long-term forest inventory plots that
is usually available to local forest managers (e.g. Das
etal 2021).

As suggested by edge detection theory (Dakos et al
2012), the strength and direction the monthly cor-
relation coefficients may also be interpreted as an
indicator of the risk of threshold transgressions at
the level of species assemblages (Trisos et al 2020),
which are of particular interest to resource managers
and conservationists (Millar and Stephenson 2015).
A formal analysis of threats due to threshold trans-
gressions would require inclusion of climate change
projections, but given average ensembles of CMIP6
projections that project warmer and drier condi-
tions for the Southwest (Mahony et al 2022), cli-
mate limitations from this analysis suggest that tree
populations in this region are highly vulnerable to
continued future declines. This has also already been
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documented based on past climate change trends
over the last several decades (e.g. Floyd et al 2009,
Ganey and Vojta 2011, Worrall et al 2013, Byer and
Jin 2017).

5. Conclusions

This study contributes a vegetation response
descriptor in the form of multivariate clusters of
lagged correlations between cumulative annual EVI
values and monthly climate variables. The clusters
provide more information than a simple drought vul-
nerability index, conveying at what times of the year
plants are vulnerable to climate-induced physiolo-
gical stress associated with drought and high tem-
peratures. Both our analysis and prior research sug-
gest that drought may play an important role in
limiting growth of forested ecosystems for a vari-
ety of regions of North America. We show that
the multivariate cluster values can be generated
and mapped at continental scales at very high spa-
tial resolution, which reveals that vulnerable forest
stands can be found across all ecosystems, includ-
ing a distinct geographic band across the western
boreal forest. The high-resolution analysis high-
lights the heterogeneity of vegetation response to
climatic factors, and is also useful to determine which
non-climatic factors, such as stand age or topoed-
aphic factors, contribute to drought vulnerability.
This allows improved targeting of vulnerable forest
stands for management interventions to address cli-
mate change. The analytical approach can further
indicate the risk of threshold transgressions at the
edge of species and ecosystem tolerance limits, which
are of particular interest to resource managers and
conservationists in setting appropriate reforestation
and ecosystem restoration objectives under climate
change.
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Supplementary Data

Figure S1. Average continental vegetation response for all 14 clusters used in this analysis.
Graphs show the correlation of monthly climate variables with cumulative annual EVI values.
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Appendix S2. R-code used for lagged correlation analysis and clustering of grid cells with
similar response coefficients. The full EVI dataset with 3 million grid cells, as well as a 30,000
grid cell sub-sampled dataset to explore the code below without significant wait times are
available as open-access datasets at: https://figshare.com/s/bfec5¢6944eba8227925

### Importing and re-arranging EVI and climate data:

evi <- read.csv("evi subsample.csv");
clim <- read.csv("clim subsample.csv")

library(tidyr); library(dplyr)

evi long <- pivot longer (evi, cols = EVI 2003:EVI 2019, names_to = 'YEAR',
names_prefix = 'EVI ', values to = 'EVI', names transform =
1list (YEAR = as.integer))

### Calculating response coefficients for current year's Jan to Sep:

library(data.table)
current <- as.data.table(inner join(evi long, clim, on = c('ID20', 'YEAR')))

current <- select(current, X, Y, YEAR, EVI, ID20,
num_range ('Tmax', 1:9, width = 2),
num_range ('Tmin', 1:9, width = 2),
num range ('Tave', 1:9, width = 2),
num_range ('Prec', 1:9, width = 2),
num range ('RH', 1:9, width = 2),
num_range ('CMI', 1:9, width = 2))
current coef <- current[, -c('YEAR', 'LAT', 'LONG',6 'pYEAR')][, lapply(.SD,
cor, .SD$EVI), by = . (ID20, X, Y)]

### Calculating response coefficients for previous year's Sep to Dec:

clim$SYEAR <- clim$YEAR + 1
previous <- as.data.table(inner join(evi long, clim, on = c('ID20', 'YEAR')))
previous <- select (previous, X, Y, YEAR, EVI, ID20,

num_range ('Tmax', 9:12, width = 2),
num_range ('Tmin', 9:12, width = 2),
num_range ('Tave', 9:12, width = 2),
num_range ('Prec', 9:12, width = 2),
num_range ('RH', 9:12, width = 2),
num_range ('CMI', 9:12, width = 2))
previous coef <- previous[, -c('YEAR', 'LAT', 'LONG')][, lapply(.SD,
cor, .SDSEVI), by = .(ID20, X, Y)]

### Creating a combined table of response coefficients

names (previous coef) [-(1:4)] <- paste('prev', names (previous coef) [-(1:4)],
sep — lil)
coef <- cbind(previous_coef[, -'EVI'], current coef[, -c(l:4)])

### Generating a reduced dataset of current year's April to August for fast
### clustering

growingseason <- na.omit (select (coef, X, Y, ID20,



num_range ('Prec', 4:8, width = 2), num range('Tave',6 4:8, width = 2)))
growingseason cor <- as.matrix(growingseason[,-c('X','Y', 'ID20')])

### Clustering via multivariate recursive partitioning:

library (mvpart)

output <- mvpart (growingseason cor~., growingseason[,-c('X', 'Y',6 'ID20"')] ,
xv="p", all.leaves=T, control = rpart.control (xval = 10,

minbucket = 2, cp = 0.007))

# click on the number "14" of the graph to proceed with 14 groups,

# a lower cp value will offer more groups

### Mapping the resulting clusters:

display <- data.frame(cluster = as.numeric (factor (output$where)),
X = growingseason$X, Y = growingseason$Y)

library(lattice)
pccol <- colorRampPalette(c('red', 'orange', 'yellow', 'green', 'blue')) (20)

levelplot (cluster~X*Y, aspect="iso", cuts=19, col.regions=pccol,
data=display)

2000000

8000000

4000000

### Example for a response function graph corresponding to Cluster #1 as
shown in Fig. 2a and S1 (internally coded as cluster 4)

clustd4 id <- growingseason$ID20[outputSwhere ==

clustd4 avg <- data.frame (apply (coef[coef$ID20 %i
'ID20')], 2, mean))

clust4 dt <- mutate(clust4 avg, orig = rownames (clust4 avg),

4]
n% clust4 id, -c('X' ,'Y',

month = as.numeric (substr(orig, nchar (orig)-1, nchar (oriqg))),
variables = substr(orig, 1, nchar(orig)-2),
curr prev = stringr::str split fixed(variables, ' ', 2)[,11,

var = gsub('prev ','',variables),



month2 = ifelse(curr prev == 'prev',6 month-12, month))
library (ggplot2)
ggplot (clust4 dt, aes(x = month2, y = clust4 avg, color = var))

0o

corr

+ geom_ line ()

+ labs(x = '"', y = 'corr')

+ scale color manual (values
'red', 'darkred'))

+ scale x continuous (breaks
c('s','o','n','4da','Jd','F

(

c('navy',

-3):9,

'blue', 'skyblue',

labels =

'orange’,

,'M‘,'A','M',‘J',’J','A‘,'S'))
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