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A B S T R A C T   

Vegetation phenology indices derived from multispectral remote sensing data are used to estimate primary 
productivity, track impacts of climate change and predict fire seasons. Such indices may, however, lack accuracy 
due to effects of snow and water, different vegetation types, and parameter choices for determining green-up and 
green-down. Here, we compare remotely sensed green-up dates with an extensive database of 57,000 leaf out and 
flowering observations from the Alberta PlantWatch citizen science network. We evaluate older global 5 km 
resolution VIP-NDVI and VIP-EVI2 v4 and v5 products, a regional 250 m resolution MOD09Q1-NDVI v6 product 
specifically designed for Alberta, and a recent 500 m resolution MCD12Q2-EVI2 v6 product. Overall, we find that 
MCD12Q2-EVI2 had the highest precision and least bias relative to ground observations, representing a signif
icant advance over earlier phenology products. Different vegetation types showed a staged remotely sensed 
phenology in Alberta, with deciduous forest green-up first, followed by grasslands about 5 days later, and conifer 
forests green-up with a 10-day delay, allowing for corrections for different vegetation types. All products showed 
reduced interannual variability compared to ground observations, which may also lead to underestimating im
pacts of directional climate change. However, also in this respect MCD12Q2-EVI2 was superior, maintaining 
approximately 60% of the interannual variability. Nevertheless, the analysis shows that remotely sensed time 
series estimations of advances in leaf out may benefit from bias correction.   

1. Introduction 

Remote sensing is a valuable approach to monitor plant phenology, 
namely the timing of green-up of vegetation in spring, and senescence in 
fall from local to global scales. Remotely sensed phenology estimates 
have important and diverse applications, such as monitoring climate 
change effects on ecosystems (e.g., Garonna et al., 2015; Richardson 
et al., 2013), improving estimates of carbon sequestration (e.g., Leino
nen and Kramer, 2002; White et al., 1999), determining optimal timing 
of pest management in agriculture (e.g., Adan et al., 2021), predicting 
start or end of the wildfire season (e.g., Bajocco et al., 2015; De Angelis 
et al., 2012), or pollen forecasting for allergy risk assessments (e.g., Li 
et al., 2022; Scheifinger et al., 2013). 

Land surface phenology products are derived from time series of 
vegetation indices such as the Normalized Difference Vegetation Index 
(NDVI) (Rouse Jr et al., 1973) or the Enhanced Vegetation Index (EVI) 
(Liu and Huete, 1995). NDVI is a unitless index between − 1 and 1 that 
represents the difference of Near Infrared (NIR) – Red bands divided 
(normalized) by the sum of NIR + Red bands. The 3-band EVI (Liu and 

Huete, 1995) and the 2-band EVI2 (Jiang et al., 2008) are an enhanced 
variant of this metric that minimises the influence of aerosol variations 
and bare soil, and avoids saturation of index values over dense vegeta
tion (Huete et al., 2002). To derive land surface phenology products, 
which estimate the seasonal timing of vegetation changes, time series 
data with repeat periods of up-to 3 days in the mid-latitudes, can be 
summarized to single layers describing various phenophase transitions, 
such as green-up, mid-greenup, maturity, senescence, etc. (Bolton et al., 
2020; Gao et al., 2021). Such phenology products may be developed at 
different spatial resolution (typically ranging from 30 m to 5 km in grid 
size), using different parameter (e.g. 15%, 35% and 50% ratios of 
vegetation index amplitudes) and different interpolation methods or 
smoothing functions (e.g. cubic spline, double-logistic functions) to 
arrive at day-of-year estimates for remotely sensed land surface 
phenology events (Bolton et al., 2020; Gao et al., 2021; Moon et al., 
2022; Reed et al., 2009). 

Remotely sensed land surface phenology records have several ad
vantages over ground-based monitoring. Historical remote sensing data 
now span decades and have global coverage. Overlapping sensor sets 

* Corresponding author. 
E-mail address: lmpurdy@ualberta.ca (L.M. Purdy).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2022.103148 
Received 21 June 2022; Received in revised form 6 December 2022; Accepted 7 December 2022   

mailto:lmpurdy@ualberta.ca
www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2022.103148
https://doi.org/10.1016/j.jag.2022.103148
https://doi.org/10.1016/j.jag.2022.103148
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103148

2

ensure consistent and comparable data coverage over space and time 
(Reed et al., 2009). In contrast, ground observations of phenology vary 
widely in methodological approaches, observation protocols, duration, 
and spatial coverage. Nevertheless, observational records are subjec
tively preferred, sometimes referred to as “true phenology” while 
remote sensing records are sometimes described as “apparent 
phenology”, (e.g., Younes et al., 2021). Yet, both metrics are equally 
“real”: ground observations are point records, whereas remote sensing 
grid cells integrate phenology over sizable landscape units. Notably, 
point observations on the ground are not expected to be representative 
of the average phenology of a landscape unit corresponding to 250 m to 
5 km grid cell (Wu et al., 2019). Discrepancies between a limited number 
of point-based ground observations of plant phenology are therefore 
common and expected (Bornez et al., 2019; Delbart et al., 2015; Pouliot 
et al., 2011; Schwartz et al., 2002; White et al., 2014). 

Besides this conceptual limitation with regards to matching point- 
based phenology observations to remote sensing data, there are also 
other sources of error that affect the precision and accuracy of land 
surface phenology estimates. The phenology of anthropogenic vegeta
tion types can be difficult to model (Delbart et al., 2015). Cloud cover 
creates temporal and spatial gaps in data that can be particularly 
problematic for some ecosystems and geographic regions (White et al., 
2014; Zhang et al., 2006). Spring snowmelt can bias the vegetation 
index upward, creating a false early greening-up signal (White et al., 
2009). Lastly, varying curve smoothing approaches and parameter 
choices have been shown to produce green-up dates that vary by up to 
two months for the same grid cells (Helman, 2018). Therefore, estab
lishing relationships between remotely sensed phenology estimates and 
ground-based phenological observations remains an important task of 
land surface phenology research. 

The importance of “true phenology” records, despite their limita
tions, is also highlighted by different inferences on climate change im
pacts, when comparing ground phenology data and land surface 
phenology (Badeck et al., 2004). Ground phenology studies have 
documented relatively strong trends in temperate zones across the 
planet, with spring advancing at a typical rate of 2–7 days per decade, 
depending on the species (see histograms in Fu et al., 2015; Menzel 
et al., 2006; Piao et al., 2019). In contrast, remotely sensed trend esti
mates are usually much smaller in magnitude, typically ranging from 
0 to 3 days per decade (Garonna et al., 2015; Jeong et al., 2011; Park 
et al., 2016), but assessments using more recent phenology products 
such as MODIS collection 5 show stronger trends (e.g., Karkauskaite 
et al., 2017). The slower rate of spring advance detected from land 
surface phenology may be due to reduced interannual variability of 
remotely sensed land surface phenology compared to ground phenology 
(Fisher and Mustard, 2007), which is particularly prevalent in lower 
resolution products (Peng et al., 2018; White et al., 2009). However, a 
systematic amplitude discrepancy can be corrected and some land sur
face phenology products may be largely free of such issues. 

Here, we contribute a comparison of remotely sensed green-up dates 
with an extensive database of 57,000 leaf out and flowering observa
tions from the Alberta PlantWatch citizen science network. We evaluate 
older global AVHRR/MODIS-based 5 km resolution VIP-NDVI and VIP- 
EVI2 Version 4 and 5 product, a regional 250 m resolution MOD09Q1- 
NDVI Version 6 product specifically designed for Alberta, and the 
recent 500 m resolution MCD12Q2-EVI2 Version 6 product. To address 
the issue of representation of point observations, we stratify the study 
area into ecological zones and vegetation types, and evaluate mean es
timates for ecoregion × vegetation combinations (each represented by 
hundreds or thousands of phenology observations). Our objectives are to 
(1) compare several remote sensing products for their precision and bias 
of phenology estimates, (2) investigate if statistics vary with vegetation 
types and region, and (3) to test the hypothesis that older, lower reso
lution and multi-day composite phenology products may underestimate 
the magnitude of climate change effects on phenology. 

2. Materials and methods 

2.1. Alberta PlantWatch phenology data 

The ground phenology data used in this study were collected by the 
Alberta PlantWatch citizen science network, which was initiated in 1987 
to track spring plant phenology in the province of Alberta, Canada 
(Beaubien and Hamann, 2011a). Volunteers observe and report the 
calendar date of the following phenophases for common and easily 
identifiable plant species across Alberta: first bloom (first flowers open 
in three different places of a woody shrub/tree, or first flowers open in a 
patch of herbaceous plants), mid bloom (50% of flower buds open), full 
bloom (90% of flower buds open), and leaf out (first leaves unfurled in 
three places on the tree/shrub). 

As of 2016, the Alberta PlantWatch database includes over 57,000 
records for 30 species taken by roughly 700 observers (Fig. 1a). We 
evaluated a subset of six climatically homogenous ecoregions (Natural 
Regions Committee, 2006) with sufficient sample locations: Central 
Parkland (726 locations), Dry Mixedwood (478), Foothills Parkland 
(144), Central Mixedwood (165), Montane (258), and Grasslands (313). 
The Grasslands region is a combination of the Foothills Fescue, Dry 
Mixedgrass, and Mixedgrass natural subregions. We evaluated obser
vations for three bloom phases for the nine most reported species, and 
aspen leaf out (Table 1), for a total of approximately 35,000 phenology 
observations, which represents 60% of the PlantWatch database. This 
selection was necessary to arrive at complete time series for ecosystem- 
species combinations for the 1987–2016 study period. 

Rather than focusing on individual locations, we evaluate the cor
relation between the mean ground observations and its corresponding 
remote sensing phenology estimations per ecoregion. While correlations 
of individual point observations are sensitive to random noise, hundreds 
or thousands of phenology observations aggregated can more reliably 
represent vegetation types within the landscape unit. Mean phenology 
observations by species, year, and ecoregions were determined through 
best linear unbiased estimates (BLUEs) from a mixed effects model, 
taking advantage of collinearity among phenological phases (first, mid, 
and full bloom, and leaf out), collinearity among species, and collin
earity among adjacent ecoregions to improve the accuracy of the esti
mated mean ground phenology dates. The predictor variables year, 
ecoregion, and species were specified as fixed effects (i.e. we estimate 
BLUEs for their combinations), and bloom phase was specified as a 
random effect in the mixed model, implemented with the ASReml 
package (Butler et al., 2009) for the R programming environment (R 
Core Team, 2013). 

Although we evaluate remotely sensed phenology against all avail
able phenology time series from different species (Appendix Table S1), 
we focus on aspen leaf out as primary benchmark because it is the most 
abundant tree species in Alberta and can also serve as a general 
phenology proxy with an intermediate phenology timing. 

2.2. Remotely sensed land surface phenology 

We compared six remote sensing products (Table 2) including three 
using the normalized difference vegetation index (NDVI) and three 
products based on a 2-band modified enhanced vegetation index (EVI2). 
This includes two older global 0.05◦ resolution Vegetation Index and 
Phenology (VIP) global datasets, released by the Vegetation Index and 
Phenology Laboratory at the University of Arizona (Didan and Barreto, 
2015; Didan and Barreto, 2016) for the period 1981–2014. We refer to 
this dataset as VIP-NDVI and VIP-EVI2 in this study. The dataset was 
created using daily surface reflectance from the Advanced Very High 
Resolution Radiometer (AVHRR) LTDR v4 (1981–1999) and the Mod
erate Resolution Imaging Spectroradiometer (MODIS) Collection 5 
(2000–2014). Time series data were subjected to a temporal smoothing 
algorithm to remove noise. To better represent green-up regions with a 
slowly emerging growing season, a 0.35 ratio was used in VIP to identify 
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the start of growing season instead the standard half-max (0.5 ratio) 
method (Didan et al., 2018). 

The recent 500 m resolution MCD12Q2-EVI2 Collection 6 product 
(Friedl et al., 2019), was developed from the combined Terra and Aqua 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, 
providing global land surface phenology metrics from 2001 to 2019. 
Vegetation phenology metrics identify up to two growing cycles per year 
to capture uncommon phenological regimes (e.g., wet-seasons or 
phenology of agricultural systems). The MCD12Q2-EVI2 product reports 
green-up and mid-green-up using 0.15 and 0.5 of the time series 
maximum minus the minimum annual EVI2 deviations. Here, we eval
uate the mid-greenup layers. 

We also evaluated a higher resolution (250 m pixel size) NDVI-based 
land surface phenology product developed by Pickell et al. (2017) based 
on MOD09Q1 Version 6 (Vermote, 2015). The MOD09Q1 product is 
based on the MODIS/Terra sensor, consisting of 8-day composites at 
250 m resolution. Pickell et al. (2017) implemented a noise removal 

procedure, converting NDVI observations to a z-score and removing 
outliers based on a one-sided critical α level of 0.1. Subsequently, a one- 
dimensional cubic spline was fitted to interpolate 8-day composites, and 
green-up was determined with the half-maximum or 0.5 ratio method. 
This phenology product was designed for Alberta forest lands, with the 
purpose of determining the onset and end of wildfire seasons. 

Similar to the stratification of ground phenology data, all sample 
points representing the remotely sensed green-up date were averaged by 
ecoregion × vegetation combinations (Fig. 1b). Vegetation classes were 
determined with MODIS vegetation data (Commission for Environ
mental Cooperation, 2013). Each ecoregion × vegetation combination 
was represented by 50 sample points that were first randomly placed, 
but then manually moved away from boundaries into areas of homog
enous vegetation classes in order to minimize the probability of a sample 
pixel being composed of multiple vegetation types. We further replaced 
a small number of sample points that showed remotely sensed green-up 
dates earlier than the 60th day of year in any of the tested products. 

Fig. 1. Ecoregions of Alberta and locations of PlantWatch observer locations, with observer series length is indicated by the size of circles (right panel), and position 
of sampling locations for remote sensing data by ecoregions and vegetation types (left panel). Fifty sampling locations were random placed within each ecoregion and 
vegetation type combination, but then moved slightly to areas of homogenous vegetation types. 

Table 1 
Number of Alberta PlantWatch records from six different ecoregions by phenophase for the nine species used in this analysis.  

Species  Bloom-phase   

Common name Scientific name  First Mid Full Leaf out Total 

Saskatoon Amelanchier alnifolia  2044 1818 1577  5439 
Early blue violet Viola adunca  1608 1420 1291  4319 
Prairie crocus Anemone patens  1550 1285 1112  3947 
Aspen poplar Populus tremuloides  1320 1126 819 601 3866 
Chokecherry Prunus virginiana  1419 1226 1009  3654 
Northern bedstraw Galium boreale  1344 1219 1025  3588 
Golden bean Thermopsis rhombifolia  1357 1203 1004  3564 
Yarrow Achillea millefolium  1370 1171 948  3489 
Solomon’s seal Maianthemum stellatum  1310 1089 852  3251  
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Earlier dates are considered erroneous for Alberta climate (Cui et al., 
2017; Pickell et al., 2017). Annual green-up dates were then aggregated 
across the 50 sample points representing an ecoregion × vegetation 
combination. 

2.3. Statistical analysis 

Pearson correlation coefficients (r), and root mean square error 
(RMSE) were used to evaluate the strength of the relationship between 
remotely sensed green-up dates and phenology observations, following 
Willmott (1982). We also calculate mean bias error (MBE), which rep
resents the average difference of remote sensing – ground observations 
(positive MBE values indicate a lag of the remote sensing estimate and 
negative MBE values indicate that remote sensing estimates precede the 
ground observations). The r, RSME and MBE statistics for the VIP-NDVI 
and VIP-EVI2 datasets were evaluated separately from 1987 to 1999 
(AVHRR data) and 2000–2014 (MODIS data). Since all phenology data 
contribute to each BLUE estimate of each species based on collinearity, 
we use aspen leaf out as a ground observation which would be expected 
to be unbiased for the deciduous forest vegetation type. Aspen is one of 
the most common and widespread trees throughout Alberta and is ex
pected to have a considerable direct influence on remotely sensed 
phenology. Correlations of remote sensing products with phenology 
time series of other plant species, spanning from approximately day-of- 
year 100 to 170, are reported in the Electronic Supplement Table S1. 

3. Results 

3.1. Evaluation of ground observations versus remote sensing 

Bloom dates for all the nine species across Alberta range from early 
April to the end of June. Species blooming at similar times show close 
correlations in interannual phenology (Fig. 2). The sequence of spring 
phenology for the chosen species begins with the synchronized bloom of 
aspen and prairie crocus, followed by aspen leaf out approximately two 
to three weeks later, and the bulk of most phenology observations 
occurring within an additional two to three weeks thereafter. In the 
following, we focus on aspen leaf out as primary benchmark for evalu
ation as it is the most common tree species in Alberta, serving as a 
relevant direct observation for deciduous and mixed forests. Because of 
its intermediate timing and occurrence throughout all ecosystem types, 
it is also a useful general proxy for ground phenology of other land cover 
types, and it should be noted that all other autocorrelated phenology 
time series contribute to the precision of aspen leaf out estimates, as they 
would to an average phenology proxy. 

Remote sensing products have different accuracy and precision of the 
aspen green-up estimations. Correlations between ground-observed 
aspen leaf out and remotely sensed phenology are the highest for the 
MCD12Q2-EVI2 product across all combinations of ecoregions and 
vegetation types, except for deciduous forest in the Dry Mixedwood 
(which is slightly weaker than MOD09Q1-NDVI model, Table 3). This 
also holds true for bloom dates of most other species evaluated in this 

study (Table S1). Root mean square errors (RMSEs), which measure both 
precision and bias are generally one of the lowest for MCD12Q2. RMSEs 
of this model are over 50% lower than others in Montane and Foothills 
Parkland ecoregions (Table 3). The association between aspen leaf out 
and MCD12Q2-EVI2 estimations varies only slightly among vegetation 
types. Generally, the strongest associations were found for deciduous, 
mixed forests and grasslands (~0.83), with slightly lower values for 
coniferous forests and croplands (~0.77). 

Compared to MCD12Q2-EVI2, the other phenology products showed 
weaker correlations with ground observations. The MOD09Q1-NDVI 
only showed strong associations for deciduous forests (~0.80), with 
lower values for coniferous and mixed forests (0.5 to 0.6). The 
phenology of croplands and grasslands are not well captured by this 
dataset, except for the Dry Mixedwood ecoregion (0.63, Table 3). Green- 
up date estimates from the VIP-series products (VIP-NDVI based on 
AVHRR and MODIS) have even weaker correlations with ground 
phenology. Correlations are low across the majority of ecoregion and 
vegetation combinations, except Foothills parkland. These two products 
also have higher RMSE values, indicating strong bias of estimations. 
However, the older 0.05 degree NDVI-subset from the AVHRR sensor 
with estimates prior the year 2000 has moderate to good correlations for 
the cropland and grassland vegetation types compared to other prod
ucts. Correlations with blooming observations across all 9 species 
revealed similar patterns across remote sensing products (Table S1). 

3.2. Lags in the timing of green-up estimates 

Mean Bias Error (MBE) represents the lag time between remotely 
sensed green-up and ground observations of phenology (Table 3 and 
visualized in Fig. 3). Although the correlation of ground observations 
and remote sensing may be strong, lags or systematic bias need to be 
quantified for accurate estimates of vegetation green-up. We find that 
green-up dates estimated by VIP-NDVI MODIS are much earlier than the 
corresponding aspen leaf out (Fig. 3, dotted lines vs black line after 
2000), with MBE values ranging from 16.3 to 37.9 days earlier (Table 3). 
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Fig. 2. Phenology sequence of the mean date estimate for first bloom of 9 plant 
species, plus aspen leaf out, in the Central Parkland region of Alberta. The 
legend is ordered from the latest (Yarrow) to earliest (Aspen bloom) pheno
logical event. 

Table 2 
Remote sensing products evaluated in this study. They differed in vegetation 
index used, including the normalized difference vegetation index (NDVI) and the 
2-band modified enhanced vegetation index (EVI2), spatial and temporal reso
lution of the gridded product, data coverage, and method to determine mid- 
greenup: either a 0.35 ratio or the standard half-max (0.5 ratio) method.  

Product Index Grid Data coverage Mid-greenup 

VIP AVHRR v4 NDVI 0.05◦ 1981–1999 0.35 ratio 
VIP AVHRR v4 EVI2 0.05◦ 1981–1999 0.35 ratio 
VIP MODIS v5 NDVI 0.05◦ 2000–2014 0.35 ratio 
VIP MODIS v5 EVI2 0.05◦ 2000–2014 0.35 ratio 
MOD09Q1 v6 NDVI 250 m 2000–2016 0.5 ratio 
MCD12Q2 v6 EVI2 500 m 2001–2019 0.5 ratio  
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For natural vegetation types, the remotely sensed green-up date is 
approximately one month earlier, whereas remotely sensed cropland 
green-up is two to three weeks earlier than ground observations. Early 
green-up estimates can also be found in VIP-NDVI AVHRR, but the 
average difference between ground-observed aspen leaf out and 
remotely sensed green-up is 40% less before the year 2000 (Fig. 3., 
vertical dashed line). Further, we note that VIP-EVI2 showed very 
similar correlations and lags as VIP-NDVI. Statistics for VIP-EVI2 are not 
reported in Table 3 and Fig. 3 for conciseness, but correlation statistics 
for VIP-EVI2 can be found in Appendix Table S1. 

MCD12Q2-EVI2 and MOD09Q1-NDVI products are closer to the 
ground observations of aspen leaf out dates (Fig. 3; solid lines and dash- 
dot lines). These products use a 0.5 ratio to estimate the date of green-up 
(Table 1), but are still somewhat early. The most relevant statistic for a 
general adjustment of phenology would be observed aspen leaf out 
against “Deciduous” landcover in the “Central Parkland” and “Dry 
Mixedwood” ecoregions where aspen is dominant (Table 3, rows 1 and 
4). Other vegetation types showed consistent lags across different 
ecoregions, with grassland green-up first, followed by aspen deciduous 
forest green-up, and later, cropland green-up (Fig. 3). BMEs for 
MOD09Q1-NDVI based green-up showed similar but stronger bias based 
on aspen leaf out dates. Remote sensing estimates were delayed for 
croplands and also lagged for natural forested areas (especially for 
Montane conifer forest). MBEs of MOD09Q1-NDVI have the same di
rection (sign), but with large absolute values than the corresponding 
values of MCD12Q2-EVI2. 

3.3. Interannual variability of green-up estimates 

Interannual variability is lower for all remotely sensed phenology 
estimates than for ground-observed phenology, indicated by slopes less 
than 1 (Fig. 4). This figure only shows slopes for the remote sensing 
product with the strongest correlations with ground observations. The 
range of slope values for other products was 0.02 to 0.47 for the VIP- 
NDVI AVHRR, − 0.03 to 0.52 for the VIP-NDVI MODIS, 0.02 to 0.65 

for the MOD09Q1-NDVI, and 0.25 to 0.82 for the MCD12Q2-EVI2 
dataset. This can also be seen in Fig. 3, where VIP-NDVI AVHRR data 
from1980 to 1999 has nearly flat-lines for interannual variation despite 
some strong correlations for grasslands and cropland vegetation types 
(Table 3). The VIP-NDVI MODIS product shows more pronounced 
interannual variation than the older AVHRR data, but the newer prod
ucts, MOD09Q1-NDVI and MCD12Q2-EVI2, preserve interannual vari
ation best. Vegetation types also vary in their degree of interannual 
variation, with croplands showing the least variance and slope param
eters as low as 0.25 (Figs. 3 and 4, brown lines). 

4. Discussion 

4.1. Strong associations when using aggregate statistics 

We generally find high correlations when aggregating both 
phenology ground observations by ecoregions, and remote sensing data 
by ecoregion × vegetation type. This type of aggregation reduces noise 
in any statistical setting, but here it also serves the useful purpose to 
make the datasets more representative of a predictor or response vari
able. We can investigate statistics for specific vegetation types within 
specific ecoregions, which show different behaviours with respect to 
both bias and precision. This method of aggregation yields stronger 
correlations and lower RMSE values than other studies have observed 
(Delbart et al., 2015; Delbart et al., 2005; White et al., 2009). 

Of the phenophases included in this study, leaf out is likely to have 
the greatest direct influence on satellite observed green-up. In contrast, 
the flowering phenophases observed through the PlantWatch program 
are not expected to strongly influence landscape-level reflectance 
directly. Rather, they can and have been used here as indicators and 
proxy for the timing of leaf out of other species and green-up in general. 
It has previously been shown that phenophases of different species that 
occur approximately at the same day of year are highly correlated and 
can therefore serve as proxies for green-up of vegetation throughout the 
spring (Beaubien and Hamann, 2011b; Menzel et al., 2006). In contrast, 

Table 3 
Statistics for the accuracy and precision of the green-up estimate relative to the mean date of aspen leaf out in each ecoregion-vegetation combination. The root mean 
squared error (RMSE) is used as a measure of bias, and the Pearson correlation coefficient (r) is reported as a measure of precision for the relationship between the 
remotely sensed sensing green-up and observed phenology (* denotes statistical significance of correlations for p < 0.05, and ** for p < 0.01). Mean bias error (MBE) 
are in units of days between the remotely sensed green-up date minus the observed date for aspen leaf out. A negative MBE value indicates that the green-up estimate 
precedes the ground observed date for that phenophase.    

VIP-NDVI AVHRR VIP-NDVI MODIS MOD09Q1-NDVI MCD12Q2-EVI2 

Ecoregion Vegetation RMSE MBE r RMSE MBE r RMSE MBE r RMSE MBE r 

Central Parkland               
Deciduous 20.6 − 20.1 0.37 30.9 − 30.2 0.3 5.8 − 2.4 0.75** 6.6 − 4.1 0.83**  
Cropland 12.2 − 11.2 0.16 21.1 − 19.9 0.32 16.9 15.4 0.46* 11.3 9 0.58*  
Grassland 23 –22.6 0.4 33.2 –32.3 0.18 13.7 − 10.4 0.37 9.9 − 8.6 0.80**  

Dry Mixedwood               
Deciduous 15.2 − 14.5 0.29 28.9 − 28.3 0.52* 4 0.3 0.86** 4.5 − 0.8 0.83**  
Cropland 11 − 10.2 0.56* 23.1 –22.3 0.50* 13.7 12.3 0.63** 11.2 9.6 0.75**  

Foothills Parkland               
Cropland 21.2 − 20.6 0.75** 26.8 − 26.2 0.66** 12.1 8.7 0.47* 5.3 − 2.4 0.89**  
Grassland 19.1 − 18.5 0.89** 22.3 − 21.6 0.64* 12.5 8.6 0.33 5.4 − 1.7 0.86**  

Grasslands               
Cropland 13.1 − 12.3 0.55* 17.9 − 16.3 0.03 24.2 22.3 0.06 17.1 16.1 0.86**  
Grassland 32.2 − 31.9 0.56* 38.8 − 37.9 − 0.06 16 − 9 0.17 8.3 − 6.2 0.82**  

Central Mixedwood               
Mixed forest 25.8 − 25.4 0.29 38.2 − 37.7 0.48* 16.1 − 14.5 0.63** 7.5 − 5.5 0.83**  

Montane               
Conifer forest 17.5 − 16.5 0.08 27.6 − 26.9 0.66** 26 − 24.3 0.52* 11.5 − 9.6 0.77**  
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the earliest and latest ground observations may not be well correlated 
and may therefore yield different correlation statistics with for different 
phenology products. The highest correlations would be expected for the 
best temporal matches between ground and remotely-sensed green-up 
estimates of different products. Appendix Table S1 is therefore useful in 
evaluating the overall quality of remote sensing products: those that 
never correlate high with any of the phenology time series (listed from 
early to late) should be considered the weakest. 

4.2. Vegetation specific lag correction 

Bias-statistics (RSME, MBE) are strongly influenced by analytical 
choices, such as the type of ground observation used (different species 
and phenology pahses), and ratios used to represent remotely sensed 
green-up (0.35 and 0.5). As such, bias statistics are not an indicator of 
the “quality” of the product but can be used for corrections. A relevant 
metric for general adjustment of phenology products from this study, 
would be observed aspen leaf out against “Deciduous” landcover in the 
“Central Parkland” and “Dry Mixedwood” ecoregions where aspen is 
dominant (rows 1 and 4 in Table 3). VIP-MODIS estimates appear very 
early, even considering the 0.35 ratio used. Mid-greenup estimates from 
MOD09Q1 and MCD12Q2 are quite close to aspen leaf out ground ob
servations, perhaps still one week early, given that they are based on a 
0.5 ratio method and given first leaf unfolding observations. Our results 
do conform to other research that concluded that the half-max (0.5 
ratio) method corresponds well to the initial leafing of the canopy (Misra 
et al., 2016, White et al., 1997). Because the 0.5 ratio method is already 

somewhat early with respect to observed aspen leaf out in this study 
area, we would not recommend phase transitions based on the even 
earlier 0.15 ratio “greenup” product, which is also available for some 
phenology products. When making bias corrections against ground ob
servations, the temporally closest phase transition should be chosen to 
maximise linearity in the bias correction. 

Green-up estimates for cropland land are challenging (Delbart et al., 
2015), with changes in reflectance of croplands being significantly 
influenced by crop type and management, as changes in NDVI due to 
tree foliation are weaker (Zhang et al., 2006). We observe green-up for 
agricultural areas to be generally later than forests and grasslands in the 
same region, which other North American studies also found (Zhang 
et al., 2006; Zhang et al., 2017). A possible cause of excessive negative 
bias can be false early green-up due to snow-melt (White et al., 2009). 
However, this does not seem to be the case for the MCD12Q2 product. 
Grasslands show a slight negative bias and deciduous and mixed forests 
are largely unbiased relative to ground observed phenology. The late 
phenology in croplands may be driven by local agricultural manage
ment, where farmers seed late, or it may have ecological causes, where 
grasslands have high heatsum requirements to avoid drought periods in 
spring. In Alberta, sufficient moisture for agricultural activities and 
green-up of grasslands come with early summer rains, relatively late in 
May. 

Nevertheless, bias relative to any specific phenology event of interest 
can be corrected, if ground observations are available. In this case study 
for Alberta with aspen leaf out observations as a reference value, de
ciduous forest green-up estimated by the MCD12Q2-EVI2 product 

Fig. 3. Time series showing the remote sensing green-up dates for the three different remote sensing products by ecoregion (panels) and vegetation type (colour 
coded). The black line represents the ground-observed date for aspen leaf out in each ecoregion. The vertical dashed line is the year when the VIP-NDVI product 
switched from relying on AVHRR to MODIS sensors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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appears largely unbiased, grassland phenology can be linked to aspen 
leaf out by adding 5 days, and conifer forests green-up by adding 10 
days. 

4.3. Climate change response monitoring 

All land surface phenology products evaluated in this study signifi
cantly underestimated the interannual variability of phenology, which 
has also been noted in other studies (Fisher and Mustard, 2007; Peng 
et al., 2018; White et al., 2009). Heterogeneous pixels generally show 
reduced interannual variability (Doktor et al., 2009), which can be 
caused by vegetation heterogeneity, cloud contamination, atmospheric 
variability, and sensor view angle (Zhang et al., 2003; Zhang et al., 
2001). Without corrections from ground data, remotely sensed assess
ments of climate change impacts may therefore yield underestimates of 
the true change to land surface phenology. This may explain the dif
ference of reported advances in spring phenology by 2–7 days per 
decade based on ground-observed plant phenology (Ahas et al., 2002; 
Badeck et al., 2004; Beaubien and Hamann, 2011b; Menzel et al., 2006; 
Root et al., 2003; Schwartz et al., 2006; Schwartz and Reiter, 2000), 
compared to remotely sensed estimates, typically ranging from 0 to 3 
days per decade (Garonna et al., 2015; Jeong et al., 2011; Karkauskaite 
et al., 2017; Park et al., 2016). 

Our interpretation is that the discrepancy is caused by spatial aver
aging and temporal compositing or smoothing algorithms. The least 
interannual variability was observed in the lowest resolution (approxi
mately 5 km) VIP-EVI2 and VIP-NDVI products, which were further 
subjected to temporal smoothing algorithms. The AVHRR sensor data 
from these products from 1981 to 1999 was further limited by fewer 

spectral bands than the MODIS sensor, with the NIR channel sensitive to 
noise (Rao and Chen, 1996) and calibration difficulties (Van Leeuwen 
et al., 2006). The next best product with regards to maintaining inter
annual variability was the highest resolution (250 m) MOD09Q1-NDVI 
product that was based on an 8-day temporal composite time series. 
The 500-m resolution MCD12Q2-EVI2 used missing value imputation 
rather than temporal compositing, and maintained the highest interan
nual variability (usually with a slope of 0.5 to 0.8 for various ecoregion 
× vegetation type combinations. In summary, avoidance of temporal 
compositing and high resolution datasets appear to maintain interan
nual variability best. Nevertheless, to track trends of phenology in 
response to climate warming, remote sensing estimates of advances in 
green-up dates need to be adjusted with the appropriate regression 
equation to make these estimates comparable to ground phenology. 

5. Conclusions 

Overall, we find that the newer land surface phenology products, 
notably MCD12Q2-EVI2, exhibit significantly improved precision and 
less bias relative to ground observations, representing a significant 
advance over earlier phenology products. Different vegetation types 
showed a staged remotely sensed phenology in Alberta, with deciduous 
forest green-up first, followed by grasslands about 5 days later, and 
conifer forests green-up with a 10-day delay, allowing for corrections for 
different vegetation types. Our results do conform to other research that 
concluded that the half-max (0.5 ratio) method corresponds well to the 
initial leafing of the canopy and is therefore recommended for deciduous 
and mixed forests. All products showed reduced interannual variability 
compared to ground observations, which may lead to underestimating 

Fig. 4. Regressions of aspen leaf out from ground observations versus remotely sensed green-up date. The plots show the best correlation for each vegetation type 
(colors) by ecoregion (panels). The black diagonal is the 1:1 line of day of year. All other correlations are shown in Appendix 1. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

L.M. Purdy et al.                                                                                                                                                                                                                                



International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103148

8

impacts of directional climate change. However, also in this respect 
MCD12Q2-EVI2 was superior, maintaining approximately 60% of the 
interannual variability in ground observations. Nevertheless, the anal
ysis shows that remotely sensed time series of advances in leaf out may 
benefit from bias correction if ground observations are available. 
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