## A high-resolution database of historical and future climate for Africa developed with deep neural networks

Sarah Namiiro<sup>1</sup>, Andreas Hamann<sup>1</sup>\*, Tongli Wang<sup>2</sup>, Dante Castellanos-Acuña<sup>1</sup>, Colin Mahoney<sup>3</sup>

 <sup>1</sup> Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, AB, Canada, T6G 2H1
 <sup>2</sup> Centre for Forest Conservation Genetics, Department of Forest and Conservation Sciences, University of British Columbia.
 <sup>3</sup> British Columbia Ministry of Forests, Victoria, BC, Canada.

(Manuscript under review)

\* Corresponding author's contact information: Tel: (780) 492-6429
Fax: (780) 492-4323
Email: andreas.hamann@ualberta.ca

**Abstract:** This study contributes an accessible, comprehensive database of interpolated climate data for Africa that includes monthly, annual, decadal, and 30-year normal climate data for the last 120 years (1901 to present) as well as multi-model CMIP6 climate change projections for the 21<sup>st</sup> century. The database includes variables relevant for ecological research and infrastructure planning, and comprises more than 25,000 climate grids that can be queried with a provided *ClimateAF* software package. In addition, 30 arcsecond (~1km) resolution gridded data are available for download. The climate grids were developed with a three-step approach, using thin-plate spline interpolations of weather station data as a first approximation. Subsequently, a novel deep learning approach is used to model orographic precipitation, rain shadows, lake and coastal effects at moderate resolution. Lastly, lapse-rate based downscaling is applied to generate high-resolution grids. The climate estimates were optimized and cross-validated with a checkerboard approach to ensure that training data was spatially distanced from validation data. We conclude with a discussion of applications and limitations of this database.

**Table 1**. Databases included in this study detailing their temporal extent, temporal resolution and the number of stations obtained for Africa. The number of stations in parentheses is the final number of stations that were retained after applying quality control criteria, duplicate station removal and local redundancy control.

| Database                           | Temporal  | Temporal          | Number of  | Reference                   |
|------------------------------------|-----------|-------------------|------------|-----------------------------|
|                                    | extent    | resolution        | stations   |                             |
| Climate Research Unit Time Series  | 1849-2023 | Monthly time      | 1522 (572) | Harris, et al. <sup>3</sup> |
| (CRUTS), Version 3                 |           | series            |            |                             |
| Global Historic Climate Network    | 1878-2017 | Monthly time      | 864 (176)  | Lawrimore, et al.           |
| Monthly (GHCN-M), Version 3        |           | series            |            | 22                          |
| Global Historic Climate Network    | 1900-2021 | Daily time series | 878 (344)  | Menne, et al. 23            |
| Daily (GHCN-D), Version 3          |           |                   |            |                             |
| World-wide Agroclimatic Data of    | 1902-1998 | Monthly time      | 846 (96)   | FAO <sup>24</sup>           |
| FAO (FAOCLIM), Version 2           |           | series            |            |                             |
| World Meteorological Organization  | 1961-1992 | Monthly time      | 431 (256)  | WMO <sup>25</sup>           |
| (WMO)                              |           | series            |            |                             |
| European Climate Assessment        | 1892-2018 | Daily & Monthly   | 223 (13)   | Tank, et al. <sup>26</sup>  |
| Dataset (ECA)                      |           | time series       |            |                             |
| National Oceanic & Atmospheric     | 1949-2015 | Monthly time      | 131        | NOAA <sup>27</sup>          |
| Administration (NOAA)              |           | series            |            |                             |
| Global monthly weather station for | 1901-2010 | Monthly time      | 4510       | Castellanos-Acuna           |
| precipitation                      |           | series            |            | and Hamann <sup>28</sup>    |



**Figure 1**: Distribution of 4625 weather stations compiled for the database. Blue stations have records for only precipitation measurements and red stations have records for both precipitation and temperature measurements for the 1961-1990 period.

**Table 2**. Predictor variables selected for training the neural network. The original target resolution was 2.5 arcminutes, and low-pass filters were applied to better predict larger scale climate patters driven by higher altitude air circulation patterns.

| Predictor variables for machine learning                  | Low-pass filter versions |   |    |  |
|-----------------------------------------------------------|--------------------------|---|----|--|
| Base variables                                            |                          |   |    |  |
| Thin-plate spline interpolation of climate variable       |                          |   |    |  |
| Latitude                                                  |                          |   |    |  |
| Longitude                                                 |                          |   |    |  |
| Topographic variables                                     |                          |   |    |  |
| Elevation                                                 | 3                        | 7 | 15 |  |
| Compound topographic index                                | 5                        | 9 |    |  |
| Topographic position index                                | 3                        | 7 |    |  |
| Hill shade south-north direction                          | 7                        |   |    |  |
| Monthly variables weighted by wind direction and strength |                          |   |    |  |
| Windward (+) or leeward (-) slope exposure                | 5                        | 9 | 15 |  |
| Leeward wind-weighted distance to coast (max 50km)        | 5                        |   |    |  |
| Leeward wind-weighted distance to coast (max 500km)       | 15                       |   |    |  |
| Leeward wind-weighted distance to lakes (max 10km)        | 5                        |   |    |  |
| Leeward wind-weighted distance to lakes (max 100km)       | 15                       |   |    |  |



**Figure 2**: Example of predictor variables used in neural network fine-tuning of thin-plate spline interpolations. All putative predictor variables were subjected to transformations for normality if possible, and then scaled to values between 0 (black) and 1 (white) for use as covariates in neural network models.



**Figure 3.** Example climate grid for January precipitation (a-c) and January mean minimum temperature (d-f), including a difference calculations (c, f) that highlight the effects of neural network fine-tuning. The color of circles in the inset indicates the weather station values (or residuals on the difference layer) on the same scale as the gridded data.

(a) Neural network estimate (this study)



(c) Thin-plate splines estimate

(b) Google Earth satellite image



(d) 0.25 degree products



**Figure 4.** Comparison of interpolated climate grids for January precipitation, fine-tuned with neural networks from this study (a), with a Google Earth satellite image (b), the widely used thin-plate spline interpolations (c), and a commonly used grid size for time series data (d).

**Figure 5**: Sample grids for visual inspection of different variables. Follow the View link for 2.5 arcminute resolution JPGs with hillshades added for orientation. Once the image opens in a browser window, you can click on them to zoom in or out of different areas (④). The inset shows detail for major mountain ranges (Rift Valley, Mt Kenya, Mt Kilimanjaro area). To view the grids in GIS, use the RGB-GeoTIFFs which do not include hillshading (Note, corresponding data files are available at the bottome of this page <a href="http://tinyurl.com/ClimateAF">http://tinyurl.com/ClimateAF</a>).

Mean Annual Precipitation (View, GIS) Mean Coldest Month Temp (View, GIS) Precipitation Dec-Jan-Feb (View, GIS) Climate Moisture Deficit (View, GIS)



Mean Annual Temperature (View, GIS) Mean Warmest Month Temp (View, GIS) Avg Min Temp Dec-Jan-Feb (View, GIS) Reference Elevation Grid (View, GIS)





**Figure 6**: Models are structured by a cluster dendrogram showing spatial similarity in the projected seasonal changes for Tmin, Tmax and precipitation in December, January and February (DJF) and and March, April, May (MAM) in the period 2041-2070 under (SSP2-4.5). The maps illustrate the visual changes across the African continent for this period. Precipitation is log-scaled to provide proportional magnitude of positive and negative changes. [Problem with apparent "cooling" in bottom 4 models needs fixing]

**Table 3**: Subsets of the projections with optimal representation variation in climate change projections for a given subset size according to, including additional selection criteria from Mahony, et al. <sup>15</sup>. The IPCC reference regions for Africa as shown in Figure S1 include: ARP, Arabian-Peninsula; CAF, Central-Africa; ESAF, East-Southern Africa; MDG, Madagascar MED, Mediterranean; NEAF, North-Eastern-Africa; SAH, Sahara; SEAF, South-Eastern-Africa; WAF, Western-Africa; WCA, West Central Asia and; WSAF, West-Southern-Africa. For a map of the region delineations, refer to Electronic Supplement A, Fig S1, and for an equivalent table that excludes the sensitive UKESM1-0-LL scenario, see Table 5 of the corresponding paper.

| Subset | IPCC reference region |      |      |      |      |      |      |      |      |      |      |        |
|--------|-----------------------|------|------|------|------|------|------|------|------|------|------|--------|
| size   | ARP                   | CAF  | ESAF | MDG  | MED  | NEAF | SAH  | SEAF | WAF  | WCA  | WSAF | Africa |
| 1      | CNRM                  | GISS | EC   | CNRM | CNRM | GISS | CNRM | CNRM | CNRM | CNRM | EC   | CNRM   |
| 2      | UKES                  | UKES | UKES | UKES | UKES | UKES | UKES | UKES | MPI  | UKES | UKES | UKES   |
| 3      | EC                    | MPI  | MPI  | MPI  | EC   | MIR  | MPI  | MPI  | UKES | EC   | MIR  | MPI    |
| 4      | MPI                   | EC   | MIR  | MIR  | MPI  | ACC  | EC   | MIR  | EC   | MPI  | CNRM | GFDL   |
| 5      | MRI                   | MIR  | CNRM | GISS | GISS | GFDL | MRI  | EC   | GFDL | GFDL | GISS | ACC    |
| 6      | ACC                   | ACC  | GISS | ACC  | MRI  | MRI  | ACC  | GISS | MIR  | MIR  | MRI  | EC     |
| 7      | GISS                  | GFDL | MRI  | MRI  | ACC  | EC   | GISS | MRI  | GISS | ACC  | GFDL | MIR    |
| 8      | MIR                   | CNRM | ACC  | EC   | MIR  | MPI  | MIR  | GFDL | ACC  | MRI  | MPI  | GISS   |
| 9      | GFDL                  | MRI  | GFDL | GFDL | GFDL | CNRM | GFDL | ACC  | MRI  | GISS | ACC  | MRI    |