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Abstract: This study contributes an accessible, comprehemsitedbase of interpolated climate
data for Africa that includes monthly, annual, désdaand 30-year normal climate data for the
last 120 years (1901 to present) as well as mutlehCMIP6 climate change projections for the
21 century. The database includes variables reldeamicological research and infrastructure
planning, and comprises more than 25,000 climatks gnat can be queried with a provided
ClimateAF software package. In addition, 30 arcsecond (~Ilesplution gridded data are
available for download. The climate grids were deped with a three-step approach, using thin-
plate spline interpolations of weather station @ata first approximation. Subsequently, a novel
deep learning approach is used to model orograpbkpitation, rain shadows, lake and coastal
effects at moderate resolution. Lastly, lapsepatsed downscaling is applied to generate high-
resolution grids. The climate estimates were oa@uiand cross-validated with a checkerboard
approach to ensure that training data was spatigtganced from validation data. We conclude

with a discussion of applications and limitatiorighos database.



Table 1. Databases included in this study detailing tteimporal extent, temporal resolution
and the number of stations obtained for Africa. benber of stations in parentheses is the
final number of stations that were retained affgrlging quality control criteria, duplicate
station removal and local redundancy control.

Database Temporal Temporal Number of Reference
extent resolution stations

Climate Research Unit Time Series 1849-2023 Monthly time 1522 (572) Harris, et al®

(CRUTS), Version 3 series

Global Historic Climate Networ 187¢-2017 Monthly time 864 (176 Lawrimore, et al

Monthly (GHCN-M) , Version 3 series =

Global Historic Climate Network 1900-2021 Daily time series 878 (344) Menne, etal.

Daily (GHCN-D), Version 3

World-wide Agroclimatic Data o 1902-199¢ Monthly time 846 (96 FAO %

FAO (FAOCLIM), Version 2 series

World Meteorological Organization 1961-1992 Monthly time 431 (256) WMO*

(WMO) series

European Climate Assessment 1892-2018 Daily & Monthly 223 (13) Tank, et af*

Dataset (ECA) time series

National Oceanic & Atmospheric ~ 1949-2015 Monthly time 131 NOAAZ

Administration (NOAA) series

Global monthly weather station for  1901-2010 Monthly time 4510 CastellaneAcuna

precipitation series and HamannR®
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Figure 1: Distribution of 4625 weather stations compiledtfue database. Blue stations hi
records for only precipitation measurements andstations have records for bc
precipitation and temperature measurements fot #6d-1990 period.




Table 2. Predictor variables selected for training theraknetwork. The original target
resolution was 2.5 arcminutes, and low-pass filegse applied to better predict larger scale
climate patters driven by higher altitude air clation patterns.

Predictor variables for machine learning Low-palsriversions
Base variables
Thin-plate spline interpolation of climate variable
Latitude
Longitude
Topographic variables
Elevation 3 7 15
Compound topographic index 5 9
Topographic position index 3 7
Hill shade south-north direction 7
Monthly variables weighted by wind direction antesgth
Windward (+) or leeward (-) slope exposure 5 9 15
Leeward wind-weighted distance to coast (max 50km) 5
Leeward wind-weighted distance to coast (max 500km)5
Leeward wind-weighted distance to lakes (max 10km) 5
Leeward wind-weighted distance to lakes (max 100km)5




Compound topographic Windward distance to coast
index (max 500km, low-pass 15)

Topographic position
index (low-pass 3) b Leeward slope exposure

Figure 2: Example of predictor variables used in neuraivoek fine-tuning of thin-plate
spline interpolations. All putative predictor vdrias were subjected to transformations for
normality if possible, and then scaled to valuasvben 0 (black) and 1 (white) for use as
covariates in neural network models.
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Figure 3. Example climate grid for January precipitatiacf and January mean minimum
temperatured-f), including a difference calculations, €) that highlight the effects of neural
network fine-tuning. The color of circles in thes@t indicates the weather station values (or
residuals on the difference layer) on the sameeszsithe gridded data.



(a) Neural network estimate (this study) (b) Google Earth satellite image

Figure 4. Comparison of interpolated climate grids for Jagyaecipitation, fine-tuned with
neural networks from this study (a), with a Godgéeth satellite image (b), the widely used
thin-plate spline interpolations (c), and a comnyarded grid size for time series data (d).



Figure5: Sample grids for visual inspection of differeatiables. Follow the View link for 2.5 arcminutesodution JPGs with hillshades added for
orientation. Once the image opens in a browseravingou can click on them to zoom in or out of eii#int areas®, ). The inset shows detail for major
mountain ranges (Rift Valley, Mt Kenya, Mt Kilimap area). To view the grids in GIS, use the RGBT3EFs which do not include hillshading

(Note, corresponding data files are available atatbttome of this padetp://tinyurl.com/ClimateAl:

Mean Annual Precipitation (View, GIS)  Mean Coldest Month Temp (View, GIS) Precipitation Dec-Jan-Feb (View, GIS)  Climate Moisture Deficit (View, GIS)
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Figure 6: Models are structured by a cluster dendrogramvsigspatial similarity in the
projected seasonal changes for Tmin, Tmax andgtaton inDecember, January al
February (DJF) andnd March, April, Ma (MAM) in the period 204122070 under (SSF-

4.5). The maps illustrate the visual changes

adhasafrican continent for this perio

Precipitation is logscaled to provide proportional magnitude of positwd negativ
changes[Problem with apparent “©ling” in bottom 4 models needs fixing]



Table 3: Subsets of the projections with optimal represgon variation in climate change projections for a
given subset size according to, including additisesection criteria from Mahony, et af. The IPCC
reference regions for Africa as shown in Figurar®lude: ARP, Arabian-Peninsula; CAF, Central-Afic
ESAF, East-Southern Africa; MDG, Madagascar MED diesranean; NEAF, North-Eastern-Africa; SAH,
Sahara; SEAF, South-Eastern-Africa; WAF, Westerrie&df WCA, West Central Asia and; WSAF, West-
Southern-Africa. For a map of the region delineaiaefer to Electronic Supplement A, Fig S1, amcah
equivalent table that excludes the sensitMMESM1-0-LL scenario, see Table 5 of the correspomgaper

Subset IPCC reference region
size ARP CAF ESAF MDG MED NEAF SAH SEAF  WAF WCA  WSAF Africa

CNRM GISS EC CNRM CNRM GISS CNRM CNRM CNRM CNRM EC CNRM
UKES UKES UKES UKES UKES UKES UKES UKES MPI UKES UKES UKES
EC MPI MPI MPI EC MIR MPI MPI UKES EC MIR MPI
MPI EC MIR MIR MPI ACC EC MIR EC MPI CNRM GFDL
MRI MIR CNRM GISS GISS GFDL MRI EC GFDL GFDL GISS ACC
ACC ACC GISS ACC MRI MRI ACC GISS MIR MIR MRI EC
GISS GFDL MRI MRI ACC EC GISS MRI GISS ACC GFDL MIR
MIR CNRM ACC EC MIR MPI MIR GFDL ACC MRI MPI GISS
GFDL MRI GFDL GFDL GFDL CNRM GFDL ACC MRI GISS ACC MRI
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