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Abstract

Global interpolated climate products are widely used in ecological research to investigate

biosphere-climate interactions and to track ecological response to climate variability and cli-

mate change. In turn, biological data could also be used for an independent validation of

one aspect of climate data quality. All else being equal, more variance explained in biologi-

cal data identifies the better climate data product. Here, we compare seven global precipita-

tion time series products, including gauge-based datasets (CRU-TS, UDEL-TS, GPCC), re-

analysis products (ERA5, CHELSA), a satellite-based dataset (PERSIANN) and a multi-

source product that draws on gauge, re-analysis, and satellite data (MSWEP). We focus on

precipitation variables, because they are more difficult to interpolate than temperature, and

show larger divergence among gridded data products. Our validation is based on 20 years

of remotely sensed vegetation greenness (MODIS-EVI) and 120 years of tree ring records

from the International Tree Ring Data Bank (ITRDB). The results for the 20-year EVI based

validation shows that all gauge and re-analysis data products performed similarly, but were

outperformed by the multi-source MSWEP product, especially in regions with low weather

station coverage, such as Africa. For analyzing long 120-year time-series, UDEL-TS

showed superior performance prior to the 1940s, with especially large margins for northern

Asia and the Himalayas region. For other regions, CRU-TS and GPCC could be recom-

mended. We provide maps that can guide the best regional choice of climate product for

research involving time series of biological response to historic climate variability and cli-

mate change.

Introduction

Researching biological response to interannual climate variability, long-term climate trends or

climate extreme events requires reliable historical climate data. Such data are usually provided

as gridded data products that have been interpolated from weather stations, allowing for esti-

mates of climate variables for any study site or sample location [1–3]. However, depending on

the climate variables required, the topographic complexity of the landscape, and the distance
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between the study site of interest and the nearest weather station, climate estimates from dif-

ferent data products may be very variable in quality [4–6]. Generally, temperature variables are

easier to interpolate and even in mountainous areas they follow predictable patterns according

to adiabatic or environmental lapse rates. This is not the case for precipitation variables that

are driven by more difficult to model processes, such as orographic lift and rain shadows that

do not scale in straight-forward ways with elevation. Furthermore, the shorter the historical

time period to be predicted (annual, monthly or daily), the more precipitation estimates are

driven by spatially distinctly bounded, and randomly occurring weather events, making inter-

polations especially challenging [7].

Nevertheless, at monthly spatial resolution, global and regional gridded climate data prod-

ucts are available from many sources, and these products are based on two general types of

data sources. Traditionally, gridded climate data is produced from interpolating weather sta-

tion data (gauge-base) using a variety of interpolation methods [8,9]. Since approximately the

year 2000, time series climate data products based on remotely sensed temperature and precip-

itation have become available from high-quality satellite-based sensors [10]. However, both

approaches have their own limitations. Gauge-base data provides long-term climate datasets

(100+ years) but is often severely limited by regional and temporal gaps in weather station cov-

erage [11]. Remote sensing-based datasets, on the other hand, have homogeneous coverage of

the earth’s surface that are covered by the orbital path of the satellites (between 60˚ latitude

north and south), but the earliest datasets only start around the 1980s with high quality data

only available since around the year 2000. Some gridded climate data products make use of

both data sources, where remotely sensed climate estimates are used where available, and

adjusted with weather station information [12].

Making selections among different climate data products could therefore potentially be an

important choice for researchers studying climate-biosphere interactions. For gauge-based

precipitation products, there are two main reasons why estimates may differ in precision and

accuracy. First, authors of different interpolated climate data products may have different lev-

els of access to weather station data from specific countries or regions [13], and second, differ-

ent interpolation algorithms used may result in varying regional quality of climate variable

estimates [1,13]. The choice of interpolation algorithms is not particularly important for

regions with dense weather station coverage, where most methods yield very similar estimates

and validation statistics. However, for remote regions with sparse or no weather station cover-

age, such as high montane, high latitude, or other undeveloped regions of the world, interpola-

tion methods can substantially diverge in their climate estimates [13,14]. This divergence

among different interpolation approaches often goes undetected because areas without train-

ing data also have no weather stations available for validation.

While validation of the accuracy of climate data is usually performed against weather sta-

tion data by the authors of climate data products, these validations are generally meaningless

for cross-product comparisons. First, there are many valid approaches to validation including

various statistical methods, different options to subset training and validation data, and differ-

ent approaches to deal with autocorrelations among nearby weather station records that may

inflate validation statistics [15–18]. As such, validation statistics from different studies are not

directly comparable. Second, after validation statistics have been computed, the withheld vali-

dation data will be re-joined with the training data to create the final climate data product to

take advantage of all available information. For valid product comparisons, all authors would

need to use the same validation data, withheld from the training data, and as such post hoc
product comparisons with weather station records are not possible.

Biological data, on the other hand, offers an independent data source for validating one

aspect of the quality of climate data products. In this study we use 20 years of global historical
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remote sensing records of vegetation greenness (MODIS-EVI) and 120 years of tree ring rec-

ords from the International Tree Ring Data Bank (ITRDB). This independent validation is

based on the strength of plant-climate associations, with the expectation that variance

explained in biological data should be higher for better quality climate data sets. We note that

this is only a partial validation, because the accuracy of absolute climate values cannot be

assessed with biological data sources. However, we can assess the precision of plant-climate

interactions in time series. To describe this limitation in other words, we cannot assess system-

atic bias of climate estimates for any location with biological data, but statistical precision of

climate data tracking inter-annual variation of historical biological records can be quantified.

For this comparison, we can hold all model parameters and top-level attributes (such as miss-

ing values and length of data coverage) constant, with only the climate data source varying in

the validation analysis.

This study, contributes such an independent validation effort for seven widely used global

historical climate products CRU v4, UDEL-TS, GPCC, ERA5, CHELSA, MSWEP and PER-

SIANN, described in more detail below. Our objective is to carry out two types of compari-

sons: one long-term evaluation against 120 years of tree ring records for three weather station-

derived products with the same long time series coverage (CRU v4, UDEL-TS, GPCC). In a

second comparison, we use 20 years of recent global historical remote sensing records of vege-

tation greenness for validation. For more recent time periods, remote sensing based products

(PERSIANN), re-analysis products that combine observational data with general circulation

models (ERA5, CHELSA), and multi-source models that combine gauge, satellite, and re-anal-

ysis data (MSWEP) could yield better precipitation estimates, especially for regions with sparse

weather station coverage. Our objective is to provide region-specific guidance to researchers,

who investigate time series of biological response to historic climate variability and climate

change, as to which climate product is most suitable for their research.

Methods

Climate data products

We selected seven widely used global, monthly climate data products with a historical coverage

dating to the beginning of the 21st century for gridded products derived from weather station

records, and dating back to the 1980s for remote-sensing or reanalysis based climate products.

This includes the CRU TS 4.05 dataset from the Climatic Research Unit of the University of

East Anglia [8], the Terrestrial Precipitation product from the University of Delaware (UDEL)

[19], the Full Data Monthly Product v2018 from the Global Precipitation Climatology Centre

(GPCC) [20], the 5th generation reanalysis product (ERA5) of the European Centre for

Medium-Range Weather Forecasts [12], the climatologies at high resolution for the earth’s

land surface areas v2.1 (CHELSA) from the Swiss Federal Institute for Forest, Snow and Land-

scape Research [21], the Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Networks—Climate Data Record (PERSIANN-CDR) from the Center for

Hydrometeorology and Remote Sensing at the University of California [10], and the Multi-

Source Weighted-Ensemble Precipitation (MSWEP) product from Department of Civil and

Environmental Engineering at the Princeton University [22]. Attributes of these climate data

products are summarized in Table 1. A general map of weather stations with at least 30 years

of precipitation data is shown in Fig 1, based on Castellanos and Hamann [11], to represent

general regional climate data coverage. However, not all of the above gauge-based climate

products would have utilized all of these stations for interpolation, depending on different

exclusion criteria.
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Tree ring records

A global dataset of tree ring records was obtained from the International Tree Ring Data Bank

(ITRDB) [23,24]. Raw tree ring measurements from approximately 150,000 cores collected at

4422 sites were used to develop site- and species-specific chronologies. Chronologies were

detrended using the Friedman Super-Smoother method to remove both long- and medium-

frequency variability and maintain short-frequency (year-to-year) variability. This removes

age-related trends in tree ring data that may be confounded with long-term climate trends or

decadal climate oscillations. Our analysis therefore evaluates how well tree ring data tracks

inter-annual climate variability. The Friedman Super-Smoother method was implemented

with the package dplR [25–27] for the R programming environment [28]. We used the default

parameters of the function detrend(), which were equal case weights (wt parameter), automatic

Table 1. Global interpolated precipitation products evaluated in this study. Datasets were generated by the University of East Anglia Climatic Research Unit (CRU),

the University of Delaware Terrestrial Precipitation (UDEL), the Global Precipitation Climatology Centre (GPCC), the European Centre for Medium-Range Weather

Forecasts Reanalysis v5 (ERA5), the Swiss Federal Institute for Forest, Snow and Landscape Research (CHELSA), the Center for Hydrometeorology and Remote Sensing at

the University of California (PERSIANN), and the Department of Civil and Environmental Engineering at Princeton University (MSWEP).

Dataset Type Resolution Start End1

CRU4 Gauge 0.5˚ 1901 2022

UDEL Gauge 0.5˚ 1901 2017

GPCC Gauge 0.25˚ 1890 2022

ERA5 Reanalysis 0.25˚ 1950 2022

CHELSA Reanalysis 30" 1979 2022

PERSIANN Satellite 0.25˚ 1983 2022

MSWEP Multi-source 0.01˚ 1979 2022

1) at the time of data access, 2022 implies ongoing updates.

https://doi.org/10.1371/journal.pone.0299111.t001

Fig 1. Spatial coverage of weather stations with precipitation records. Remotely sensed precipitation estimates are not available above 60˚ latitude,

indicated by the dashed line. The figure uses public domain spatial data from Natural Earth (http://www.naturalearthdata.com/) and public domain location

data from the International Tree Ring Databank (https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring).

https://doi.org/10.1371/journal.pone.0299111.g001
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span detection using cross-validation (span = “cv”) and default bass (bass = 0). After detrend-

ing, each series of cross-dated ring width measurements from the same site and of the same

species were averaged using a robust biweighted mean to reduce the effect of outliers in the

final chronology, implemented with the function chron(), of the package dplR [25–27] for the

R programming environment [28]. The function chron(), was also used to fit an autoregressive

model to remove temporal autocorrelation (pre-whitening), which maximized correlations

with precipitation data (determined empirically, post hoc). The spatial coverage of tree ring

records is shown in Fig 2, and the overlap of chronology records with climate data products is

shown in Fig 3 The validation was restricted to complete pairwise comparisons across all data

products. In other words, all data products were evaluated based on an identical number of

chronologies and years per chronology.

Remote sensing data

The most widely used vegetation indices to assess vegetation greenness and draw inferences

on vegetation health and productivity are the Normalized Difference Vegetation Index

(NDVI) and the Enhanced Vegetation Index (EVI) [29]. While both have been used widely,

EVI is less prone to noise from atmospheric and soil conditions and less easily saturated by

dense vegetation, and therefore more sensitive to interannual variation of forested areas, par-

ticularly in temperate and tropical regions [30,31]. Here we use an annual EVI data from the

NASA Earth Observing System Data and Information System (EOSDIS) website, where an

annual area under the curve has been integrated (collection MCD12Q2 v006, product

MOD13A1), which represents photosynthesis over the entire growth cycle from greenup to

dormancy [32]. This data is similar in principle to tree-ring records, where the ring width rep-

resents the integration of a growing season’s growth. Also similar to tree ring data the EVI area

under the curve records are only available for climate regions with a distinct growing seasons

(Fig 2, shown as dark gray data coverage). We aggregated the original 500 m resolution EVI

Fig 2. Spatial coverage of tree ring chronologies and remotely sensed vegetation greenness. Remotely sensed enhanced vegetation index (EVI) coverage is

restricted to pixels with a dominant growing season, allowing for an annual area under the curve estimate from EVI data as a proxy for vegetation productivity,

equivalent to tree ring widths. The figure uses public domain spatial data from Natural Earth (http://www.naturalearthdata.com/) and an original spatial layer

developed from open-access EVI2 data (https://lpdaac.usgs.gov/products/mcd12q2v006/).

https://doi.org/10.1371/journal.pone.0299111.g002
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area under the curve data to 5 km resolution and included only pixels that had time series with

at least 50% non-missing values for a 5 km aggregated grid cell. Our analysis focuses on for-

ested areas, by excluding croplands, grasslands and other non-forested areas using the vegeta-

tion continuous fields product (MOD44B) [33]. This aggregated 5 km resolution dataset is

available through a data repository (http://doi.org/ 10.6084/m9.figshare.24540928), and could

be used to test other climate products.

Statistical analyses

For each tree ring site and for each pixel of the EVI dataset we carry out an 8-months lagged

correlation analysis. We assumed the growing season to have ended at the end of August for

the northern hemisphere and at the end of February for the southern hemisphere, evaluating

cumulative annual EVI or tree ring width with 8 months of climate data with a simple linear

model, implemented with the lm() function of the R base package [28]. Although more sophis-

ticated multivariate response function analysis methods are available for research in dendrocli-

matology, this is not needed in this study. For comparisons of climate data products with all

factors held identical, a simple statistic from a correlative model is sufficient. We therefore

chose an un-adjusted variance explained (R2) from a multiple regression model, where the

EVI area under the curve or tree ring width was specified as response variable, and the 8

month of monthly climate data prior to the end of the growing season were the predictor vari-

ables. This generally captures the growing season and several month prior where precipita-

tion-growth correlations are expected to be reasonably strong.

To concisely report results for thousands of tree ring chronologies and millions of EVI grid

cells, we used regional aggregation of the resulting R2 values. EVI data was aggregated using

ecozone delineations from the Terrestrial Ecoregions of the World product [34]. To enable

regional choices of the best climate data product, an assessment of the best dataset for an ecor-

egion was made using the Condorcet voting algorithm. The Condorcet method is a ranked

pair-wise balloting system. In our case, the ranked ballots are the ranked R2 statistics for each

tree ring chronology or EVI pixel that belong to the same ecoregion. A ranked ballot not only

evaluates how often a product is ranked first in regional summaries. Last place rankings (and

intermediate rankings) carry negative (or neutral) weight in the evaluation as well. The ranked

ballot procedure was implemented with the Condorcet() function of the Vote package (Version

2.3–2) [35] for the R programming environment [28].

Lastly, for the long-term historical analysis, using the 120-year dendrochronology dataset,

we used the same multiple regression approach described above using 21-year moving win-

dows in single year increment steps, covering the period 1901 to 2000, and therefore reporting

moving average statistics from 1911 to 1990. This allows the evaluation of how data quality has

developed over time. All graphical representation of quantitative data were generated with the

ggplot2 package [36] for the R programming environment, and maps of data coverage and

results were generated with ArcGIS Pro v3.0.0 [37].

Results & discussion

Regional comparisons based on EVI data

Remote-sensing based validation statistics of precipitation products for recent climate data

since 2000 are very similar, when summarized by continent or subcontinent (Fig 4, bar charts).

It should be noted that the analysis is restricted to forested areas with seasonal growth patterns

and therefore excludes ecoregions with aseasonal tropical rainforests and areas with minimal

tree coverage. Regional Condorcet ranked-ballot winners by ecoregions provides spatially

more explicit results (Fig 4, map). All data products appear as the best choice in some regions
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of the world, notably, however, MSWEP is more frequently the winner dominating large area

of several ecosystems. For North America, MSWEP, CHELSA and UDEL dominate as the pre-

ferred data products by a small margin. Northern Asia is dominated by MSWEP and CRU4.

For sub-Saharan Africa and the Sierras of Mexico, MSWEP wins by relatively large margin

when compared to all others.

A fairly consistent result is that the remotely-sensed PERSIANN precipitation product

under-performs in most regions of the world (most frequently ranked last), although the prod-

uct does come out as ranked-ballot winner for mid- to high-latitude eastern continental

regions, i.e. the east coast of Canada, the US, Russia and China, as well as similarly positioned

mid-latitude eastern regions of South America and the Africa on the southern hemisphere. Cli-

matic patterns, typically with year-round intermediate amounts of rainfall in these regions

appear to favor accurate estimates of precipitation via remote sensing. We speculate that both

passive and active microwave sensors may be less likely to be saturated, and therefore allow for

better precision in regions with intermediate rainfall. While the remote-sensing based PER-

SIANN product was not superior to gauge-based products where weather station coverage is

sparse, a multi-source models that combines gauge, satellite, and re-analysis data (MSWEP)

could yield better precipitation estimates. While superiority of MSWEP compared to other

products was not very closely linked to poor weather station coverage (c.f., Figs 1 and 4),

impressive margins of improvement were observed for some regions with few ground-based

climate stations, such as Africa and parts of South America

Fig 3. Temporal data coverage of climate products, remotely sensed EVI data, and tree ring chronologies. Tree ring chronologies are ordered by end year

and truncated at 1900s to match climate data (total of 4422 sites). Shades of grey in lower panel represent the percentiles of the dataset. Only temporally

pairwise-complete data was used for climate product comparisons.

https://doi.org/10.1371/journal.pone.0299111.g003
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Validation against long-term tree ring data

While validation against EVI time series provides spatially explicit results, tree ring records

can evaluate quality of data products over long time periods. For this second comparison, only

gauge-based products (CRU, UDEL and GPCC) can be included, where data coverage is avail-

able since the beginning of the century.

Variance explained by moving averages of 21-year windows reveal that the UDEL is gener-

ally superior for early climate estimates based on data from 1901–1940, corresponding to R2

values of moving windows from 1910–1930 (Fig 5, global panel). Subsequently, R2 values are

fairly similar for moving window mid-points from 1930 to 1960, and then separate by a mod-

erate amount for the most recent decades, with GPCC performing best, followed by UDEL

and CRU4. It is important to note that the superior performance of UDEL in the early decades

only applies to specific regions, namely Northern Asia and the Himalayas region, where

whether station coverage is generally sparse, and we speculate that the researchers developing

the UDEL product may have had access to station records not available for interpolation in

CRU and GPCC products. However, UDEL data is also marginally better in early century cli-

mate estimates for North America, Europe, South America and Southeast Asia. Their method

of interpolation, an angular-distance weighting (ADW) method, appears superior to those

Fig 4. Best regional interpolated precipitation products for a recent 2000–2017 period against remotely sensed vegetation greenness. The

comparisons are based on the strongest correlation with Enhanced Vegetation Index (EVI) annual area under the curve values. The map by ecoregions

represents the best performing precipitation product, using the Condorcet winner method, where R2 values of individual EVI pixels are used

equivalently to ranked ballots. The figure uses public domain data from Natural Earth (http://www.naturalearthdata.com/) and original results

generated in this study.

https://doi.org/10.1371/journal.pone.0299111.g004
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used in other products for early century reconstructions, where weather station coverage is

generally sparse. AWD can make use of directional information from data nodes, and has

been found to handle sparse data coverage reasonably well [38–40].

Regional breakdowns suggest that all three gauge-based climate data products perform

fairly similarly besides regional differences in the early decades (Fig 5, regional panels). That

said, a small but notable difference among data products is CRU outperforming other data

products for recent climate since the 1970s for South America. For the Oceania region GPCC

appears to be the best choice for most of the evaluated time series.

As a side note, not directly related to this study’s objectives, we should also briefly interpret

trends and variability in validation statistics over time that are visible in all data products. A

general increase in the strength of the association between precipitation variables and chronol-

ogy time series indicates that biological response has become more dependent on variability in

precipitation over time. This is apparent for Northern Asia, the Himalayas region, and Central

America. An opposite trend can be observed for Europe, indicating a weakening of the depen-

dence of tree growth on variability in precipitation. Directional climate change towards drier

conditions and/or warmer temperatures would be a plausible explanation for positive trends,

and this has in fact been observed, especially for Central America (with a strong trend toward

less precipitation [41–43], and the Himalayas with a strong warming trend of high elevation

Fig 5. Best regional interpolated precipitation products in a long term (1901–2017) evaluation against tree ring records. Trends over time in validation

statistics for the three global interpolated precipitation products that extend back to the 1900. The lines represent variance explained in tree ring with by

precipitation using 20-year moving windows.

https://doi.org/10.1371/journal.pone.0299111.g005
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ecosystems where trees were sampled [44–46]. The weakening in of plant-climate interactions

in Europe can be explained by increased water-use efficiency from cumulative NOx pollution

due to industrialization over the century, where increases in water-use efficiency can over-

compensate for any negative climate change effects on tree growth (e.g., Guerrieri [47]).

Limitations of the analysis

As noted previously, our contribution is only a partial validation of climate data products,

because the accuracy of absolute climate values cannot be assessed with biological data sources.

Our evaluation is therefore only relevant for a specific target audience of researchers who ana-

lyze historical time series in biological or geophysical data. To establish a putatively causal link

between climate and biological response, with correlative or associative methods using time

series data, bias is not an important metric. Climate data can actually be extremely biased with-

out compromising such analyses. To give an example, consider the usage of coarse resolution

gridded temperature data used in mountainous terrain. Widely used datasets for this purpose

such as CRU or UDEL have 0.5˚ resolution, and absolute temperature values along elevation

gradients can vary extremely across an approximately 50×50 km grid cell in mountainous ter-

rain. Yet, in the field of dendroclimatology this poses no problem, because a warmer than aver-

age growing season in a particular year is warmer than average at all elevations. That said, our

evaluation should not inform data selection for types of analysis that require unbiased esti-

mates. To give an example, analysis types that build on climatic comparisons among different

locations for a fixed time period, such as ecological niche modeling or species distribution

modeling should not rely on climate data recommendations from this analysis.

Conclusions

For researchers who analyze historical time series in biological or geophysical data, our analy-

sis allows to infer the best regional choice of time-series precipitation products. That said we

should emphasize that for applications that require unbiased estimate of differences among

locations for a fixed time period, our recommendations are not applicable. The results for the

20-year time series of remotely sensed EVI allows for comprehensive regional comparisons.

All gauge and re-analysis based data products performed similarly, but they were outper-

formed by the multi-source MSWEP product that utilizes gauge, re-analysis, and remote sens-

ing data. Especially for regions with low weather station coverage, such as Africa and parts of

South America, the margin of improvement in how well MSWEP time series data tracks vege-

tation greenness was impressive. The analysis confirmed our working hypothesis that satellite-

based or multi-source products have the potential to provide better precipitation estimates in

regions of low weather station coverage. Unfortunately, satellite or re-analysis based products

are not available prior to the 1980s. For applications that require longer time series analysis,

gauge based products are the only option. Of the three gauge-based data products included in

the analysis against 120-year tree ring records (CRU, GPCC and UDEL), the results showed

that UDEL had superior performance prior to the 1940s, with especially large margins for

northern Asia and the Himalayas region. From the 1940s onward, all three gauge-based cli-

mate data products perform fairly similarly. Locally, CRU outperformed other data products

after the 1960s for South America. For the Oceania region GPCC was the best choice for analy-

sis of long time series.
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