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ABSTRACT

Material hauling and loading account for more than 50% of open-pit mining costs. This study aims
to understand the efficiency of truck and shovel loading practices, evaluate them and develop a
framework that can be implemented in short-term plans. The proposed methodology is evaluated by
developing a simulation model using Haulsim software. Multiple scenarios (number of trucks,
number of shovel passes and road rolling resistance) are simulated by formulating the problem in
the software analysis terms: full truck (FT) and full bucket (FB). Based on the simulation results,
the operation manager insights into the material handling system opportunities, deciding to switch
between a FT (higher passes) and a FB (lower passes) based on the operation plan, match factor
and production targets. Further outcomes are operation KPIs such as queuing time, number of
trucks, trucks queue at the shovel, cycle time, production cost per ton, and initial total production
for both FT and FB. Short-term production analysis and deep comparison between two loading
strategies are checked, and elements that induce this dynamic change are studied and analyzed
using suitable machine learning. Finally, it highlights all associated mining operation parameters
that determine the potential sweet spot of the loading strategy.

1. Introduction
Mining and hauling are significant components of a mining project. Whether a mining project is
based on surface or underground, loading and hauling still contribute to a significant proportion of
the running operation costs ranging from 50-60% Upadhyay et al. (2021). Reducing these costs is a
major factor in sustaining operation time and operating costs, whether through equipment
technological enhancement, operator skill efficiency, complex dispatch systems, or even modern
clouding systems and various loading strategies; operation enhancement is essential and valuable
for any mining project in the upcoming time.

When considering loading strategies and practices in truck shovel loading and hauling material
operations, investigating opportunities for enhancing and reducing these costs and productivity
losses in the running operation, especially when operations run in unpredictable, uncertain
conditions that cannot be determined or planned. This will pose tremendous pressure and risk on the
operation and the available optional alternatives for fleet configuration and loading strategies. For
example, when truck or shovel breakdown or their availability is reduced, and they are no longer
serving the trucks due to various operating reasons, a decision should be interfered to enhance the
operation (whether integrated into the dispatching system or not).
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Uncertainty is not related to the equipment and fleet level alone. It expands to almost everything in
the mining life; because high uncertainties with different magnitudes characterize mining. For
example, commodity prices fluctuate from time to time due to various reasons that are related to
supply and demand or due to unexpected events like COVID-19 and it is consequences, other
factors like human factors (operators to the high management) and skills that will not be as planned
to perform its role. Other significant uncertainties are related to the material in the mine (geological
level), whether ore or waste and how it is extracted. This material has in place characteristics that
differ when disturbed and dug up, inheriting the original characteristics with more voids (swelling)
and less density per volume. In order to liberate this material from undisturbed to disturbed
situations, blasting is a usual operation associated with extracting the material; uncertainties and
efficiency of the conducted blasting are common things that change the final material fragment size,
type, ore-waste mix, dilution, density, roundness and other factors. Consequently, when the shovel
bucket encounters the material in the bench face, these uncertain parameters will affect the final
material filled in the bucket; hence the final payload that is passed to the truck in a certain number
of passes is also affected, especially the last pass.

Payload is another essential concept; the final payload affects and contributes to payload policy
which will aid and determine whether the final truck load is good, under, over or even rejected in
some cases, some systems use the conventional loading without any sensors monitoring the payload
whether in shovel or truck other systems are evolving but with a marginal payload accuracy ~5%,
newly systems are now emerging to monitor the dig, payload, material and send it to clouding
system for further monitoring and analysis. It is also important to mention that the final payload
affects the cycle time and is affected by operator skill. Moreover, the higher payload values will
increase the maintenance costs of trucks and fuel consumption due to the high engine loading and
mechanical fatigue frequency.

Truck shovel loading strategies have been a dilemma in loading payload and the number of passes;
whether underloading or overloading the truck, each decision has its pros and cons and directly
affects the efficiency. For instance, saturating a shovel to reach 100% efficiency or over will result
in queuing conditions, and undersaturation of the shovel below 100% will result in higher costs.

Equipment matching is problematic as well; whether accounting for performance or production rate
or operating costs or environmental impacts or operation constraints (grade, weather, accessibility,
facilities matching), there will be a difference in the final results of the passes (decimal passes) and
whether these passes will be rounded up or down, depending on the number of trucks and shovels,
Figure 1 depicts this struggle and gives an example on the hydraulic shovel with various trucks
configurations.
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Figure 1. Equipment and pass matching in a hydraulic shovel (Kenn Smart, 2011).

2. Literature Review
The literature summary aims to gain a more comprehensive understanding of earlier work on fleet
simulation. Then delving into high-level focused literature relevant to the full truck (FT) and full
bucket (FB), i.e., truck-shovel loading strategies and the associated KPIs in open-pit mining. The
following sections discuss other interesting literature comparable to FT and FB loading strategies:
starting with theoretical simulation history and methods. Then hands on the relevant and
non-traditional methods, the discussion moves on to the software that uses Discrete Event
Simulation (DES) and, later, a discussion on the literature related to fleet productivity and cost.
Lastly, it highlights some literature on match factor and other related strategies. Finally, a
conclusion of the related literature to the FT and FB.

2.1. Simulation Types and Techniques
This section discusses the concept of simulation that different researchers defined in addition to
simulation purposes and the followed methodologies related to the mining fleet operation
simulation. Banks and Nelson (2014) classified simulation models into static and dynamic models.
A static simulation model represents a system at a particular point in time, while a dynamic
simulation model represents a system that changes over time. It is further classified to:

● Deterministic versus stochastic models: a deterministic simulation model contains no random
variables, e.g., a linear programming model, while a stochastic simulation model has one or
more random variables as inputs and outputs, e.g., a queuing model.

● Discrete versus continuous models: a DES model represents a system in which the state
variables change only at a discrete set of points in time. For example, a truck-shovel system is
a typical discrete system. On the other hand, a continuous simulation model represents a
system in which the state variables change continuously over time, such as a system associated
with flowing fluids.
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Bauer and Calder (1973) defined simulation as a concept. They defined simulation as a modelling
technique that can predict the change in the performance of a system. They divided simulation into
probabilistic Monte Carlo Simulation and standard using mathematical equations. Earlier methods
of simulation techniques were by Sturgul and Harrison (1987). They discussed the use of simulation
models using GPSS programming language to simulate various situations, including coal mine
dispatching and mine fleet for uranium mine expansion. Ataeepour and Baafi (1999) implemented
Arena software in simulation models, improving mine productivity. The status of mine simulations
in Canada, including software and case studies, was addressed in an earlier study of the simulation
literature by Vagenas (1999).

Then moving to robust and specialized approaches using MATLAB and other platforms,
Askari-Nasab et al. (2007) implemented DES to capture random field processes in open-pit and
material simulations using MATLAB. Shawki et al. (2015) implemented Arena software to improve
excavator performance indices. Tabesh et al. (2016) implemented a simulation approach by
incorporating truck shovel operations, road networks, stockpiles and other operations. They
integrated the DES model into MATLAB, Excel and VBA to understand operation scenarios and
uncertainties.

Price (2017) defined DES as “a modelling technique that is widely used to model complex
systems”. He also implied that comprehensive data from fleet management systems is rarely used to
model fleets. The advantages include stochastic delays due to breakdowns and meal breaks, load
and travel time, where some variables are random and dynamic, involving models that change with
time. DES has been used extensively in different industries such as manufacturing, service
providers, warehouse distribution, cashier checkout lanes market, department stores, airports, and
mining. Price (2017) summarized the purposes of DES in mining as follows:

● Increase equipment utilization.
● Reduce waiting time and queuing.
● Study alternative investment ideas.
● Evaluate cost reduction ideas.
● Train operators in overall system operation.
● Support day-to-day decision-making.
● Minimize the effects of breakdowns.
● Understand the impact of mixed fleet interactions.

2.2. Fleet Different Simulation Approaches
Earthmoving operation literature is considered due to the lack of related literature in mining
engineering, especially in the early stages and the similarities between construction operation
trucks, off-road trucks and mining trucks. Earthmoving productivity calculation was conducted by
Smith (1999), who estimated the productivity by regression analyses; his findings showed a
relationship between operating conditions and productivity. However, his analysis overestimated the
operation’s productivity when resources were not well known.

Several researchers have developed a system of earthmoving selection using an expert system
technique (Alkass and Harris, 1988; Amirkhanian and Baker, 1992; and Kirmanli and Ercelebi,
2009). Chanda and Gardiner (2010) compared three methods of cycle time analysis productivity.
These methods are simulation, artificial neural networks, and multiple regression. They
benchmarked the results with a monitoring system in a mine and found that simulation
underestimated and overestimated the results, and the other proposed methods showed better
results. However, their data was case specific.

Smith et al. (1995) customized higher-level DES models using a programming language. They
developed a DES model that was translated into a computer program written in C programming
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language. Morley et al. (2013) utilized DES by developing quantitative formulas; they reached that
a decrease in production does not directly correlate with an increase in cost. Cheng et al. (2010)
implemented optimization and simulation using Perei net for equipment allocation, considering cost
and other parameters in a dynamic constraint.

Alshibani and Moselhi (2012) integrated simulation with optimization using real-time GPS. Some
researchers developed a framework using genetic algorithms for simulation-optimization of
earthmoving operations (Marzouk et al., 2004; Shawki et al., 2009; and Hsiao et al., 2011). Neural
network systems were developed by Shi (1999) and Chao (2001) for construction practitioners to
forecast truck selection as well as earthmoving operations and performance.

In the field of simulation and optimization in mining engineering, Moradi Afrapoli et al. (2019)
developed a simulation-optimization framework that optimizes haul fleet size by implying
heterogeneous and homogeneous fleets of various sizes and recommending that equipment failures
and maintenance should be evaluated for the optimal fleet size. Moradi Afrapoli and Askari-Nasab
(2019) explained in a review that connecting the strategic part of the mine plan to the operational
part is difficult. However, the operation should achieve both the long-term and short-term goals.
They also emphasized technical and geological uncertainty that are crucial components in fleet
systems management, and the shovel relocation to new mining cut associated losses should be
understood well. A multi-optimization model was created by Mohtasham et al. (2021) that
determines the optimal production plan for the shovels and allocates the mine fleet in an optimal
production target, head grade and fuel consumption. Upadhyay et al. (2021) developed a
simulation-based algorithm that estimates the productivity under technical uncertainties, giving a
solution with higher accuracy and lower dependency on haulage distance.

2.3. Simulation Software
There are several simulation software tools that one can use to model a material loading and hauling
in a mining operation. Some software programs involve learning the related programming language,
while others have an interactive interface with pulldowns/command line. The simulation software,
programs and models for truck shovel analysis can be summarized as follows:

● Iterative models that fit discrete empirical values to cycle variables, e.g.: machine repair
model.

● Regressive models modify waiting time by using correction factors such as FPC ® by
Caterpillar.

● Stochastic Monte Carlo models by fitting probability distributions to cycle variables, e.g.:
Talpac ® and Haulsim ® by Runge Software.

● Stochastic graphic simulation following probability distributions within Monte Carlo
simulation e.g.: Arena ® by Rockwell Software.

● General purpose simulation programming languages system (GPSS/H ®) by Wolverine
Software and SIMAN.

● Simulation based on programming languages, C++ (C environments), Python and Java.

2.4. Cost, Production and Loading Times
In payload analysis, the literature reveals many different claims, findings and disagreements in
balancing the payload, production, cycle time and passes loaded. Smith et al. (1995) concluded that
the additionally loaded bucket is an advantage provided the truck is not overloaded. Furthermore,
they figured out that spotting and loading time similarly affect production; hence reducing operation
cycle times is important for achieving maximum production. They also discussed the interactions of
four factors in earthmoving operations: production, match factor, passes per load and load pass
time. They concluded that adding trucks would not increase production. According to Schexnayder
et al. (1999) payload weight affects incremental production; they emphasized matching the number
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of bucket loads to fill a truck as an integer number. Hardy (2007) claimed that overloading trucks
would increase productivity associated with increasing unit cost. Marinelli and Lambropoulos
(2012) examined cost comparisons between loading and hauling. They came to a conclusion that,
depending on the hauling distance and the volume of the last pass, a loading procedure could result
in a significant cost decrease. Morley et al. (2013) concluded that the four to six passes rule is not
applicable when dealing with real earthmoving applications due to equipment combinations such as
smaller excavators and larger trucks. They also concluded that considering trends, trucks and
excavators must be analyzed separately. They also implemented that using a loader to satisfy
production requirements and then selecting trucks after will result in a higher per unit cost;
consequently, this may result in a high production cost to keep the loader always utilized.
Soofastaei et al. (2016) developed a DES model to investigate the payload variability on trucks in
order to improve productivity and energy.

Carmichael and Mustaffa (2018) examined the loading policies and environmental impacts,
including loading in zero waiting time and double loading. They concluded that the former had the
least impact on the environment and optimal cost advantage while the latter had the highest
environmental impacts and non-favourable costs.

2.5. Match Factor
The match factor (MF) is an important indicator of a mining operation’s efficiency. Burt and
Caccetta (2018) defined the match factor as a measure of the fleet productivity. It is a ratio that
matches truck arrival rate to loader service rate. Their definition included over-trucking (MF>1) in
which the loader is 100% efficient, and trucks are queued. In contrast, when loaders are waiting for
trucks the MF is less than one. There is no queueing at the loader when the match factor equals 1;
this is the optimal situation but not achievable realistically due to bunching and maintenance.
Krause and Musingwini (2007) named terms as over-equipped when trucks are more than required
and under-equipped when there are few trucks. The consequences of an over-equipped situation will
increase the capital cost substantially while the whole under-equipped situation will not achieve the
planned short-/long-term production. Dabbagh and Bagherpour (2019) examined the MF in their
analysis using the ant colony algorithm; however, they state that it is not correct enough. They
suggest using a detailed match factor which increased the production by ten percent.

2.6. Other Approaches to Evaluate Payload
Operators’ score was suggested by Yaghini (2021), who presented an approach to characterize and
evaluate the payload using the operator ranking systems. The score is calculated based on the truck,
shovel and mine productivity indices. He concluded that the operator with the highest score would
typically load trucks to a higher capacity with less cycle time and load passes. Furthermore, he
suggested a term called dynamic target loading (DTL), which modifies the conventional 10:10:20
rule by reducing term passes loading practices and giving the operator a flexible load range;
consequently, the loading cycle and queue are reduced. This analogy, reducing trim passes, is
comparable in concept to the FB analysis adopted in this research. Production is also covered as a
project KPI that provides feedback about bucket payloads and cycle time enhancement
opportunities.

2.7. Related Research
Recently, Tapia et al. (2021) investigated loading methodologies in an open-pit mine. They used FT
and FB scenarios by creating simulation models using Talpac software to understand cost and
production analysis and how they relate to cycle and queuing time. They further adapted Activity
Based Costing (ABC) models, “which are built on the concept that resources usage is not a function
of the amount of the final product, but rather, resources are consumed by the elementary tasks and
processes required to produce a unit of the final product” as defined by Botín and Vergara (2015).
In order to calculate production per cost, Tapia et al. (2021) concluded that a decision must be made
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when a situation requires a change. They argue that mining projects will favour the FT strategy over
the FB till a specific transition point at which the operating cost of the FB is favoured. Mustaffa
(2021) investigated the impact of alternative loading practices on production and emission using
Monte Carlo Simulation to compare these practices. The results showed that double-sided loading
has the lowest effect on the environment. However, it is not always doable because it is limited to
specific mining conditions, and cannot be generalized. In addition, filling one bucket more than the
full load can result in greater overall productivity, lower emissions, and reduced truck cycle time,
which may lead to a production increase. Other similar loading terminologies in earthmoving are
fractional loading as in Mustaffa (2021) known as fractional loading practice, which indicates that
each truck gets loaded to a minimum of passes. However, it could be filled to higher passes if
additional time is allowed, the arrival of the next truck and varies between trucks. A similar term
called multiplier loading practice assumes minimum passes are used, but there could be an extra
pass depending on the loader's available time. This will yield higher payloads and production rates
associated with fuel consumption increases due to longer cycle time and loading time.

2.8. Summary of Literature Review
Based on findings from the previous literature, a significant part of the research is covered by
earthmoving trucks in simulation. However, there are many similarities between earthmoving trucks
and mining trucks; a real mining equipment evaluation and simulation will add more realistic value
to the FT and FB approach. Other literature was conducted using different simulation approaches,
which could be time-consuming and not flexible.

The previous work also reveals some discrepancies when dealing with the costs, utilization and
production, which could be due to the adapted simulation method or operation properties. Which is
still not fully understood, and there is no comprehensive framework available to understand the
operation more thoroughly in open-pit mining loading practices. It is vital to note that no research
used a machine learning system to understand and anticipate the data from an FT and FB analysis
utilizing Haulsim software. Furthermore, no literature offered any guidance or suggestions for
modifying loading techniques in developing autonomous trucks and shovels and future level 5
mining.

3. Methodology
The theoretical framework of the proposed FT and FB simulation approach in both a holistic way in
mining operation and a detailed approach will be discussed with a profound explanation, as well as
further analysis of the simulation results, starting from the data which was imported as a schedule
data from an external software that is used in Haulsim software. Then the equipment configured in
Haulsim and the final DES results are interpreted and analyzed, and more analysis of the operation
parameters and the results from simulated data is analyzed using Python programming language,
where exploratory data analysis is conducted. Lastly, a machine learning classification model is
created to predict the loading strategies based on the provided data that more understands the
operation parameters and evaluates these parameters that trigger switching between loading
strategies.

Locating the FT and FB in the broad frameworks, in the beginning, allows understanding where the
research topic is focused as Figure 2 illustrates the general view of FT and FB loading in mining
operation. When a shovel with force applied to the working bench excavates to scoop (tuck, engage,
dig, release, swing and pass); the required material that has recently been blasted with
characteristics reflecting the nature of that material; loose density, fragment size and excavatability,
will affect the final bucket fill factor (BFF). This stage is performed by an operator with a scalable
average efficiency and equipment; shovel with a known average utilization and availability. The
following sections will discuss the material characteristics.
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a. Shovel-Material Interaction
Because loading and hauling are the following processes after blasting, assessing post blasting of
material in the mining operation is necessary when the distribution of fragmented material controls
truck and shovel production rates, resulting from blasting. As the blasting efficiency increases, the
final production increases. Blasting efficiency is increased by optimizing blasting design when the
objective fragmentation size is determined. Fragmentation is affected by uncontrollable parameters,
including the physical and geomechanical properties of the material. Coarser material led to higher
energy consumption, increase in wear rates and a decrease in the loading and hauling productivity,
final crusher and mills throughputs. In addition, fragmentation size affects fill factor and payloads.
Dotto and Pourrahimian (2018) mentioned that poor fragmented material results in boulder sizes
that are too big to handle and affects productivity negatively. Therefore, optimal fragmentation is
essential for truck and shovel productivity.
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Figure 2. FT and FB flowchart in a mining operation.

Good fragmentation will result in a good heap in the bucket, while over fragmentation will make
material flow more due to fines and no heaping will be formed in the bucket. Diggability which is a
term used to describe how easily the material can be dug by the shovel, measured by specific dig
energy. Loadsman et al. (2013) mentioned that as digging material gets harder, the payload
decreases and the energy to fill increases.
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Assessing the operational time in mining hauling and loading operation is important for measuring
the operation’s KPI. Figure 3 illustrates time usage model presented by Global Mining Guidelines
Group (GMG) (2020).

Figure 3. Time usage model (GMG - Time Usage Model, 2020).

b. Operator Skill and Efficiency
Khorzoughi and Hall (2016) studied the effect of operator skills and loading efficiency. They
compared operators’ KPIs in the loading and hauling operation, including passed payloads,
productive cycle time, equivalent digging energy and loading rate. Yaghini (2021) emphasized that
the operator role in truck shovel loading is important and greatly influences the operation’s
productivity and efficacy. Through operator skills and loading habits, he quantified and proposed a
scoring system for evaluating the operator skills in the operation, taking into consideration the
operator’s payload, shovel’s cycle time and other KPIs to finalize the operator rank from best to
worst. All the previous performance indicators will affect the final payload in the shovel bucket,
which has a specific capacity and range of filling material in the shovel bucket that will vary from
struck to heaped as a filling percentage of 90 to 110% of the bucket capacity assuming average
loading conditions.

c. Shovel Loading Truck (Digging and Filling)
After the bucket is filled by an operator from the shovel, the payload is passed to the truck with a
set number of passes, depending on the passes required to fill the truck and the pass and equipment
matching configuration. It is common in mining operations that hauling trucks are at least 100%
loaded or exceeding 100% of their final load capacities depending on whether companies are
strictly applying the loading policy or not and their actual compliance with these policies and
skilled operators. In this step, the proposed loading strategies are involved and a proposed
operational decision should be taken to proceed with the scenario of shovel’s loading strategy as a
FT or FB.

Before proceeding with these terms, there should be a definition for them, which could be defined
as the following: shovel that loads in a fully bucket; the truck requires less than a FB load to reach
its payload. Therefore truck will travel underloaded, and the additional pass time is not wasted
(Haulsim, 2022). Another definition by Tapia et al. (2021) defines it as saving the additional pass of
the loading equipment. While FT loading assumes the loader always tries to fill the truck, even if
the last pass only requires a small portion of a bucket load. Therefore this additional pass will
consume more time in shovel loading and queuing conditions will occur (Haulsim, 2022).
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d. Assigned Trucks
The assigned trucks are based on MF as a reference; the usual value for MF in mining operation is
1, which means 100% efficiency. However, MF is uncertain and varies through short-term operation
due to various uncertainties. Therefore, in this paper multiple trucks (1 to 30) are analyzed to
determine MF values with shovel configurations. Then FB and FT loading strategies are evaluated
based on the selected fleet.

e. Operation Parameters
A set of operating configurations is usually prepared before running the simulation. This includes
the hauled material, mining and hauling equipment data (capital costs, operating costs, operating
data), shifts configuration as scheduled and unscheduled operating and non-operating time and
rolling resistance.

f. Operation Uncertainty
Generally, the mining operation is classified as considerably uncertain and unpredictable with time.
In the mining equipment arena, the uncertainty and unpredictability of equipment are common,
especially when equipment is getting older, this includes short and long delays, stoppages and
breakdowns due to various reasons, whether related to the smallest scale mining operation or to the
largest scale market situation that effect mining decision or any other reason. This research
approach demonstrates shovel breakdown as an example of fleet uncertainty. Other reasons can be
crusher reduced efficiency, stoppage, blasting efficiency, or variability in the material in mine. It is
also known that any accident or unplanned incident will affect the operation, and a feasible option is
available when adapting a modified loading strategy. Further focusing on the scheduled and
unscheduled delays.

These various uncertainties in mining operation will affect the continuity of production rate and
operation cost. In this research assumption, one of the shovels is stopped, or its availability is
decreased for a particular time due to various reasons, as discussed previously.

g. Match Factor
In the research, the MF is calculated as a normal operation running assumption, with a set number
of trucks assigned to the shovel to understand the effect of changing the number of trucks, which
reflects on the final MF. However, when the shovel breaks down, MF surges to 1.5, accompanied by
an increase in the number of trucks reassigned to the remaining working shovel Figure 4.

After the equipment matching for operation is done, a short-term mining operation schedule for a
specific period for the operation is imported into the software. This schedule includes the sources
(shovels) and destination in addition to material quantities and time steps. Next, running the
operation at a MF of one, assuming two shovels are running the operation. There are assigned
trucks to each shovel that are homogeneous and dependent (same trucks type and assigned to the
same shovel) but with a similar destination target, the crusher.
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Figure 4. Reassigning trucks assumption in research methodology.

The varying number of trucks to mimic the operation uncertainty and shovel stoppage changes the
MF when operation uncertainty is encountered. Here in our assumption, the second shovel is no
longer operating for a specific period of time due to major mechanical failure. As discussed
previously, other operation uncertainty could affect the fleet haulage. Based on the unutilized
trucks, these trucks are redirected to the first shovel (the working shovel), and the match factor will
increase to 1.50. In this stage, a decision should be made to switch between the loading strategy
from FT to the FB; the obtained operation KPIs control this switch, mining roads cycle times and
the reduced costs associated with this switch.

Figure 5 illustrates the methodology and the approach followed in comparing FT and FB.
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Figure 5. Detailed framework in FT and FB.
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4. Case Study
Scheduling data for a gold mine was exported from a scheduling software OPMS and imported to
the Haulsim.

a. Material characteristics
The selected material in simulation is high-grade sulphide (HGSx). Table 1 summarizes the
material’s characteristics.

Table 1. Hauled material characteristics.

Material Characteristics Unit

In-situ Bank Density 2.4 t/m3

Swell Factor 1.25 -

Loose Density 1.92 t/m3

BFF-Heaped 97.5 %

BFF-Struck 97.5 %

b. Equipment Data
Operating and costing data for the mining fleet are included in the simulation for both shovels and
trucks. The shovels used in the simulation are P&H 2800 XPC and the trucks are CAT 793 F. Table
2 presents shovel configuration data. Table 3 presents the configuration of the truck CAT 793 F.

Table 2. P&H 2800 XPC shovel used data in simulation.

Shovel P&H 2800 XPC

Operating
Data

Capacity 32.78 m3

Bucket Cycle Time 40 sec

Filled Capacity 31.96 lcm

Filled Payload 61.49 t

Maximum Production Rate 5533.95 t/h

Costing
Data

Purchase price 19,714,300 $

Life 20 years

Owning Cost 101.27 $/hour

Operating Cost 129.95 $/hour

Figure 6 illustrates the distributions used for the shovel’s loading time and bucket payload. For
shovel loading time, the mean value is 40 seconds, and the distribution is skewed to the right. At
the same time, the payload factor is one and skewed to the left. Figure 7 illustrates the distributions
used for trucks. For truck dump time, the mean value is 30 seconds. Moreover, for the truck’s load
and carry time, the estimated mean of the value of which there is a 50% probability of occurrence,
the mean value here is 40 seconds.
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Table 3. CAT 793 truck data used in the simulation.

Truck Cat 793 F

Operating
Data

Capacity 175 m3

Actual Capacity 117.89 lcm

Payload 226.8 t

Dump Time 60 sec

Spot Time @ Loading 24 sec

Spot Time @ Dump 18 sec

Costing
Data

Purchase price 3,568,900 $

Life 15 years

Owning Cost 24.44 $/hour

Operating Cost 435.28 $/hour

Figure 6. Distribution data for P&H 2800 XPC.

Figure 7. Distribution data for CAT 793 F.
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c. Shifts and Working Times
Table 4 represents the time model used in the simulation. The non-operating shift delays are 30 min
and the operating delays are 60 min in each shift; therefore, the actual working time in a shift will
be 6.5 hours. Shovel and truck availability is assumed to be 85%.

Table 4. Shifts data and effective working times.

Working Time

Mon-Fri 5 days/week

Shift Duration 8 hours
Non-Operating Shift
Delays 0.5 hour

Shift Operating Time 7.5 hours

Operating Shift Delays 1 hour

Shift Working Time 6.5 hours

Shovel Availability 85 %

Truck Availability 85 %

d. Roads and Cycle Time Analysis
Two mining haul roads were implemented for simulation (denoted as R1 and R2) as in Figure 8.
Each road begins in a bench face and ends in the crusher. Both working benches have high-grade
sulphide (HGSx). The length of haul road 1 (R1) is 3.46 km and haul road 2 (R2) is 2.65 km. The
maximum grades in R1 is 10.6 %, and in R2 8.76 %. Both road has a rolling resistance of 2%. Each
haul road segment's final cycle time is different due to varying distances and the accompanied
cornering speeds.

Figure 8. Haul roads layout.
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The cycle time analysis was done for one truck only and one shovel to understand and analyze the
differences between the haul roads. Table 5 presents the results for both the FT and FB scenarios in
haul road 1 and haul road 2. Results show that cycle time with a FB loading strategy takes less
cycle time (including truck travel times) than FT. This is due to the fact that the trucks have a less
payload in FB scenario and consequently they travel uphill faster. In haul road 1, the cycle time in
FT loading strategy is 23.42 min while in FB loading strategy is 21.68 min. There is a 7.4%
difference between two loading strategies. FT travelling time also has a 8.7% difference because of
the same reason explained for the cycle time. The reverse time has no differences between the
loading strategies because the trucks are empty and travel on the same road in both scenarios.
Analyzing haul road 2 cycle time shows FT and FB a 6.83% difference between the loading
strategies. Travelling time has the same case as road 1 with a difference of 1.25%. The lesser
difference can be interpreted as haul road 2 has less distance, almost 40% than haul road 1. Another
reason for the difference is the rise and run and grades that are higher in road 1 over frequent
segments; this affects the cycle time and travel time.

Table 5. Cycle time analysis for haul roads within loading strategies.

Haul Road 1 Haul Road 2

Shovel Truck Shovel Truck Unit

P&H 2800 XPC Cat 793 F P&H 2800 XPC Cat 793 F HGSx

FT
Loading

Distance 3463.57 Distance 2064.89 m

Travel Time 0:12:16 Travel Time 0:04:17 hh:mm:ss

Reverse Travel Time 0:07:17 Reverse Travel Time 0:03:44 hh:mm:ss

Total Distance 6927.13 Total Distance 4129.79 m

Total Travel Time 0:19:33 Total Travel Time 0:08:01 hh:mm:ss

Total Cycle Time 0:23:25 Total Cycle Time 0:11:53 hh:mm:ss

Payload 226.80 Payload 226.80 tonne

FB
Loading

Distance 3463.57 Distance 2064.89 m

Travel Time 0:11:12 Travel Time 0:04:11 hh:mm:ss

Reverse Travel Time 0:07:17 Reverse Travel Time 0:03:44 hh:mm:ss

Total Distance 6927.13 Total Distance 4129.79 m

Total Travel Time 0:18:29 Total Travel Time 0:07:55 hh:mm:ss

Total Cycle Time 0:21:41 Total Cycle Time 0:11:07 hh:mm:ss

Payload 184.17 Payload 184.17 tonne

One of the important results in cycle time analysis is the average payload for both FT and FB. Due
to the higher loaded pass tendency in the FT, the calculated average payload in cycle time analysis
is 226.8 tonnes. In contrast, in FB, the average payload was 184.1 tonnes. The difference in final
payload between loading strategies is 18%. Considering the payloads, the productivity per truck in
haul road 1 is higher in the FT at a rate of 581.15 t/h while in FB, 509.55 t/h with a difference of
12.32%. Other parameters, such as Tonne Kilometres per Hour (TKPH) (which is an essential
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expression of the working capacity of a tire representing the load capacity in relation to heat
generation) are lower in the FT with a value of 947.35, while in the FB, the value is 978.57.
Loading truck full affects the TKPH negatively and reduces the tires life and equipment reliability
with time, with the general understanding that lower TKPH means lower heat resistance which is
not recommended for truck hauling and higher TKPH means higher heat resistance which means
better truck hauling conditions. However, the lower TKPH has a higher cut and wear resistance.
Additionally, the total fuel consumed is higher by 8% in FT (36.23 litre/trip) than in FB (33.47
litre/trip). The reason is the higher payload, which requires more engine power to move the truck
hence more fuel consumption.

e. Match Factor Analysis
To understand the operation correctly, match factor criteria were selected as 1 and 1.5; the latter was
selected because of increasing trucks and the availability of only one shovel in operation.

The normal hauling mining operation usually runs at MF equals 1. In the case study, this resulted in
10 trucks when the loading strategy was FT. With changing the loading strategy to FB, the proper
number of trucks (at MF=1) was 12. This difference in the number of trucks is due to lower passes
affecting the MF formula.

f. Production-Cost-Fleet Curves
The simulation model was run for a different number of trucks to capture the effect of MF change
from 1 to 1.5 in FB and FT loading strategies. Figure 9 and Figure 10 show the cost-production
fleet curves for the FT and FB, respectively.

Figure 9. Cost-Production fleet curves for FT loading strategy.
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Figure 10. Cost-Production fleet curves for FB loading strategy.

In the FT loading strategy (Figure 9), with increasing the number of trucks in the fleet, the
production increases until the number of the truck is equal to 13; after this point, the production
slightly increases until the number of trucks in the fleet reaches to 24. In the FB loading strategy
(Figure 10) the fleet production has a similar trend to the FT strategy, but the production still
increases till the fleet size is equal to 19. Moving to the cost curve, in Figure 9 the cost decreases
with the increased number of trucks until number 13; then it increases steadily until the last truck.
The cost of the FB loading strategy decreases until the number of trucks equals 18, increasing
afterwards. The increase in cost occurs earlier in the FT loading strategy. Finally, a comparison of
the number of trucks in queue shows that at the beginning, there is a slight increase in both loading
strategies. In the FT strategy, the number of trucks in the queue is insignificant until the fleet size is
equal to 13; after this point, the number of trucks in the queue increases steadily until the fleet size
is equal to 24. The FB strategy has the same behaviour, but the prominent increase in the number of
trucks in the queue is stated after fleet size 18.

In Figure 9 and Figure 10, areas with MF of 1 and 1.5 has been highlighted. For MF of 1, the
sufficient number of trucks is between 10 and 12. For this area, in the FT strategy, the total cost for
hauling is between 1.60 and 1.62 $/t, while in the FB strategy, it is between 1.62 and 1.63 $/t, which
is a small significant difference. Fleet production is the same case, 6.8 to 8.1 Mt/yr in FT and 6.7 to
8.0 Mt/yr in FB. Also, there is a negligible difference in queuing conditions between FT and FB
strategies. Therefore, considering the cost, production, and number of trucks in the queue, the FT
loading strategy is suitable when the MF is 1.

In contrast, when the MF increases to 1.5, the FB strategy works much better. This increase in the
MF happens because of the uncertainty and unplanned equipment breakdowns or any operation
stoppage or unplanned queueing that significantly affects the operation. This paper assumed that
one of the shovels broke down for a time, and the trucks were sent to the other available shovel.
When the MF is in 1.5, the shovel controls the operation. In this situation, the cost of FB strategy is
much lesser than FT, ranging from 1.85 to 2.0 $/t, while in FT strategy, it varies between 2.45 and
2.65 $/t with a difference equal % 25. In addition, the production of FB strategy (12.25 Mt/yr) is
much higher than the FT strategy. Another advantage for the FB when the MF is 1.5 is the number
of trucks waiting for the shovel. The number of trucks in the queue for the FT strategy is double
that for the FB strategy.

g. Machine Learning-Controlling Parameters in Loading Strategies
i. Data Preparation

In order to run machine learning properly and evaluate the model, the data should be cleaned and
reflect the real situation of hauling operations in a mine. For this purpose, the raw data obtained
from simulation for MF of 0.75 and greater were selected. The data for MF<1 was selected to
understand the behaviour of operation parameters even with lower efficiency (MF<1) in the hauling
operation.

ii. Exploratory Data Analysis (EDA)
An EDA using python programming language was conducted to understand and illustrate the
resulting simulation data. Plus, the relationships between the input parameters in the hauling and
loading operation and the parameters that control the switch between FT and FB strategies in the
simulated loading and hauling operation. Starting from the original dataset containing 750 records
with 22 attributes that resulted from Haulsim simulation and filtered out based on MF of 0.75, each
entry represents the adapted loading strategy and the associated input data from simulation in the
EDA.
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A correlation matrix was generated to examine these relationships between operation loading
strategies and selected parameters for the correlation approach Figure 11. Some input parameters
are linearly correlated, such as cycle time and fleet size, the number of trucks queued, cost and fleet
size. In contrast, other parameters, such as loader utilization, are reversely correlated with MF, such
as loader utilization, especially when queuing condition occurs, it is reversely correlated but less
strong with other operating parameters.

Figure 11. Correlation matrix for simulated data.

iii. Multiple Machine Learning Algorithms
In order to observe the best results of what could be simulated in operation, a set of models was
prepared to examine the best recall results for various machine learning algorithms. Each model
enters into train and test data. Figure 12 illustrates the comparison of the algorithms generated.
These models are selected from the supervised machine learning under classification and regression
models because the data set is labelled and training is possible for further prediction. The selected
models are:

1) Linear Discriminant Analysis (LDA)
LDA is a linear model for classification and dimensionality reduction that is used for
feature extraction in pattern classification problems.

2) K Neighbors Classifier (KNN)
KNN is a non-parametric, supervised learning classifier, which uses proximity to make
classifications or predictions of data.

3) Decision Tree Classifier (CART)
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CART is a predictive model explains how an outcome variable’s values can be predicted
based on other values.

4) Gaussian NB (NB)
NB is a type of Naïve Bayes classifier algorithm used when the features have continuous
values assuming all features have a gaussian normal distribution.

5) Random Forest Classifier (RF)
RF is a classification algorithm consisting of many decision trees.

6) Support Vector Machine (SVM)
SVM is a supervised machine learning model that uses classification algorithms for two
classification problems.

Most algorithms showed a high accuracy median value except for the Gaussian NB algorithm,
valued at 0.57. The LR showed the highest recall value at 0.9, followed by CART and the RF with
accuracy values of 0.83 and 0.795, respectively. Therefore, machine learning implementation was
done based on LR method due to its higher accuracy and the tendency of categorical values.

Figure 12. Analysis and comparison of multiple algorithms.

iv. Logistic Regression
The simulated data from various scenarios were implemented into the LR model to understand the
effecting factors in the operation and to predict the loading strategy based on the selected data
features. The training data feature included hauler fleet size, cycle time, trucks in the queue, MF
and rolling resistance. The testing was based on 20% of the simulated data in 750 records, the
confusion matrix illustrated in Figure 13 shows more than 90% accuracy in predicting the loading
strategies.
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Figure 13. Confusion matrix for the logistic regression model.

v. Shap Values
Shap values (SHapley Additive exPlanations) is a cooperative game theory method used to increase
the transparency and interpretability of machine learning methods. In Figure 14, the order of
columns represents the amount of information accountable for in LR prediction, colour reflects the
real data, and the x-axis represents the shap value impact on the model categorical decision (FT or
FB). Each dot corresponds to an individual loading strategy in the simulation. The dot's position on
the x-axis shows the feature's impact on the model's prediction for that strategy. When multiple dots
land at the same x position, they pile up to show density.

Figure 14. Set of bee swarm plots (revise) for the machine learning model.

Similarly, plotting the data in a different method, the cycle time contributes the most to the model
prediction, followed by a fleet number as in Figure 15.
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Figure 15. Bar plot Shapley feature importance in predicting model.

5. Conclusions and Discussion
The MF is equal one or averaged to one; the recommended loading strategy is FT based on
balanced equipment and cycle times. When operation uncertainty is profound, there should be a
consideration for changing the loading strategies in the fleet in order (i) to reduce the hauling costs
(ii) to increase production and (iii) to decrease the number of trucks in the queue. In this situation,
with switching from FT to FB strategy, the utilization of the shovel increases. The machine learning
model showed that cycle time significantly contributes to the loading strategies in the mining
operation. Autonomous trucks are promising areas in adapting this framework because they can
decide more than the conventional operator. Also, linking the truck and shovel with clouding
systems that evaluate the material will prioritize the loading strategy based on the current operation
level conditions. These analyses showed that there is an opportunity that advantages the FB over the
FT based on changing the match factor in operation, which is directly related to the shovel-truck
loading time in a specific number of passes and number.
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