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ABSTRACT

Nowadays, stockpiles are of great importance in open pit mine production scheduling and are
widely used for different reasons while being placed in different locations. Near face stockpile
(NFS) mining method is a new mining concept which could decouple the whole mining flow into
two weakly related subsystems, which are the mining subsystem and processing subsystem. There
are many theoretical advantages in comparison to the traditional open-pit mining method, such as
higher tolerance on uncertainties without compromising production, higher equipment utilization,
less operating cost, better blending results, etc. The introduction of NFS, however, requires
reconsideration of production planning in open pit mines. In this paper, we developed a mixed
integer linear programming model to solve long-term production scheduling problem in open pit
mines. To quantitatively measure the performance of the NFS mining method, we implemented the
model in a real mining case study and compared the results with the traditional open pit mining
method with an out-of-pit crusher. The results reveal that we can improve the net present value by
9.3% and the plant head grade by above 58% by implementing the NFS method.

1. Introduction

More than 90% of the minerals are extracted using surface mining methods including open pits
(Osanloo & Paricheh, 2020). Open pits are usually multi-million/billion-dollar long-term projects
with two main subsystems: mining (mostly discrete processes) and processing (mostly continuous
processes). As the transportation of material throughout these two weakly coupled systems vary in
nature, their integration is a challenging problem that pushes the whole project away from
optimality. Stockpiling (Koushavand et al., 2014) and in-pit crushing and conveying (IPCC)
(Paricheh & Osanloo, 2020) have been introduced to improve the interaction of these two
subsystems. When IPCC system is implemented in an open pit mine, the ore stockpiling option is
removed as materials are being fed to the in-pit crusher directly from shovels. In this paper, we
introduce a new concept by integrating IPCC and stockpiles called the near-face stockpile (NFS)
open pit mining method that facilitates the integration of the two abovementioned subsystems while
keeping the advantages of both IPCC and stockpiles, implementing this new mining method results
in an improvement in the quality of material delivered to the processing plant and an increase in the
net present value (NPV) of the whole project.

1This paper is submitted to the International Journal of Mining, Reclamation and Environment on
August 3rd, 2022
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The concept of stockpiling in the open pit mines can be used for any type of material piled for
usage later on in the mine life (Darling, 2011). Although not recommended due to the economic
and environmental challenges, waste materials are delivered to waste stockpiles (Adrien Rimélé et
al., 2018) for the mines that have in-pit tailings disposal areas to be built later in the mine life. Oil
sands mines in Canada are explicit examples of such an operation. However, the main role of
stockpiles in open pit mines is as a buffer in the blend control process (Rezakhah & Newman,
2020). The location of the ore stockpiles, for the purpose of minimizing the rehandling costs, is
usually outside of the pit rim and as close to the main crusher as possible.

With the introduction of IPCC systems, the crusher which is the connecting point between mining
and processing operation is moved inside the pit and closer to the operating mining faces. Finding
the optimal location of the crusher inside the pit is a challenging task and is either treated as a
stand-alone optimization problem (Paricheh et al., 2017) or a subproblem which is a part of the
long-term production scheduling task (Paricheh & Osanloo, 2020). The location optimization
varies based on the type of the IPCC system. The IPCCs are categorized into three main classes:
fixed, semi-mobile, and fully mobile systems (Utley, 2011). In the NFS method, the mobile crusher
with the medium to long-term relocation strategy is the desired class as the in-pit crusher and the
stockpile could be relocated when needed. This means that the equipment could be placed and
reassembled in different benches with the development of the pit while the mine expands year by
year. Figure 1 shows the basic layout of the NFS mining method.

Figure 1. The layout of the near-face stockpile open pit mining method.

In an NFS mine, the material handling cycle for the waste material is the same as in conventional
open pit mining. However, the ore transportation cycle is modified in a way that instead of truck
dumping ore directly into the crusher, as in either conventional truck and shovel open pit or IPCC
open pit, it dumps its ore loads on the designated grade bin in the in-pit stockpile. Then the
reclaiming shovel loads the ore from different grade bins into a mobile crusher. The crushed
materials are then transported to the secondary crusher outside of the pit rim by the conveyor belt.
Therefore, the essential difference between the NFS mining method and traditional open-pit mining
methods is that the discrete and continuous subsystems are connected through the shovel-crusher
interaction instead of the truck-crusher interaction. As the discrete shovel cycle time is far less than
the discrete truck cycle time, the coupling of the two systems will be stronger in comparison.

According to Jupp et al. (2013), a near crusher stockpile plays four roles at the same time, which
are storing, buffering, blending and grade separation. Obviously, the NFS mining method inherits
all advantages from the near crusher stockpile. The benefit of two weakly coupled subsystems is
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that the whole system is more likely to have higher production and generate more profits since the
stockpile could act as a buffer and avoid unnecessary production loss due to equipment failure or
maintenance. Meanwhile, the existence of a near-face stockpile will lead to a more stable grade
feed to the crusher since, in traditional mining methods, the materials are truck-by-truck blended
while the NFS method allows batch blending. Nevertheless, another apparent benefit of the near
face stockpile is that it could shorten the hauling time significantly and reduce the costs from three
aspects. Firstly, it requires a smaller number of trucks in the fleet. Currently, most of the mines in
the world hire more trucks to avoid the idle of the mining shovels, while with NFS, the truck cycle
time will be reduced dramatically. Therefore, some investment on equipment, especially on trucks,
could be saved. Secondly, as mentioned in (Alarie & Gamache, 2002; Moradi Afrapoli &
Askari-Nasab, 2019) truck and shovel operating cost make up to 50 percent or even more in overall
operation cost in open-pit mines, which means even a small increase of utilizations of those
equipment will yield significant benefits for mining enterprises. Thirdly, shortening the haulage
distance could lower the possibility of traffic jams, and make the autonomous haulage system more
practical.

Given that NFS mining method has so many theoretical advantages against normal open-pit mining
method, how to quantitatively measure and verify the performance of the NFS method is a
scientific question worth studying. Thus, in this paper, we develop a long-term production planning
model for the NFS mining method to investigate its performance on the plant throughput quality
and the net present value of the whole project.

2. Literature Review

Undoubtedly, with no solid mining plan, no matter how good the mining method is, it may lead to
poor decisions with possible serious losses (Badiozamani et al., 2019; Ben-Awuah & Askari-Nasab,
2013). Therefore, to better understand the performance of the NFS mining method, an efficient
strategic plan is needed. Usually, an optimized strategic plan consists of two main parts. The first
part is the pit limit optimization, which defines the final shape of the open pit and it is the basis for
the following part and affects the value of a mine to the most. Although different mathematical
methods and models are published in past years, Lerchs-Grossman (LG) algorithm is still the
dominant method that has been adopted by most researchers (Askari-Nasab et al., 2007;
Dimitrakopoulos et al., 2007; Lerchs & Grossmann, 1965). In the second part of the strategic plan,
a production schedule optimization model makes decisions on the sequence of blocks to be mined
annually and addresses two main problems – when the blocks should be mined and where the
materials from those blocks should be sent to. One of the most important objectives of this part is
to maximize the NPV while meeting mining requirements like grade blending, plant capacity and
other constraints (Askari-Nasab et al., 2008, 2011; Askari-Nasab & Awuah-Offei, 2009;
Ben-Awuah et al., 2015; Lamghari, 2017). Due to the inherent complexity of the entire mining
planning, time horizons are divided into three different phases: short-term, medium-term, and
long-term (Tabesh et al., 2014). Then, the mine planning process aim at optimizing each time
horizon separately to obtain a near-optimal results in a reasonable computer run-time (Badiozamani
& Askari-Nasab, 2013; Dagdelen, 2001; Hustrulid et al., 2013). Since we want to investigate the
NFS method performance on NPV and the grade blend and these two are directly involved in the
strategic long-term production planning, herein we briefly survey the associated literature.

The long-term production plans of open pit mines are generated by implementing operations
research techniques. Among those techniques, linear programming, and its mutant mixed integer
linear programming (MILP) and mixed integer linear goal programming (MILGP) are the most
popular and widely applied algorithm (Maremi et al., 2021; Upadhyay & Askari-Nasab, 2016).

The long-term planning algorithms take block models of the deposit as an input and as the number
of blocks in the deposit increases the computing time for generating the plan increases. One way to
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reduce this processing time is to decrease the number of blocks in the block model. Tabesh and
Askari-Nasab (Tabesh & Askari-Nasab, 2013) developed a two-stage clustering approach for block
aggregation which has a significant impact on CPU time and the long-term production plan (LTPP)
optimization and leads to a 10% higher NPV. The ore grade, block distance, and rock types are
included in their clustering model but only one element was considered and many of explicit
parameters have to be defined to get reasonable results. Shishvan and Sattarvand (Shishvan &
Sattarvand, 2015) applied one metaheuristic algorithm - ant colony optimization (ACO) model to
solve LTPP problem and tested the model in a real size copper -gold deposit. However, there is no
guarantee that a global optimum schedule is generated, and the model is very sensitive to ACO
parameters. Ramazan and Dimitrakopoulos (Ramazan & Dimitrakopoulos, 2018) proposed a
stochastic integer programming (SIP) model for LTPP optimization while capturing the uncertainty
of orebody. However, only hypothetical data are tested, and the results showed no significant
difference with traditional model results. Although stockpiles are indispensable parts of mining
operations these days as they can be helpful in achieving mine operation’s economic goals such as
minimizing the deviation of the tonnage and grade feed to the crusher compared against the target
production, the abovementioned models do not incorporate stockpile into the modelling process.

In another stream of the literature of LTPP for open pit mines, Gholamnejad and
Kasmaee(Gholamnejad & Kasmaee, 2012) proposed a linear goal programming model for open pit
mining where they incorporated the role of stockpiles in the formulation. In their proposed model,
the focus is dedicated to the reclamation of the material from the stockpile and ore delivery to it is
totally ignored. Later on, a mixed integer linear programming (MILP) model for LTPP problems
that considers grade uncertainty and a stockpile was proposed by Koushavand et al. (Koushavand
et al., 2014). The objective function of their model is to maximize profit while including the cost of
uncertainty. Mousavi et al. (Mousavi et al., 2016) and Kumar and Chatterjee (Kumar & Chatterjee,
2017) proposed similar formulations for LTPP in open pit mines. These two models have
predetermined stockpile grades that force their models to perform far from reality. Instead of using
classical linear programming, a goal programming model that aiming at reducing stockpile
fluctuation was purposed in Souza et al. (Souza et al., 2018). In their model, Souza et al. minimized
operating costs and deviation from head grade. The model has limitations in test dataset. For those
models listed above, although stockpile is incorporated, an automatic perfect blending assumption
is adopted. The main drawback of perfect blending is that the stockpile in traditional open-pit
mining will not be fully reclaimed, so there will be a difference between real reclaimed material
grade and hypothesized reclaimed grade, which would definitely introduce errors into the result and
make it not credible.

There are also non-linear models proposed for LTPP optimization which incorporate stockpiles.
Bley et al. (Bley et al., 2012) added a non-convex quadratic constraint for stockpile in each period
and used s primal heuristic method to find feasible solutions for a specific problem. Ramazan and
Dimitrakopoulos (Ramazan & Dimitrakopoulos, 2013) proposed a non-linear SIP model and
applied it in a gold mine in Australia. That model is based on conditionally simulated deposit
which captures more uncertainty compared to normal predetermined deposit. Tabesh et al. (Tabesh
et al., 2015) suggested to model stockpiles nonlinearly. Then they linearized the nonlinear model by
defining fixed tight grade intervals for different stockpiling bins. Paithankar and Chatterjee
(Paithankar & Chatterjee, 2019) proposed a mathematical model based on genetic algorithm to
simultaneously optimize production sequence and dynamic cut-off grades. The final goal is set to
generate the highest NPV. The model assumes that stockpile has infinite capacity and no
fluctuation on yearly mining capacity, which is not realistic in real operation. However, although
most of the proposed non-linear models claimed a higher NPV under a specific case study, these
types of models require more variables than linear models, especially for stockpiles which causes
inefficiency issues. Besides, overall optimal results or near optimal results are not guaranteed and
the time consumption is much higher than linear models.
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3. Material and Methods

As the first step of our study, we implemented clustering algorithm developed by (Tabesh &
Askari-Nasab, 2019) to aggregate mining blocks into mining-cuts and panels in an iron ore open pit
mine. Then we used the LTPP model developed by Tabesh and Askari-Nasab (Tabesh et al., 2015)
as our benchmark LTPP model and generated long-term production plan for the case study
considering traditional open pit mining method with stockpile located outside of the pit rim. Then,
we improved their model to develop our new LTPP model that can generate long-term production
plan for the mine considering the NFS open pit mining method. In this section we are presenting
the formulation of our LTPP model for the NFS open pit mining method. Various optimization
mathematical models for long-term mining schedule that contain stockpiles were developed in the
past decades and the typical ones are reviewed in literature review section of this paper. In order to
have a feasible near-optimal solution within reasonable time periods, we selected a mixed integer
linear programming approach for our LTPP model. Following, we first define indices, sets,
parameters, and variables we used in the model. Then, we present the objective function and the
constraints.

Indices

index for mining cuts ( ϵ {1, 2, …K })

index for panels ( ϵ {1, 2, …P })

index for scheduled periods ( ϵ {1, 2, …T })

index for destinations (stockpile or waste dump)

index for stockpiles zones ( ϵ {1, 2, …S })
Sets

set of the panels that must be extracted prior to mine panel

set of the mining-cuts within panel

Parameters

discounted revenue generated by sending 1 unit of material from stockpile

zone in period to crusher minus the dozing, reclaiming cost and
processing cost

discounted cost of mining all the material in panel as waste in period

ore tonnage in mining-cut

ore tonnage in panel

waste tonnage in panel

ore tonnage in reserve
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waste tonnage in reserve

total capacity of stockpile

capacity of stockpile zone s

average grade of element in ore portion of mining-cut in percent

average grade of element reclaimed from stockpile zone in percent

upper bound of stockpiled head grade of element in period in percent

lower bound of stockpiled head grade of element in period in percent

upper bound of crusher acceptable grade of element in period in
percent

lower bound of crusher acceptable grade of element in period in
percent

upper bound on ore processing capacity in period in tonnes

lower bound on ore processing capacity in period in tonnes

upper bound on mining capacity in period in tonnes

lower bound on mining capacity in period in tonnes

Decision variables

continuous variable, representing the portion of mining-cut to be
extracted as ore and send to stockpile in period t

continuous variable, representing the portion of panel p to be mined in
period t, fraction of y characterizes both ore and waste included in the
panel
binary integer variable controlling the precedence of extraction of panels.

is equal to one if extraction of panel has started by or in period ,
otherwise it is zero
continuous variable, representing the tonnage of material sent from

stockpile zone to crusher in period

Objective function and constraints
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(1)

(2)

, (3)

, (4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Equation (1) is the objective function that aims at generating the highest discounted net present
value of the project. Equation (2) ensures that the tonnage of total material mined in each period
does not exit the mining capacity. Equation and Equation enforce the mining of ore and waste to
not exit the available reserve. Equation (3) ensures that the total tonnage of material reclaimed from
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different stockpile zones matches the required processing capacity. Equation (4) limits reclaiming
the material from different stockpile zones in each period. The reclaimed tonnage should not be
less than ore material mined in that period minus stockpile capacity and more than ore material
mined in that period plus stockpile capacity. We defined equations (5) and (6) for stockpile grade
control. Constraint (7) ensures that the average grade of material being reclaimed from the
stockpile in each period does not fall below the lowest acceptable head grade for the processing.
Moreover, the constraint (8) ensures that the average grade reclaimed from stockpile does not
exceed the upper bound of required processing head grade. Equation (9) limits the average ore
grade mined from mining-cuts. Equation (10) puts a limit on all panels to be fully extracted within
the mine life. Equation (11) ensures that all predecessor panels of the current active panel are fully
extracted before mining the current panel. Constraint (12) limits mining of each panel to its
maximum available reserve.

4. Results

To verify the performance of the NFS open pit mining method, we implemented it in an iron mine
case study with 19,561 blocks in the deposit’s block model and a total of 430 million tons of
material in its final pit after performing pit optimization process. The dimension of each block in
the block model is 25m (length)×25m (width)×15m (height) and the main element of interest is
iron which is tracked by magnetic weight recovery (MWT) and the accompanying impurity
contents (sulfur and phosphor) are tracked by percent mass units (%). The target processing head
grade for MWT is 78% and maximum acceptable content for sulfur and phosphor are 1.7% and
0.14%, respectively.

The pit optimization resulted in four pushbacks and 40 panels in its optimal case. Meanwhile, the
mining capacity is 32 million ton in early years which decreases to 9 million ton in the last year
while processing capacity is 7.5 million ton from year five to the end of the mine life. We then
implemented an adopted version of hierarchical clustering method proposed by (Tabesh &
Askari-Nasab, 2013) to create mining polygons, resulting in 1883 mining-cuts. The clustering
algorithm takes approximately 75 seconds to finish the block aggregation process in an Intel Core
i7-7700HQ CPU at 2.80GHz, and 16 GB of RAM computer.

After the block aggregation stage, we generated LTPP for the conventional open pit mining and
LTPP for the NFS open pit mining for the case study. We formulated both LTPP models in
MATLAB (The MathWorks Inc., 2018) and solved them using the CPLEX (CPLEX, 2014). The
following we first present results of implementing the NFS open pit mining method and then
present a comparison against conventional open pit mining. It worth noting that the near face
stockpile is considered during mine life consists of three zones representing low-grade,
medium-grade and high-grade ore.

By the implementation of the NFS method in the case study, the project will generate a net present
value of $2355 million dollars in the 20 years of mine life following the life of mine production
schedule/plan presented in Figure 2. Meanwhile, the amount of materials processed each year is
fairly stable with the average deviation of 2.7% from the capacity of the plant (Table 1).
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Figure 2. Long-term production schedule of the case study extracted using the NFS open pit mining method.
Table 1. Yearly tonnage of ore delivered to the processing plant using the NFS open pit mining method.

Year 5 6 7 8 9 10 11 12

Processed (Mt) 7.5 6.4 7.5 7.5 7.5 7.5 7.5 7.2

Difference (%) 0.0 -14.5 0.0 0.0 0.0 0.0 0.0 -3.9

Year 13 14 15 16 17 18 19 20

Processed (Mt) 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.2

Difference (%) -6.7 -6.7 -6.7 -6.7 0.0 0.0 0.0 -4.3

Due to the particularity of the NFS mining method, all target minerals excavated from mining faces
will be sent to the stockpile prior to be reclaimed by a shovel and delivered to the plant through the
mobile IPCC system. The associated cost of reclaiming one ton of blended ore from the NFS in the
case study is $0.5/ton. As mentioned before, the NFS has three zones in its stockpile. In order to
equally utilize these zones as much as possible, we calculated the material tonnage and grade in
each block, and selected two interim MWT grade values of 76.65% as the transition point from
low-grade to medium-grade and 80.23% as the transition point from medium-grade to high-grade.
The grade of iron in the deposit varies between the minimum MWT grade of 41.22% and the
maximum MWT grade of 84.52% (Table 2). Figure 3 shows the yearly average MWT grade of
each zone in stockpile and the MWT grade of the final blend reclaimed and processed each year,
and Figure 4 and Figure 5 show the yearly average grade of phosphor and sulfur in each stockpile
zone and the overall phosphor and sulfur grade of the blended material processed in each year of
the mine life.

Table 2. Stockpile zoning parameters for the NFS method.
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Lower MWT
(%)

Upper MWT
(%)

Avg MWT
(%)

Avg P
(%)

Avg S
(%)

Tonnage
(Mt)

Zone1 41.22 76.65 70.02 0.14 1.31 37.56
Zone2 76.65 80.23 78.68 0.13 1.69 38.72
Zone3 80.23 84.52 81.26 0.14 1.60 40.01

Figure 3. MWT grade delivered to each zone of the stockpile and the MWT grade of final blend reclaimed
from the stockpile by year of the mine life.

Figure 4. Phosphor grade delivered to each zone of the stockpile and the phosphor grade of final blend
reclaimed from the stockpile by year of the mine life.
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Figure 5. Sulfur grade delivered to each zone of the stockpile and the sulfur grade of final blend reclaimed
from the stockpile by year of the mine life.

In Table 3, we present the average yearly deviation of blended grade processed from the target head
grade.

Table 3. Deviation of the blended material grade from the desired head grade.

Year 5 6 7 8 9 10 11 12
S grade 0.89 1.49 1.68 1.66 1.59 1.55 1.60 1.46

Difference (%) - - - - - - - -
P grade 0.14 0.18 0.14 0.15 0.14 0.14 0.14 0.14

Difference (%) 0.05 26.8 2.99 3.8 - - - -
MWT grade 65.0 69.9 75.3 76.2 77.3 78.3 79.5 76.4

Difference (%) -17 -10 -4 -2 -1 0 2 -2
Year 13 14 15 16 17 18 19 20

S grade 1.47 1.75 1.56 1.65 1.62 1.59 1.52 1.54
Difference (%) - 3.2 - - - - - -

P grade 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Difference (%) - - - - - - - -

MWT grade 77.0 76.4 76.6 78.4 80.3 80.5 79.9 80.6
Difference (%) -1 -2 -2 0 3 3 2 3

Table 2 and Table 3 show that inside the near face stockpile, zone 1 has widest grade range for both
MWT and phosphor and is the dominant zone to be reclaimed and processed in the first two years
after processing starts, leading to a higher grade deviation in early years. However, with the
development of pit limit, more material are sent to the zone 3 of the NFS improving the
reclamation grade in the later years of the mine life.

To evaluate the performance of the NFS open pit mining method, we compared results of our
proposed LTPP with the results of the benchmark LTPP that was developed for mining the same
case study using conventional mining method in two important KPIs (the NPV and the head grade
deviation). In the benchmark model, the case study generates $2155 million dollar of NPV with an
average grade deviation of 3% for MWT. This means that by switching from conventional open pit
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mining to the NFS open pit mining method the NPV generated by the case study will increase for
9.3% and the average head grade deviation will reduce for 58.3%. This is mainly due to the higher
turnover rate of near face stockpile since material in different zones are fully reclaimed in a
predetermined time range while in traditional mining method, stockpile is only reclaimed when
material mined in that period is not enough and rarely does stockpile realize a fully turnover in life
of mine. To be more specific, high stockpile turnover rate has a strong positive effect on the
blending results since with higher turnover rate, the tolerance for ore grade fluctuations will
increase, and some relatively extreme high-grade and low-grade ore material will become
acceptable. This is particularly beneficial to those mining companies whose material of interest
comes with associated impurities – just as the iron mine used in the case study. Moreover, with
more materials becoming acceptable for processing, a higher production is expected which will
eventually bring higher revenues and profits to the company.

5. Conclusions

To scientifically understand the performance of the near face stockpile open pit mining method
under life of mine schedule, especially the blending process, this article proposed a mixed integer
linear programming model to generate a near-optimal long-term production schedule. The proposed
mathematical model was implemented in a real mining case study and the results were presented in
this paper. Then, the impact of the near face stockpiling open pit mining method on the NPV and
the head grade has been compared with the conventional open pit mining method. The results of
this comparison show that the near face stockpile open pit mining method outperforms the
conventional open pit mining method in the NPV with 9.3% improvement and the head grade
deviation with 58.3% improvement in the quality of blended material delivered to the plant.

However, there are many theoretical advantages of the near face stockpile open pit mining method
and only two aspects were verified in this paper. Some unnecessary losses due to uncertainties like
equipment failure and saved cost for shorter haul which may lead to higher NPV are not included
in our investigations. The authors will investigate the operational performance of the near face
stockpile open pit mining method by simulating the daily operation of the case study in the next
step of the research.
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