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ABSTRACT 

 Discrete event simulation is a simulation method has been used in forecasting and analysis the 
mining process and scheduling during last years. Discrete event simulation requires the pre- and 
post-processing of data and the results. In this paper, our focus is on pre-processing of data for 
simulation goal. Capturing the system behaviour and more precisely the event occurrence based on 
random variables and distributions is the goal of the pre-processing and data analysis in Arena 
simulation. The simulation process requires pre-processing steps that are time-consuming due to the 
huge amount of dispatching data that is providing by dispatching system during the mining process 
and retrieving from databases. Implementation of those stages is (semi)manual in available software. 
For this reason, Python open-source programming language implemented to provide an automatic 
procedure from database management and to retrieve data and input data preparation with the aim 
of discrete event simulation.  

1. Introduction

System control and management are intensively software dependent process. These processes are 
handled mostly by commercial software. Commercial software refers to that kind of software which 
is produced for selling to the customers for the commercial purposes. Providing commercial software 
and programming is time, and labour-intensive process and control over this type of software can be 
achieved by copyright, contract law and software patent (Liberman, 1995). Technically control on 
commercial software based on the specific approach of end-users and development on the software 
structure is not possible most of the times; achieving to this objective, usually, clients have to spend 
more additional cost in addition to the original software price to having a suitable framework based 
on their system requirements.  

Open-source Software (OSS) is the type of computer software that is released under a license that 
the users have a right of study, change, and distribute the software to several users and for any 
purposes (Laurent, 2004). Open-source software has properties of free redistribution, by means of 
having no restrictions for selling or giving away any component of that software or program code. 
The source code is available for this software and can be used for making any changes and derived 
works and it can be modified by all the users (Feller and Fitzgerald, 2002). The first open-source 
program was written by Ada Lovelace for calculating Bernoulli’s Number using the Analytical 
Engine in earliest of the 18th century. In the 1950s the first high-level programming language 
designed and developed by Germans to communicate instructions to the computer (Ceruzzi, 2003). 

There are several programming languages for open-source programming such as Java, PHP, Python, 
Perl. Each language has its benefits and disadvantages from implementation and programming point 
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of view (RAO, 2014). Source code for these types of programs can be customized efficiently based 
on user needs and requirements and the bugs presented in the program can be found easily and fixed, 
and users from different countries and backgrounds can participate and collaborated. The codes from 
other languages can be translated whereas in case of licensed programming language it is not allowed 
(St. Amant, 2007). The source code utilization is unlimited for open-source code while for 
commercial software trial version is just available for few days only for it can be provided with a 
restriction on usage. The main drawback for open-source programming language is the version of 
the code which older versions may not be compatible with a new version of libraries and the original 
code should be updated after a while and messy lines of codes can be extremely confusing. Another 
weak point is that the solution for specific problems is highly related to the support provided by the 
user community. In the area of process and systems simulation there is a verity of simulation software 
such as AnyLogic, Arena, AutoMod, GPSS, Flexsim, ProModel, Simcad Pro, VisualSim that are 
commercial software and SimPy, Simula, Salabim, Simmer and etc. which are open-source software 
(Dagkakis and Heavey, 2016).  

The Arena simulation commercial software package is the software provided by Rockwell software 
(2018) with the aim of simulation of processes and system performance analysis. This commercial 
software is widely used for in mine engineering with a purpose of mining process simulation. Each 
simulation process requires the pre- and post-processing stages. For achieving to this goal, Rockwell 
Company provided the third party packages as an add-on to Arena simulation software. Process 
analyzer is a tool for scenario analysis by execution of different simulation models and scenarios as 
useful tools for decision making. Output analyzer is a user interface that provides an easy and quick 
way for reviewing the simulation outputs. The main stage of every simulation process is providing 
the data from the database and the probability of their occurrence during the time that will be used 
in modelling the process. In discrete event simulation occurrence of the events are dependent on the 
probability of the occurrence of that specific event which is introduced to the simulation process by 
series of probability distribution function. There exist more than eighty different probability 
distribution functions that are shared in some properties with each other. Obtaining those functions 
require the process of retrieving data from the system of database and distribution fitting for each set 
of data or a process in a system. The input analyzer is a versatile tool that could provide the facility 
for doing this process. Arena takes the input file and tries to find the best fit for the data twelve 
different distribution model provided on input analyzer package and provide the best fit according to 
the least square error, chi-square test and Kolmogorov Smirnov test if they are available for the 
underlying dataset.  

Real simulation process with high precision and detailed modelling requires a detailed analysis of 
the data that should be prepared from available databases or sampling on the real process. After data 
preparation, the files in *.csv or *.txt format take as an input for the analysis. In case of having several 
files, all these processes should be done manually, and all the expressions must be saved in an excel 
archive files and call by using VBA programming or manually to their place in the software which 
in case of having hundreds of data sets will be a time-consuming process.  

In mining process simulation data for discrete simulation process are usually obtain from dispatching 
database. These databases consist of thousandths of records for several tables containing multiple 
columns. Processing these data and preparation is a complex task for modellers (Fig 1). 

The most proper way of retrieving these data is the implementation of a database management system 
and link them to the input analyzer in order to have a rapid data derivation from the database 
management system. A relational database management system (RDBMS) usually use for this 
purpose. Retrieving data from RDBMS requires using the database abstraction layer (DBAL) and 
writing the quarries directly on the command line or indirectly on database management software 
(Coronel and Morris, 2016). According to DB-Engines, in June 2018, the most widely used systems 
were Oracle, MySQL (Free software), Microsoft SQL Server, PostgreSQL(Free software), IBM 
DB2, Microsoft Access, and SQLite (Free software).  
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There is not any coherent and direct link between database management software and input analyzer 
in Arena simulation software. Making this link requires the establishing the multiple links between 
database and Arena simulation. Stages consist of connecting to the database, running the queries, 
retrieving the data, data manipulation and saving them in a required format (asci, *.txt, *.csv) as an 
input for input analyzer and obtaining the probability distribution function the underlying variables 
or datasets.  

The common process consists of generating the database from dispatching data, linking the database 
to Matlab database analyzer and writing the queries using a Matlab mathematical programming 
language and saving the files and manually import them to input analyzer. After fitting the 
distribution to each data set by retrieving from queries the user should save the expressions in a file 
for using in the simulation process. The process consists of several manual procedures in the whole 
of the process. 

In this paper, the open-source Python programming language is used with the aim of generating a 
comprehensive and coherent process as a replacement for the input analyzer having the capability of 
processing the several datasets automatically. Our objective is to retrieve the required data from the 
database and directly obtain the distribution function expression file that is required for the 
simulation model. In this process, all the intermediate stages combine or omitted. The process is 
faster and the outputs can be used directly for simulation modelling process in Arena software. The 
comparison between the Matlab and Python process illustrated in Fig 1. 

2. Methodology 

Python as an open-source programming language provided different libraries for different purposes. 
As our goal is to design a process for retrieving the data and then obtain the most fitted distribution 
function to the data, it is necessary to use the following packages.  

NumPy is the fundamental package for scientific computing in Python providing the arrays and 
matrices along with a large high-level mathematical function to operate on those arrays. This package 
can be replaced with the computational abilities of Matlab as their functions are C optimized. Pandas 
is a package for open-source data analysis and manipulation tools for tabular data. Dataframe and 
time series object is the main data structure on panda libraries. Matplotlib is the plotting library for 
the Python programming language that is synchronized with NumPy package. Pyodbc is an open-
source Python module that provides access to the ODBC databases. These packages would be a 
replacement for Matlab Database explorer package. SciPy it is part of NumPy array object that is 
designed for scientific computing and technical computing. Some of the key algorithms of SciPy are 
hierarchical clustering, vector quantization, K-means, Discrete Fourier Transform algorithms, 
interpolation tools, optimization algorithms including linear programming, etc. 

In our research, the SciPy statistic module is the main class that is used for our distribution fitting 
goal. More than eighty continuous random variable (RVs) and ten discrete random variables have 
been implemented in SciPy package. The process of retrieving data and distribution fitting is based 
on pseudo code illustrated in Table 1. 

One of the major goals is to test how the obtained data from Python can be feed to Arena simulation 
as a distribution function as their parameters and the way to obtain them is a black box in Arena 
simulation as commercial software. For this reason, using the similar synthetic dataset, the fitted 
distribution in each case should compare with results in both Python and Arena software outputs. For 
this aim random variable for each distribution function generated with parameters mostly similar to 
the typical and standard shape of each distribution. For instance, in case of normal distribution 
synthetic normal data generated using Arena and then based on normal synthetic dataset normal 
distribution fitted on data using Python and Arena input analyzer package assuming that our 
generated random variable statistically accepted and match with a theoretical distribution. Parameters 
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for each model registered and compared with each other in order to match the parameters. Summary 
of the parameters and test results are shown in Table 2.  

 
Table 1 Pseudo code for retrieving data and Python approach 

Pseudo code in Python  

Import Libraries 

For i in a number of queries:  

       Connect to database or server using Pyodbc 

       Input SQL queries 

       Execute SQL queries 

       Save data in a temporary variable 

       Close the Connection 

       If data continuous:  

           If data sufficient for draw distribution: 

           Call best Fit Function: 

                      Generate a histogram of data obtain classes and their bin values 

                       Set best fit as normal and error infinity 

                      For j in the distribution model       

                            Try:   

                            Obtain fit parameters corresponding to the model 

                            Obtain theoretical PDF of the model 

                             Compare Experimental Pa DF with a theoretical model 

                            Calculate squared error 

                            IF Error is less than the last one  

                                   Set the best distribution as the current  

                                   Set the parameter as the current parameter  

                                   Set error as current error 

                            Except: 

           Calculate the Chi-square and Kolmogorov-Smirnov test 

           Return best distribution, Errors, Test results 

      elif: 

            Consider Mean of data as a random exponential occurrence EXPO () 

      else: 

           Calculate Discrete Empirical Function  

      Save temporary model 

      Plot and save the Figs 

Write-Output Files  
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Fig 1 Comparison of data extraction and distribution model fitting for Matlab and Python 
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Table 2 Comparison of the distribution model output parameters for Arena input analyzer and Python 

Distribution Arena model Python model Link Python output to Arena 

BETA Min+Max*BETA( Alpha1, Alpha2 ) beta(a, b, loc, scale) Loc+Scale*BETA(a,b) 

Erlang Offset+Erlang(Exponential Mean, Erlang parameter k) erlang(a, loc, scale) Loc + erlang(scale,a) 

Exponential Offset + EXPO(Mean) expon(loc, scale) Loc + EXPO(scale) 

Gamma Offset + GAMM(Scale Parameter Beta, Shape Parameter Alpha) gamma(a, loc, scale) Loc + gamma(scale,a) 

Normal NORM(Mean, Standard Deviation) norm(loc, scale) NORM(loc,scale) 

Triangular TRIA(Minimum Value, Most Likely Value, Maximum Value) triang(c, loc, scale) TRIA(loc, loc+(c*scale), scale) 

Uniform   UNIF(Minimum Value , Maximum Value) uniform(loc, scale) UNIF(loc,scale) 

Weibull WEIB(Scale Parameter Beta, Shape Parameter Alpha) weibull_min(c, loc, scale) loc + WEIB(scale,c) 

Johnson JOHN(Shape parameter 1(Gamma), Shape parameter 2(Delta),Scale Parameter 
Lamda, Location Parameter Xi) 

johnsonsb(a, b, loc, scale) JOHN(-2.19, 1.35, 2.60, 0.21) 

Lognormal Offset +LOGN(LogMean ,LogSTD ) Lognormal(s, scale, location) No direct conversion 
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Table 3 Fitted model for normal distribution using synthetic data 

Distribution Parameter Arena model 
Arena Square 

Error 
Python model 

Python Square 
Error 

Link Python output to 
Arena 

Normal Mean = 2.0, Std Dev = 
10 

NORM(1.71,9.98) 0.000077 NORM(1.746,9.712) 0.00006 NORM(1.746,9.712) 

 
 
 
 
 
 

 

 

Fig 2 Comparison between input analyzer output and Python for normal distribution using synthetic data 
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Table 4 Fitted model for lognormal distribution using synthetic data 

Distribution Parameter Arena model 
Arena 
Square 
Error 

Python model 
Python 
Square 
Error 

Link Python 
output to Arena 

Lognormal LogMean = 2, logSTD 
=0.3 , Offset = 5 

6+LOGN(1,0.32
8) 

0.000770 Lognormal(s=0.16,loc=5.07,scale=1.90) 0.12866 4.258 + 
LOGN(2.73,0.285) 

  

 

 

 

 

  

Fig 3 Comparison between input analyzer output and Python for lognormal distribution using synthetic data 
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Table 5 Fitted model for beta distribution using synthetic data 

Distribution Parameter Arena model 
Arena 
Square 
Error 

Python model 
Python Square 

Error 
Link Python 

output to Arena 

Beta Alpha1= 0.5, 
Alpha2=0.5, Min=0, 

Max=2 

2 * 
BETA(0.547,0.59) 

0.001042 Beta(a=0.54,b=0.54,loc=0,scale=2.0) 1.00973 -0.002+ 2.002 * 
BETA(0.539,0.54) 

  

 

 

 

  

Fig 4 Comparison between input analyzer output and Python for beta distribution using synthetic data 
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Table 6 Fitted model for Gamma distribution using synthetic data 

Distribution Parameter Arena model 
Arena Square 

Error 
Python model 

Python Square 
Error 

Link Python 
output to Arena 

Gamma Alpha = 2 beta=4 
offset=5 

5 + GAMM(4.04, 
1.98) 

0.000121 Gamma(a=1.97, 
loc=5.01,scale=4.05) 

0.000725 5.011 + 
GAMM(4.055,1.971) 

 

 

 

  

  
Fig 5 Comparison between input analyzer output and Python for gamma distribution using synthetic data 
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2.1. Model accuracy and goodness of fit 

The goodness of fit is the statistical model provide the numbers for expert’s judgment to assess how 
good our distribution fitted model is matched with the theoretical model. These values show the 
discrepancy between the observed values and the values obtained from the theoretical model. There 
are several ways of performing these tests. In Arena simulation, the tests provided by software are a 
square error, Chi-square test, Kolmogorov-Smirnov method. In the next section, a brief description 
of these tests is provided. According to the Arena’s manual, the distribution fitting (curve fitting) is 
based on maximum likelihood estimators, and the beta, triangular and uniform distributions are 
exceptions. The beta distribution is fitted first with maximum likelihood estimators and then 
moments, and then the best result among them will accept as the main result. Triangular and uniform 
distributions use empirical rules to fit distributions on data. According to SciPy reference fitting 
distributions is based on maximizing a log-likelihood function and the outlier’s values receive the 
penalty. The answer is not globally optimal, and it is only locally optimal or optimization may fail 
altogether. 

2.1.1. Square error measurement 

The quality of the distribution fitting primarily is based on the square error criterion. This condition 
can be defined as a sum of the square difference between the relative frequency of the data for ith 
interval and relative frequency of the fitted probability distribution function. This relationship can be 
defined as follows: 

𝐿𝑆𝑄 = [𝑓𝑖 − 𝑓(𝑥𝑖)]
2 (1) 

Where 𝑓𝑖 is relative frequency of data on interval ith and 𝑓(𝑥𝑖) is the relative frequency of the fitted 
probability distribution. 𝑓(𝑥𝑖) is obtained from cumulative distribution function by the difference of 
the two intervals 𝐹 (𝑥𝑖) − 𝐹 (𝑥𝑖−1) in a case that the cumulative distribution function is not available 
the 𝑓(𝑥𝑖) will be determine by numerical integration (Corder and Foreman, 2014; Bethea, 2018).  

2.1.2. Kolmogorov-Smirnov Goodness-of-fit test 

The Kolmogorov-Smirnov test is used to decide that if the sample under study comes from the same 
population for a specific distribution or not. The test is based on the empirical distribution function. 
The Kolmogorov-Smirnov test can be defined according to the following formulation  

𝐻଴: the data follow a specified distribution 

𝐻ଵ: the data do not follow the specific distribution 

The Kolmogorov-Smirnov test statistic is defined as: 

𝐷 =  max
1≤𝑖≤𝑁

(𝐹 (𝑌𝑖) − 𝑖 − 1
𝑁

 , 𝑖
𝑁

− 𝐹 (𝑌𝑖)) (2) 

Where F is the theoretical cumulative distribution function of the underlying data which should be 
in the form of the continues data and N is the number of samples. The test is a nonparametric test 
which Gaussian distribution assumption is not required (Corder and Foreman, 2014; Bethea, 2018). 

2.1.3. Chi-square test 

The goal of the test is same as the Kolmogorov-Smirnov test; this test can be applied to any univariate 
distribution if the cumulative distribution function existed. In our case, the test applied to the binned 
data which is calculated from the histogram of the experimental data. So the value that is obtained 
for the test depends on the number of binned data, and for this reason, sufficient data should be 
available in order to the chi-square test be approximately valid. This test can be applied to discrete 
distribution. 
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𝐻଴: the data follow a specified distribution 

𝐻௔: the data do not follow the specific distribution 

The test is performed on the data that are divided into k bins a, d the test is defined as Error! 
Reference source not found.): 

𝜒2 = ∑(𝜊𝑖 − Ε𝑖)2/Ε𝑖

𝑘

𝑖=1
 (3) 

Where 𝜊௜ is the observed frequency for bin ith and Ε௜is the expected frequency for bin ith and the 
expected frequency is calculated from the interval between the lower and upper bound of ith bin and 
n is number of data. As explained before the test is sensitive to number of bins and there is not any 
optimal value for the test output (Bethea, 2018). 

3. Case studies 

3.1. Synthetic data 

In order to test the compatibility of using SciPy as a replacement of input analyzer synthetic data 
generated to performing the tests and comparing the results. Both input analyzer and SciPy have an 
ability to generating the random distribution data based on specific distribution. For our goal, the 
synthetic data generated using the input analyzer and for each specific distribution typical parameters 
assigned in order to generate the typical distribution shapes for each specific distribution types. After 
generating the data fitting and corresponding shape parameters obtained and the fitting tools forced 
to fit the corresponding model that is directly related to the data. The same process performed by 
SciPy package. On the next step, the shape parameters compared with those which obtained from an 
input analyzer. The results show the difference for lognormal distribution as the Arena software’s 
conversion for mean and standard deviation is different from SciPy libraries. According to SciPy 
documentation, the parametrization of random variable X with mean 𝜇 and standard deviation of 𝜎 
is expressed as a 𝑒𝑥𝑝𝑜(𝑌 ) = 𝑋 then the 𝑆 as a shape parameter is equal to 𝜎 and the scale is 𝑠𝑐𝑎𝑙𝑒 =
exp (𝜇). On the other hand, in Arena input analyzer conversions are as Error! Reference source not 
found.) to Error! Reference source not found.): 

𝐿𝑜𝑔𝑀𝑒𝑎𝑛 = 𝜇 , 𝐿𝑜𝑔𝑆𝑡𝑑 = 𝜎 (4) 

𝜇 = ln (
𝜇2

√(𝜎2 + 𝜇2
) (5) 

and 

𝜎 =
√

ln(𝜎2 + 𝜇2)
𝜇2  (6) 

Solving the system of equations, the values obtained by SciPy can be converted to Arena 
formulation as Error! Reference source not found.): 
  

𝜎 = √𝑒2𝑆𝑒2𝑠𝑐𝑎𝑙𝑒(𝑒𝑠2 − 1) (7) 

𝜇 = √es2 e2scale 
(8) 
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3.2. Mining real dataset 

Real dispatching data from an open pit mining system used as a database. Dispatching database 
contains a table for production, Activity and Shovel_In_Opereation and Trucks_In_Operation 
retrieved from the Production table which contains 1,468,959 number of rows and retrieving final 
necessary data from those tables. The logic for the database is illustrated in Fig 6. 

Data and queries write for two different seasons (summer and winter) based on shovels and trucks 
group consist of six shovel types and six truck types. Number of passes for each truck and shovel, 
average bucket tonnage for trucks, average loading cycle for shovels, the total cycle time for trucks 
are the parameters which are retrieving from the database. 

 

 

Fig 6 database diagram and relationships between each table for mining database 

 

From the database and running related queries more than 270 series of data obtained that are showing 
the behaviour of shovel and trucks and their related parameters in two different seasons. The 
simulation model will recognize these behaviours based on a random distribution function. So it 
would be necessary to find the best-fitted distribution function model for the data. The process using 
Arena input analyzer is not time efficient, so data retrieving from database analyzed with the code 
that is provided by Python library, and final results write into CSV file. The fitted parameters 
acceptable as an input for Arena software are shown in Table 7 for discrete and continues variables 
with a related fitted distribution on Figs 7 and 8. 
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Table 7 Retrieved data and their fitted distribution with its parameters 

Retrieved data Best distribution Expression Least Square Error 

Average_ Load_CycleTime _summerData_992GHL_CAT77D gamma -21.103 + GAMM(4.976,11.239) 0.000517865 

Average_Load_CycleTime_winterData_Hit 5500EX_CAT 793D norm NORM(53.792,13.388) 0.000445379 

backing_time_summerData_CAT 793D lognorm -11.024 + LOGN(24.36,6.468) 0.017501618 

backing_time_winterData_CAT 793DT lognorm -9.064 + LOGN(24.701,7.607) 0.006585836 

speed_Empty_winterData_CAT 793DT norm NORM(36.952,8.073) 0.000889691 

speed_Empty_winterData_Cat 793B norm NORM(32.726,9.802) 0.000368787 

SpotTime_summerData_CAT 785C_Hit 5500EX lognorm 0.025 + LOGN(47.374,54.748) 0.000209112 

SpotTime_summerData_CAT 793B_Hit 5500EX lognorm -0.269 + LOGN(64.171,77.815) 7.91092E-05 

Avg_Bucket_Ton_summerData_Hit 5500EX_CAT 785C lognorm 45.228 + LOGN(26.351,5.923) 0.00641712 

Avg_Bucket_Ton_winterData_Hit 5500EX_CAT 793DT norm NORM(80.001,3.894) 0.085005238 

NumPass_winterData_CAT 994F_CAT 793B discrete cumulative DISC(0.0,0,0.007,1,0.035,2,1.0,3) 

 

NumPass_summerData_Hit 2500_CAT 793D discrete cumulative DISC(0.005,0,0.075,1,1.0,2) 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig 7 fitted distribution for average load cycle time for shovel CAT 992GHL and truck CAT 777D summer (a) 
and average load cycle time for winter data for shovel Hit 5500EX truck CAT 793D (b), average bucket 
tonnage for summer data shovel Hit 5500EX truck CAT 785C (c) and average bucket tonnage for winter data 
Hit 5500EX CAT 793DT (d), backing time for summer data truck CAT 793D (e) and backing time for winter 
data CAT 793DT (f). 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig 8 Fitted distribution for speed empty travel on winter for CAT 793DT (a) and for CAT 793B (b), spot time 
for summer data on shovel Hit 5500EX for truck CAT 785C (c) and truck CAT 793B (d), number of passes 
for winter data on shovel Hit 2500 truck CAT 793B (e) and shovel CAT 994F truck CAT 793B (f) 
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4. Conclusion

Open-source programming using Python programming language implemented for pre-processing 
analysis of data retrieving from dispatching database. The code provided has an ability to retrieving 
the data from the database and fit the distributions automatically to the data and generate the file 
consist of distribution expressions which are required for performing the simulation. The results 
show that the data manipulation such as removing outliers, duplicate values, bimodality, etc. can 
have a great effect on output results. Arena simulation software supports a restricted range of 
distributions and is not able to fit and use bimodal distributions model for the simulation process. 

For this reason, after retrieving data from the database, the data should belong to the same population 
and check for the corresponding hypothesis. In case of not having a sufficient number of data the 
number of bins can change to the critical parameters as the current methods for automatically 
choosing the number of bins will be failed to obtain the optimum number of the bins and expert’s 
ideas will be required and the process will be performed by trial and error for choosing the suitable 
number of bins. The advantage of the method, using Python versus Matlab programming language, 
is providing more coherent and faster process for pre-processing of the data with the lowest cost for 
time and money.  
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