
Paravarzar Sh. et al. MOL Report Nine © 2018 403-1

Open-source Programming (OSP) Framework for
Automatic Database Management for Discrete

Event Simulation

Shahrokh Paravarzar, Mohammad Tabesh, Yashar Pourrahimian, Hooman Askari-Nasab

Mining Optimization Laboratory (MOL)

University of Alberta, Edmonton, Canada

ABSTRACT

 Discrete event simulation is a simulation method has been used in forecasting and analysis the
mining process and scheduling during last years. Discrete event simulation requires the pre- and
post-processing of data and the results. In this paper, our focus is on pre-processing of data for
simulation goal. Capturing the system behaviour and more precisely the event occurrence based on
random variables and distributions is the goal of the pre-processing and data analysis in Arena
simulation. The simulation process requires pre-processing steps that are time-consuming due to the
huge amount of dispatching data that is providing by dispatching system during the mining process
and retrieving from databases. Implementation of those stages is (semi)manual in available software.
For this reason, Python open-source programming language implemented to provide an automatic
procedure from database management and to retrieve data and input data preparation with the aim
of discrete event simulation.

1. Introduction

System control and management are intensively software dependent process. These processes are
handled mostly by commercial software. Commercial software refers to that kind of software which
is produced for selling to the customers for the commercial purposes. Providing commercial software
and programming is time, and labour-intensive process and control over this type of software can be
achieved by copyright, contract law and software patent (Liberman, 1995). Technically control on
commercial software based on the specific approach of end-users and development on the software
structure is not possible most of the times; achieving to this objective, usually, clients have to spend
more additional cost in addition to the original software price to having a suitable framework based
on their system requirements.

Open-source Software (OSS) is the type of computer software that is released under a license that
the users have a right of study, change, and distribute the software to several users and for any
purposes (Laurent, 2004). Open-source software has properties of free redistribution, by means of
having no restrictions for selling or giving away any component of that software or program code.
The source code is available for this software and can be used for making any changes and derived
works and it can be modified by all the users (Feller and Fitzgerald, 2002). The first open-source
program was written by Ada Lovelace for calculating Bernoulli’s Number using the Analytical
Engine in earliest of the 18th century. In the 1950s the first high-level programming language
designed and developed by Germans to communicate instructions to the computer (Ceruzzi, 2003).

There are several programming languages for open-source programming such as Java, PHP, Python,
Perl. Each language has its benefits and disadvantages from implementation and programming point

362

Paravarzar Sh. et al. MOL Report Nine © 2018 403-2

of view (RAO, 2014). Source code for these types of programs can be customized efficiently based
on user needs and requirements and the bugs presented in the program can be found easily and fixed,
and users from different countries and backgrounds can participate and collaborated. The codes from
other languages can be translated whereas in case of licensed programming language it is not allowed
(St. Amant, 2007). The source code utilization is unlimited for open-source code while for
commercial software trial version is just available for few days only for it can be provided with a
restriction on usage. The main drawback for open-source programming language is the version of
the code which older versions may not be compatible with a new version of libraries and the original
code should be updated after a while and messy lines of codes can be extremely confusing. Another
weak point is that the solution for specific problems is highly related to the support provided by the
user community. In the area of process and systems simulation there is a verity of simulation software
such as AnyLogic, Arena, AutoMod, GPSS, Flexsim, ProModel, Simcad Pro, VisualSim that are
commercial software and SimPy, Simula, Salabim, Simmer and etc. which are open-source software
(Dagkakis and Heavey, 2016).

The Arena simulation commercial software package is the software provided by Rockwell software
(2018) with the aim of simulation of processes and system performance analysis. This commercial
software is widely used for in mine engineering with a purpose of mining process simulation. Each
simulation process requires the pre- and post-processing stages. For achieving to this goal, Rockwell
Company provided the third party packages as an add-on to Arena simulation software. Process
analyzer is a tool for scenario analysis by execution of different simulation models and scenarios as
useful tools for decision making. Output analyzer is a user interface that provides an easy and quick
way for reviewing the simulation outputs. The main stage of every simulation process is providing
the data from the database and the probability of their occurrence during the time that will be used
in modelling the process. In discrete event simulation occurrence of the events are dependent on the
probability of the occurrence of that specific event which is introduced to the simulation process by
series of probability distribution function. There exist more than eighty different probability
distribution functions that are shared in some properties with each other. Obtaining those functions
require the process of retrieving data from the system of database and distribution fitting for each set
of data or a process in a system. The input analyzer is a versatile tool that could provide the facility
for doing this process. Arena takes the input file and tries to find the best fit for the data twelve
different distribution model provided on input analyzer package and provide the best fit according to
the least square error, chi-square test and Kolmogorov Smirnov test if they are available for the
underlying dataset.

Real simulation process with high precision and detailed modelling requires a detailed analysis of
the data that should be prepared from available databases or sampling on the real process. After data
preparation, the files in *.csv or *.txt format take as an input for the analysis. In case of having several
files, all these processes should be done manually, and all the expressions must be saved in an excel
archive files and call by using VBA programming or manually to their place in the software which
in case of having hundreds of data sets will be a time-consuming process.

In mining process simulation data for discrete simulation process are usually obtain from dispatching
database. These databases consist of thousandths of records for several tables containing multiple
columns. Processing these data and preparation is a complex task for modellers (Fig 1).

The most proper way of retrieving these data is the implementation of a database management system
and link them to the input analyzer in order to have a rapid data derivation from the database
management system. A relational database management system (RDBMS) usually use for this
purpose. Retrieving data from RDBMS requires using the database abstraction layer (DBAL) and
writing the quarries directly on the command line or indirectly on database management software
(Coronel and Morris, 2016). According to DB-Engines, in June 2018, the most widely used systems
were Oracle, MySQL (Free software), Microsoft SQL Server, PostgreSQL(Free software), IBM
DB2, Microsoft Access, and SQLite (Free software).

363

Paravarzar Sh. et al. MOL Report Nine © 2018 403-3

There is not any coherent and direct link between database management software and input analyzer
in Arena simulation software. Making this link requires the establishing the multiple links between
database and Arena simulation. Stages consist of connecting to the database, running the queries,
retrieving the data, data manipulation and saving them in a required format (asci, *.txt, *.csv) as an
input for input analyzer and obtaining the probability distribution function the underlying variables
or datasets.

The common process consists of generating the database from dispatching data, linking the database
to Matlab database analyzer and writing the queries using a Matlab mathematical programming
language and saving the files and manually import them to input analyzer. After fitting the
distribution to each data set by retrieving from queries the user should save the expressions in a file
for using in the simulation process. The process consists of several manual procedures in the whole
of the process.

In this paper, the open-source Python programming language is used with the aim of generating a
comprehensive and coherent process as a replacement for the input analyzer having the capability of
processing the several datasets automatically. Our objective is to retrieve the required data from the
database and directly obtain the distribution function expression file that is required for the
simulation model. In this process, all the intermediate stages combine or omitted. The process is
faster and the outputs can be used directly for simulation modelling process in Arena software. The
comparison between the Matlab and Python process illustrated in Fig 1.

2. Methodology

Python as an open-source programming language provided different libraries for different purposes.
As our goal is to design a process for retrieving the data and then obtain the most fitted distribution
function to the data, it is necessary to use the following packages.

NumPy is the fundamental package for scientific computing in Python providing the arrays and
matrices along with a large high-level mathematical function to operate on those arrays. This package
can be replaced with the computational abilities of Matlab as their functions are C optimized. Pandas
is a package for open-source data analysis and manipulation tools for tabular data. Dataframe and
time series object is the main data structure on panda libraries. Matplotlib is the plotting library for
the Python programming language that is synchronized with NumPy package. Pyodbc is an open-
source Python module that provides access to the ODBC databases. These packages would be a
replacement for Matlab Database explorer package. SciPy it is part of NumPy array object that is
designed for scientific computing and technical computing. Some of the key algorithms of SciPy are
hierarchical clustering, vector quantization, K-means, Discrete Fourier Transform algorithms,
interpolation tools, optimization algorithms including linear programming, etc.

In our research, the SciPy statistic module is the main class that is used for our distribution fitting
goal. More than eighty continuous random variable (RVs) and ten discrete random variables have
been implemented in SciPy package. The process of retrieving data and distribution fitting is based
on pseudo code illustrated in Table 1.

One of the major goals is to test how the obtained data from Python can be feed to Arena simulation
as a distribution function as their parameters and the way to obtain them is a black box in Arena
simulation as commercial software. For this reason, using the similar synthetic dataset, the fitted
distribution in each case should compare with results in both Python and Arena software outputs. For
this aim random variable for each distribution function generated with parameters mostly similar to
the typical and standard shape of each distribution. For instance, in case of normal distribution
synthetic normal data generated using Arena and then based on normal synthetic dataset normal
distribution fitted on data using Python and Arena input analyzer package assuming that our
generated random variable statistically accepted and match with a theoretical distribution. Parameters

364

Paravarzar Sh. et al. MOL Report Nine © 2018 403-4

for each model registered and compared with each other in order to match the parameters. Summary
of the parameters and test results are shown in Table 2.

Table 1 Pseudo code for retrieving data and Python approach

Pseudo code in Python

Import Libraries

For i in a number of queries:

 Connect to database or server using Pyodbc

 Input SQL queries

 Execute SQL queries

 Save data in a temporary variable

 Close the Connection

 If data continuous:

 If data sufficient for draw distribution:

 Call best Fit Function:

 Generate a histogram of data obtain classes and their bin values

 Set best fit as normal and error infinity

 For j in the distribution model

 Try:

 Obtain fit parameters corresponding to the model

 Obtain theoretical PDF of the model

 Compare Experimental Pa DF with a theoretical model

 Calculate squared error

 IF Error is less than the last one

 Set the best distribution as the current

 Set the parameter as the current parameter

 Set error as current error

 Except:

 Calculate the Chi-square and Kolmogorov-Smirnov test

 Return best distribution, Errors, Test results

 elif:

 Consider Mean of data as a random exponential occurrence EXPO ()

 else:

 Calculate Discrete Empirical Function

 Save temporary model

 Plot and save the Figs

Write-Output Files

365

 Paravarzar Sh. et al. MOL Report Nine © 2018 403-5

Fig 1 Comparison of data extraction and distribution model fitting for Matlab and Python

366

 Paravarzar Sh. et al. MOL Report Nine © 2018 403-6

Table 2 Comparison of the distribution model output parameters for Arena input analyzer and Python

Distribution Arena model Python model Link Python output to Arena

BETA Min+Max*BETA(Alpha1, Alpha2) beta(a, b, loc, scale) Loc+Scale*BETA(a,b)

Erlang Offset+Erlang(Exponential Mean, Erlang parameter k) erlang(a, loc, scale) Loc + erlang(scale,a)

Exponential Offset + EXPO(Mean) expon(loc, scale) Loc + EXPO(scale)

Gamma Offset + GAMM(Scale Parameter Beta, Shape Parameter Alpha) gamma(a, loc, scale) Loc + gamma(scale,a)

Normal NORM(Mean, Standard Deviation) norm(loc, scale) NORM(loc,scale)

Triangular TRIA(Minimum Value, Most Likely Value, Maximum Value) triang(c, loc, scale) TRIA(loc, loc+(c*scale), scale)

Uniform UNIF(Minimum Value , Maximum Value) uniform(loc, scale) UNIF(loc,scale)

Weibull WEIB(Scale Parameter Beta, Shape Parameter Alpha) weibull_min(c, loc, scale) loc + WEIB(scale,c)

Johnson JOHN(Shape parameter 1(Gamma), Shape parameter 2(Delta),Scale Parameter
Lamda, Location Parameter Xi)

johnsonsb(a, b, loc, scale) JOHN(-2.19, 1.35, 2.60, 0.21)

Lognormal Offset +LOGN(LogMean ,LogSTD) Lognormal(s, scale, location) No direct conversion

367

 Paravarzar Sh. et al. MOL Report Nine © 2018 403-7

Table 3 Fitted model for normal distribution using synthetic data

Distribution Parameter Arena model
Arena Square

Error
Python model

Python Square
Error

Link Python output to
Arena

Normal Mean = 2.0, Std Dev =
10

NORM(1.71,9.98) 0.000077 NORM(1.746,9.712) 0.00006 NORM(1.746,9.712)

Fig 2 Comparison between input analyzer output and Python for normal distribution using synthetic data

368

 Paravarzar Sh. et al. MOL Report Nine © 2018 403-8

Table 4 Fitted model for lognormal distribution using synthetic data

Distribution Parameter Arena model
Arena
Square
Error

Python model
Python
Square
Error

Link Python
output to Arena

Lognormal LogMean = 2, logSTD
=0.3 , Offset = 5

6+LOGN(1,0.32
8)

0.000770 Lognormal(s=0.16,loc=5.07,scale=1.90) 0.12866 4.258 +
LOGN(2.73,0.285)

Fig 3 Comparison between input analyzer output and Python for lognormal distribution using synthetic data

369

 Paravarzar Sh. et al. MOL Report Nine © 2018 403-9

Table 5 Fitted model for beta distribution using synthetic data

Distribution Parameter Arena model
Arena
Square
Error

Python model
Python Square

Error
Link Python

output to Arena

Beta Alpha1= 0.5,
Alpha2=0.5, Min=0,

Max=2

2 *
BETA(0.547,0.59)

0.001042 Beta(a=0.54,b=0.54,loc=0,scale=2.0) 1.00973 -0.002+ 2.002 *
BETA(0.539,0.54)

Fig 4 Comparison between input analyzer output and Python for beta distribution using synthetic data

370

 Paravarzar Sh. et al. MOL Report Nine © 2018 403-10

Table 6 Fitted model for Gamma distribution using synthetic data

Distribution Parameter Arena model
Arena Square

Error
Python model

Python Square
Error

Link Python
output to Arena

Gamma Alpha = 2 beta=4
offset=5

5 + GAMM(4.04,
1.98)

0.000121 Gamma(a=1.97,
loc=5.01,scale=4.05)

0.000725 5.011 +
GAMM(4.055,1.971)

Fig 5 Comparison between input analyzer output and Python for gamma distribution using synthetic data

371

Paravarzar Sh. et al. MOL Report Nine © 2018 403-11

2.1. Model accuracy and goodness of fit

The goodness of fit is the statistical model provide the numbers for expert’s judgment to assess how
good our distribution fitted model is matched with the theoretical model. These values show the
discrepancy between the observed values and the values obtained from the theoretical model. There
are several ways of performing these tests. In Arena simulation, the tests provided by software are a
square error, Chi-square test, Kolmogorov-Smirnov method. In the next section, a brief description
of these tests is provided. According to the Arena’s manual, the distribution fitting (curve fitting) is
based on maximum likelihood estimators, and the beta, triangular and uniform distributions are
exceptions. The beta distribution is fitted first with maximum likelihood estimators and then
moments, and then the best result among them will accept as the main result. Triangular and uniform
distributions use empirical rules to fit distributions on data. According to SciPy reference fitting
distributions is based on maximizing a log-likelihood function and the outlier’s values receive the
penalty. The answer is not globally optimal, and it is only locally optimal or optimization may fail
altogether.

2.1.1. Square error measurement

The quality of the distribution fitting primarily is based on the square error criterion. This condition
can be defined as a sum of the square difference between the relative frequency of the data for ith
interval and relative frequency of the fitted probability distribution function. This relationship can be
defined as follows:

𝐿𝑆𝑄 = [𝑓𝑖 − 𝑓(𝑥𝑖)]
2 (1)

Where 𝑓𝑖 is relative frequency of data on interval ith and 𝑓(𝑥𝑖) is the relative frequency of the fitted
probability distribution. 𝑓(𝑥𝑖) is obtained from cumulative distribution function by the difference of
the two intervals 𝐹 (𝑥𝑖) − 𝐹 (𝑥𝑖−1) in a case that the cumulative distribution function is not available
the 𝑓(𝑥𝑖) will be determine by numerical integration (Corder and Foreman, 2014; Bethea, 2018).

2.1.2. Kolmogorov-Smirnov Goodness-of-fit test

The Kolmogorov-Smirnov test is used to decide that if the sample under study comes from the same
population for a specific distribution or not. The test is based on the empirical distribution function.
The Kolmogorov-Smirnov test can be defined according to the following formulation

𝐻଴: the data follow a specified distribution

𝐻ଵ: the data do not follow the specific distribution

The Kolmogorov-Smirnov test statistic is defined as:

𝐷 = max
1≤𝑖≤𝑁

(𝐹 (𝑌𝑖) − 𝑖 − 1
𝑁

 , 𝑖
𝑁

− 𝐹 (𝑌𝑖)) (2)

Where F is the theoretical cumulative distribution function of the underlying data which should be
in the form of the continues data and N is the number of samples. The test is a nonparametric test
which Gaussian distribution assumption is not required (Corder and Foreman, 2014; Bethea, 2018).

2.1.3. Chi-square test

The goal of the test is same as the Kolmogorov-Smirnov test; this test can be applied to any univariate
distribution if the cumulative distribution function existed. In our case, the test applied to the binned
data which is calculated from the histogram of the experimental data. So the value that is obtained
for the test depends on the number of binned data, and for this reason, sufficient data should be
available in order to the chi-square test be approximately valid. This test can be applied to discrete
distribution.

372

Paravarzar Sh. et al. MOL Report Nine © 2018 403-12

𝐻଴: the data follow a specified distribution

𝐻௔: the data do not follow the specific distribution

The test is performed on the data that are divided into k bins a, d the test is defined as Error!
Reference source not found.):

𝜒2 = ∑(𝜊𝑖 − Ε𝑖)2/Ε𝑖

𝑘

𝑖=1
 (3)

Where 𝜊௜ is the observed frequency for bin ith and Ε௜is the expected frequency for bin ith and the
expected frequency is calculated from the interval between the lower and upper bound of ith bin and
n is number of data. As explained before the test is sensitive to number of bins and there is not any
optimal value for the test output (Bethea, 2018).

3. Case studies

3.1. Synthetic data

In order to test the compatibility of using SciPy as a replacement of input analyzer synthetic data
generated to performing the tests and comparing the results. Both input analyzer and SciPy have an
ability to generating the random distribution data based on specific distribution. For our goal, the
synthetic data generated using the input analyzer and for each specific distribution typical parameters
assigned in order to generate the typical distribution shapes for each specific distribution types. After
generating the data fitting and corresponding shape parameters obtained and the fitting tools forced
to fit the corresponding model that is directly related to the data. The same process performed by
SciPy package. On the next step, the shape parameters compared with those which obtained from an
input analyzer. The results show the difference for lognormal distribution as the Arena software’s
conversion for mean and standard deviation is different from SciPy libraries. According to SciPy
documentation, the parametrization of random variable X with mean 𝜇 and standard deviation of 𝜎
is expressed as a 𝑒𝑥𝑝𝑜(𝑌) = 𝑋 then the 𝑆 as a shape parameter is equal to 𝜎 and the scale is 𝑠𝑐𝑎𝑙𝑒 =
exp (𝜇). On the other hand, in Arena input analyzer conversions are as Error! Reference source not
found.) to Error! Reference source not found.):

𝐿𝑜𝑔𝑀𝑒𝑎𝑛 = 𝜇 , 𝐿𝑜𝑔𝑆𝑡𝑑 = 𝜎 (4)

𝜇 = ln (
𝜇2

√(𝜎2 + 𝜇2
) (5)

and

𝜎 =
√

ln(𝜎2 + 𝜇2)
𝜇2 (6)

Solving the system of equations, the values obtained by SciPy can be converted to Arena
formulation as Error! Reference source not found.):

𝜎 = √𝑒2𝑆𝑒2𝑠𝑐𝑎𝑙𝑒(𝑒𝑠2 − 1) (7)

𝜇 = √es2 e2scale
(8)

373

Paravarzar Sh. et al. MOL Report Nine © 2018 403-13

3.2. Mining real dataset

Real dispatching data from an open pit mining system used as a database. Dispatching database
contains a table for production, Activity and Shovel_In_Opereation and Trucks_In_Operation
retrieved from the Production table which contains 1,468,959 number of rows and retrieving final
necessary data from those tables. The logic for the database is illustrated in Fig 6.

Data and queries write for two different seasons (summer and winter) based on shovels and trucks
group consist of six shovel types and six truck types. Number of passes for each truck and shovel,
average bucket tonnage for trucks, average loading cycle for shovels, the total cycle time for trucks
are the parameters which are retrieving from the database.

Fig 6 database diagram and relationships between each table for mining database

From the database and running related queries more than 270 series of data obtained that are showing
the behaviour of shovel and trucks and their related parameters in two different seasons. The
simulation model will recognize these behaviours based on a random distribution function. So it
would be necessary to find the best-fitted distribution function model for the data. The process using
Arena input analyzer is not time efficient, so data retrieving from database analyzed with the code
that is provided by Python library, and final results write into CSV file. The fitted parameters
acceptable as an input for Arena software are shown in Table 7 for discrete and continues variables
with a related fitted distribution on Figs 7 and 8.

374

 Paravarzar Sh. et al. MOL Report Nine © 2018 403-14

Table 7 Retrieved data and their fitted distribution with its parameters

Retrieved data Best distribution Expression Least Square Error

Average_ Load_CycleTime _summerData_992GHL_CAT77D gamma -21.103 + GAMM(4.976,11.239) 0.000517865

Average_Load_CycleTime_winterData_Hit 5500EX_CAT 793D norm NORM(53.792,13.388) 0.000445379

backing_time_summerData_CAT 793D lognorm -11.024 + LOGN(24.36,6.468) 0.017501618

backing_time_winterData_CAT 793DT lognorm -9.064 + LOGN(24.701,7.607) 0.006585836

speed_Empty_winterData_CAT 793DT norm NORM(36.952,8.073) 0.000889691

speed_Empty_winterData_Cat 793B norm NORM(32.726,9.802) 0.000368787

SpotTime_summerData_CAT 785C_Hit 5500EX lognorm 0.025 + LOGN(47.374,54.748) 0.000209112

SpotTime_summerData_CAT 793B_Hit 5500EX lognorm -0.269 + LOGN(64.171,77.815) 7.91092E-05

Avg_Bucket_Ton_summerData_Hit 5500EX_CAT 785C lognorm 45.228 + LOGN(26.351,5.923) 0.00641712

Avg_Bucket_Ton_winterData_Hit 5500EX_CAT 793DT norm NORM(80.001,3.894) 0.085005238

NumPass_winterData_CAT 994F_CAT 793B discrete cumulative DISC(0.0,0,0.007,1,0.035,2,1.0,3)

NumPass_summerData_Hit 2500_CAT 793D discrete cumulative DISC(0.005,0,0.075,1,1.0,2)

375

Paravarzar Sh. et al. MOL Report Nine © 2018 403-15

(a) (b)

(c) (d)

(e) (f)

Fig 7 fitted distribution for average load cycle time for shovel CAT 992GHL and truck CAT 777D summer (a)
and average load cycle time for winter data for shovel Hit 5500EX truck CAT 793D (b), average bucket
tonnage for summer data shovel Hit 5500EX truck CAT 785C (c) and average bucket tonnage for winter data
Hit 5500EX CAT 793DT (d), backing time for summer data truck CAT 793D (e) and backing time for winter
data CAT 793DT (f).

376

Paravarzar Sh. et al. MOL Report Nine © 2018 403-16

(a) (b)

(c) (d)

(e) (f)

Fig 8 Fitted distribution for speed empty travel on winter for CAT 793DT (a) and for CAT 793B (b), spot time
for summer data on shovel Hit 5500EX for truck CAT 785C (c) and truck CAT 793B (d), number of passes
for winter data on shovel Hit 2500 truck CAT 793B (e) and shovel CAT 994F truck CAT 793B (f)

377

Paravarzar Sh. et al. MOL Report Nine © 2018 403-17

4. Conclusion

Open-source programming using Python programming language implemented for pre-processing
analysis of data retrieving from dispatching database. The code provided has an ability to retrieving
the data from the database and fit the distributions automatically to the data and generate the file
consist of distribution expressions which are required for performing the simulation. The results
show that the data manipulation such as removing outliers, duplicate values, bimodality, etc. can
have a great effect on output results. Arena simulation software supports a restricted range of
distributions and is not able to fit and use bimodal distributions model for the simulation process.

For this reason, after retrieving data from the database, the data should belong to the same population
and check for the corresponding hypothesis. In case of not having a sufficient number of data the
number of bins can change to the critical parameters as the current methods for automatically
choosing the number of bins will be failed to obtain the optimum number of the bins and expert’s
ideas will be required and the process will be performed by trial and error for choosing the suitable
number of bins. The advantage of the method, using Python versus Matlab programming language,
is providing more coherent and faster process for pre-processing of the data with the lowest cost for
time and money.

5. References

[1] Bethea, R. M. (2018). Statistical methods for engineers and scientists. Routledge,

[2] Ceruzzi, P. E. (2003). A history of modern computing. MIT press.

[3] Corder, G. W. and Foreman, D. I. (2014). Nonparametric Statistics: A Step-by-Step
Approach. Wiley.

[4] Coronel, C. and Morris, S. (2016). Database systems: design, implementation, &
management. Cengage Learning.

[5] Dagkakis, G. and Heavey, C. (2016). A review of open source discrete event simulation
software for operations research. Journal of Simulation, 10 (3), 193-206.

[6] Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development.
Addison-Wesley.

[7] Laurent, A. M. S. (2004). Understanding Open Source and Free Software Licensing: Guide
to Navigating Licensing Issues in Existing & New Software. O'Reilly Media.

[8] Liberman, M. (1995). Overreaching Provisions in Software License Agreements. Richmond
Journal of Law & Technology, 1 (1), 4.

[9] RAO, M. N. (2014). FUNDAMENTALS OF OPEN SOURCE SOFTWARE. PHI Learning,

[10] Rockwell software (2018). Arena simulation. Rockwell software, Retrieved 2018 from:
https://www.arenasimulation.com/

[11] St. Amant, K. (2007). Handbook of Research on Open Source Software: Technological,
Economic, and Social Perspectives: Technological, Economic, and Social Perspectives.
Information Science Reference.

378

