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ABSTRACT 

Discrete fracture networks allow for real structural features to be represented when considering a 
specific volume of rock. Through the construction of valid fracture network models, emergent 
properties can be identified that can be useful for engineering applications. MoFrac discrete fracture 
network modelling software can be used to develop realistic models of fracture networks in selected 
rock masses that are to be blasted. By including statistically derived stochastic fractures into fracture 
network models, where mapping has not occurred, a complete representation of the structural 
discontinuities in a specific volume of rock can be achieved. Emergent properties of fracture 
networks that are useful for characterization have been identified. These properties include in situ 
block size distributions and heterogeneity of the rock mass character. A method to determine these 
properties is presented and these characteristics are considered for two DFN models. These models 
are generated and analyzed using the MoFrac code. For future research, a fragmentation model is 
proposed that incorporates the identified emergent properties of a discrete fracture network model 
for blast optimization by means of a rock engineering systems solution.  

1. Introduction

A rockmass consists of the rock matrix and the network of discontinuities within it. Rockmass 
characterization is dependent on both of these qualities. Discrete fracture network (DFN) modelling 
allows for the discontinuities in a rockmass to be mapped and analyzed. The modelling of 
discontinuities is independent of the rock matrix characteristics and can be considered separately.  

DFN models are generated using software that is designed to create statistically viable fracture 
networks based on fracture size and orientation distributions. A deterministic DFN model is based 
on mapped data, fractures are generated in the model that honour mapped traces and facets of known 
fractures. A stochastic DFN model is based on probability distributions with fractures seeded 
randomly within a volume. A hybrid DFN model incorporates both deterministic and stochastic 
fractures (Lei et al., 2017). A deterministic DFN model is useful when considering individual 
discontinuities and rockmass failure at known locations whereas a stochastic DFN model is more 
useful when considering the model as a whole as any particular fracture is likely not located where 
a discontinuity actually exists. A hybrid DFN model allows for known data to be included in a more 
complete representation of a rockmass that includes fractures seeded in areas where mapping could 
not take place. By having stochastic fractures defined using the size and orientation distributions 
expected to be encountered allows for constraints to be imposed that agree with known data. 

A realistic representation of a fracture network is useful for several engineering applications. 
Hydrogeological modelling, rockmass failure studies, ore reserve analysis and blast optimization are 
areas of study that are enhanced with knowledge of existing fracture networks.  
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2. DFN Modelling 

The representation of fracture networks in three dimensions is of great interest to engineers but 
difficult to achieve due to the limitations of mapping. True three dimensional mapping is a 
destructive process and thus not applicable to most projects. Hybrid DFN models containing both 
fractures seeded from deterministic traces as well as stochastically derived fractures are useful when 
considering the DFN model as a whole (Dershowitz and Einstein, 1988). By including 
deterministically seeded fractures the disaggregate approach of analysis becomes more applicable 
and thus heterogeneity in a DFN can have meaning other than as derived from the statistical rules 
used to generate the DFN model. 

All DFN models for this study were generated using the Beta v. 0.8 build of MoFrac (MIRARCO, 
2018). MoFrac is a DFN modelling tool that generates fractures deterministically from mapped data 
or stochastically as sampled from size and orientation distributions. Fractures are optionally 
generated with undulation through tessellation of the fracture mesh to yield a realistic looking DFN 
model. Priority is given to deterministic fractures as they come first in the modelling process. The 
software has been verified through validation studies modelling the fracture networks for a tunnel at 
the SKB’s Äspö Hard Rock Laboratory and for the Canadian Shield Dataset further described in 
Section 2.1 (Junkin, et al., 2017; 2018). These studies validated MoFrac-generated DFN models by 
considering orientation, intensity and trace maps as Miyoshi et al. (2018) describes as necessary for 
validation. 

The goal of this study is to consider a method of measuring the heterogeneity of DFN attributes such 
as fracture intensity. A voxelization of DFN models allows for a spatial analysis at multiple scales. 
The subdivision of a DFN into component sections allows for the variability in an attribute such as 
fracture intensity to be measured. The P32 intensity of DFN models will be considered on a 
deterministic and a stochastic DFN model with subdivisions of 1 (13), 8 (23), 125 (53), 1 000 (103), 
3375 (153) and 15625 (253) voxels. Fig. 1 shows an example of voxelization of a simple cube into 
1000 component voxels (103). P32 intensity is a measure of the sum of the surface areas of fractures 
within a given volume divided by that volume, calculated as shown in Eq. (1). 
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The benefit of using P32 intensities to characterize a DFN is that this measure is scale independent 
and there is no bias related to the direction of measurement as occurs with P21 values (Dershowitz 
and Herda, 1992; Alghalandis and Elmo, 2018). By considering fracture intensity by layer and 
subsections of a DFN model a new method of visualizing DFN models is proposed that honours the 
location of discrete elements but does not require the elements to be explicitly contained within the 
model. 

 
Fig. 1. Example of 10 x 10 x 10 voxelization of a simple cube. 
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2.1. Canadian Shield dataset 

The Canadian Shield dataset developed by R. Mohan Srivastava was used as the input for a 
deterministic model to be generated. The Canadian Shield dataset was developed in 2002 for the 
Third Case Study of the Deep Geological Repository technical program of Ontario Power Generation 
(Gierszewski et al., 2004). The dataset incorporates discontinuities mapped from an aerial 
photograph of a typical Canadian Shield setting with simulated fracture traces added to have the 
fracture intensity match expected values for the Canadian Shield (Srivastava, 2002). The dataset 
covers 200 km2 of surface area as shown in Fig. 2 and for the purpose of this study a DFN model 
with a depth of 200 m was used. The total volume of the DFN model being roughly 40 km3.   

This dataset has been used for validation studies on the MoFrac code and the orientations for fracture 
sets from these studies have been used again here (Junkin et al., 2018). Two major fracture sets are 
identified with strike angles of 298° and 240° and a third random group identified with strike angle 
of 8°. These orientations are used with a standard deviation of 10° for the sampling of strike values 
for the fractures modelled. Dip angle is controlled through a dip undulation scheme with fractures 
set to dip vertically +/- 10°.  

 

 
Fig. 2. Integrated Canadian Shield dataset shown with surficial water features as seen in original aerial 

photograph (Srivastava, 2002). 

2.2. Stochastic DFN models 

A stochastic DFN model was also designed in order to consider the proposed characterization 
technique. This model was designed with the eventual goal of blast optimization. The model was set 
up with 25 rectangular regions in a 5 x 5 pattern as viewed from surface. These rectangular columns 
are 10 x 10 x 50 units, in combination they form a 50 x 50 x 50 cube. Fig. 3 shows the defined regions 
in the stochastic DFN model.  
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Fig. 3 Location of defined regions in stochastic DFN models. Unique colours represent individual regions 

and simulated deterministic traces shown in black. 

Three fracture groups are defined for the model with orientation distributions as given in Table 1. 
Stochastic fractures also have size defined through a Cumulative Area Distribution (CAD). The input 
CAD values define a straight line on a log-log plot of fracture size and the number of fractures greater 
than the threshold divided by the model volume. These values are shown in Fig. 4 along with the 
distribution of actual fracture surface areas as measured from a resulting DFN model. The resultant 
orientation distributions for each group are shown in Wulff stereonets in Fig. 5 with values calculated 
using Dips v. 6.017 (Rocscience, 2016) included in Table 1 for comparison with input values.  

Stochastic fractures are seeded in regions individually allowing for variability in orientation and 
intensity between regions if desired. Size distributions define that stochastic fractures will have 
surface areas less than 100 m2. The size of each region is 10 x 10 x 50 m3 thus all stochastic fractures 
will be non-persistent through the model and their region of origin. Fractures are defined not to 
terminate against other fractures nor to terminate at a regional boundary. There is an expected 
boundary effect in terms of intensity as regions in the center of the DFN model. This is because 
regions will have fractures propagate into them from neighbouring regions and thus final fracture 
intensity will be related to the number of neighbouring regions.  

Ten realizations of the stochastic DFN model were generated for analysis. The model was also 
designed with an external region 1 unit thick surrounding the 25 stochastic regions. This external 
region allows for the inclusion of deterministic traces. By including deterministic traces, studies to 
determine the minimum size of fracture that needs to be included in mapping can be determined. The 
size should reflect the minimum sized feature that is required to have a representative distribution of 
fracture intensity and blocks. A second set of smaller, non-persistent fractures can be included into 
the model in order to achieve the predicted overall intensity. 
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Table 1. Comparison of input orientation distributions with realized orientations for a single stochastic DFN 

model. 

Fracture 
group 

Input dip 
(°) 

Standard 
deviation 
of dip (°) 

Input dip 
direction 

(°) 

Standard 
deviation 

of dip 
direction 

(°) 

Resultant 
dip (°) 

Resultant 
dip 

direction 
(°) 

Fisher K 
statistic 

1 90 15 90 15 88.54 89.6 15.8 

2 90 15 180 15 89.98 179.14 16.59 

3 0 5 125 15 0.44 141.74 158.973 

 
Fig. 4. Input CAD parameters shown as straight line and data points for realized fractures in (a) group 1,       

(b) group 2, and (c) group 3.  

3. Emergent Properties of DFN Models 

An emergent property of a system can be defined as a property resulting from the collective effects 
of the interaction of the component parts of a system. For DFN modelling, emergent properties are 
only observable when considering the DFN as a whole and cannot be determined by simply 
examining the input values. For the purpose of DFN modelling with MoFrac several input variables 
are required. Fracture orientation distributions are required for each defined fracture group, size 
distributions are also required which when considered with respect to the model size can define 
fracture persistence. Fracture intensity is also required as an input, MoFrac accepts fracture 

(a) 

(b) 

(c) 
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intensities and size distributions as two points and a slope on a Cumulative Length Distribution 
(CLD) or CAD curve. 

 

 
Fig. 5. Stereonets showing fracture orientation distributions in a single DFN realization for fractures in        

(a) group 1, (b) group 2, and (c) group 3.  

Following the generation of a DFN model based on the required inputs several measures of emergent 
properties can be considered. The in situ Block size Distribution (ISBD) of a rock mass has been 
identified as vital for optimization of processes such as rock blasting and rock slope angle 
determination (Mavrouli, et al., 2015). Fracture intensity is also important to these two areas of 
optimization and also is significant for hydraulic modelling of a rockmass (Lei,  et al., 2017; 
Appleyard, et al., 2018) and ore reserve estimation (Mooney and Boisvert, 2016). 

This study identifies a simple method of querying blocks within a DFN model for fracture intensity 
(P32) at different scales. This method allows for a characterization of the variability of intensity within 
a DFN model as well as for the measurement of the changes in the coefficient of variation (CV %) 
when considering different sample block sizes. The data collected also allows for an estimation of 
ISBD within the DFN model. 

Where DFN models consisting of non-persistent fractures have defined boundaries where fractures 
will not be seeded a boundary effect is to be expected. By considering the fracture intensity in the 
layer of exterior blocks compared to the interior blocks for different block sizes an estimation of the 
boundary effect based on fracture size and orientation is possible, again using the data collected to 
characterize fracture intensity.  

In summary four emergent properties will be explored using the method of querying sample blocks 
of a DFN model for fracture intensity. The four emergent properties under study are: 

 Measuring heterogeneity of fracture intensity;  

 Measuring the coefficient of variation for different inspection block sizes; 

 Estimation of in situ block size distribution;  

 Estimation of the area of influence of any boundary effect. 

These properties of a DFN model are considered as well as regular validation of DFN models. For 
stochastic fractures, these include honouring fracture orientation and size distributions with respect 
to inputs; for deterministic fractures, validation is based on location and orientation errors with 
respect to input data of mapped fractures. 

There is ongoing work considering the mapping of rock bridges that occur within a rock mass. A 
rock bridge can be defined as the competent sections of rock between discontinuities. Alghalandis 
and Elmo (2018) demonstrate a means of quantifying the degree of rock bridging in a rock mass in 
an analogous way to determining fracture intensity as presented by Dershowitz and Herda (1992). 
For example a P32 intensity quantifies the sum surface area of fractures within a defined volume and 
a RB32 value considers the surface area of rock bridges within a volume of rock. The method outlined 

(a) (b) (c) 
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in this study is based on calculations of P32 intensity in sample blocks, it should be noted that a new 
set of emergent properties could evolve from similar analysis of RB32 values in the same sample 
blocks. A relation between fracture intensity and rock bridge formation could also arise through this 
type of analysis. 

3.1. Fracture intensity 

Fracture intensity in a DFN model is often described as a P10 (number of fractures per linear unit), 
P21 (sum length of fractures per aerial unit), or P32 (sum area of fractures per volumetric unit) value 
(Dershowitz and Herda, 1992). Fracture intensity can also be described using CLD and CAD curves 
that separate size and intensity as separate factors. Fractures can be seeded in DFN models according 
to either type of input intensity (Ryan, et al., 2000). Input intensities can be easily verified against 
resulting DFN models, as in Fig. 4, or by calculating the appropriate intensity for comparison to input 
values.  

The use of inspection blocks to analyze the DFN infers that using the P32 intensity measure represents 
information representative of the entire cube. Having a single value allows for a consideration of the 
change in intensity between sampled blocks in the DFN model. The degree of spatial variability of 
fracture intensities is a characteristic that is useful for optimization of blast design. By having fracture 
intensity data for all component cubes of the DFN it is possible to view the DFN in new ways. The 
area of influence for a blast hole can be considered independently, layers of a DFN can be assessed 
for connectivity of high intensity blocks, and boundary effects of the DFN can be quantified.  

The mean intensity is a useful measure to characterize a sampled volume as a whole and the standard 
deviation gives a measure of variance. The coefficient of variation (CV%) is defined as the ratio of 
the standard deviation to the mean and is useful in normalizing data for comparison, for example, 
DFN models of different scales. By sampling a DFN several times with inspection cubes of different 
volumes the change in the CV% is considered as a characteristic and emergent property of the DFN 
models. This characteristic parameter shows potential to be useful in optimizing the size of blast 
holes during blast design, namely by limiting the area of influence to areas of low variance (CV%<1). 

3.2. In situ block size distribution (ISBD) 

The advancements in the development of methods to determine in situ block size distributions in 
undisturbed rock has been outlined by Elmouttie and Poropat (2012). Methods have become more 
sophisticated over time but four limitations were identified in their review: 

 The ability to account for non-persistent fractures; 

 The ability to account for more than three fracture groups; 

 The use of fully detailed DFN models in Monte Carlo simulations; 

 Simplifications and approximations required (ie. convex blocks). 

Generally these limitations were found to result in over estimation of fragmentation, thus an over 
estimation of fracture intensity.  Rogers et al. (2007) documents the first attempts to derive an ISBD 
from a fully defined DFN model. It was noted that using this approach blocks can be formed from 
the interaction of an unlimited number of fractures. The difficulties in determining block size 
distributions when fractures are smaller relative to intensity (less persistent) was also highlighted in 
the work, showing that smaller fractures can often intersect a block but do not cross it. This leads to 
concave blocks to be modelled. The significance between the occurrence of convex and concave 
blocks would affect different optimization problems in different ways. 

The method of estimating in situ block size distribution suggested by Elmouttie and Porpat (2012) 
address the limitations as listed above. A DFN model that consists of polygonal approximations is 
used to calculate the ISBD thus allowing for non-persistent joints and blocks formed from multiple 
joints to exist within a DFN model that is analyzed. The fractures included in the models of Elmouttie 
and Poropat are planar, there is no undulation of fractures as there is with MoFrac-generated 
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fractures. The inclusion of undulating fractures in a MoFrac DFN further complicates the potential 
geometry of block shapes that can be encountered. It is accepted that a three dimensional DFN model 
represents the possibilities of block formation in a rock mass to a greater degree of accuracy than is 
possible from analysis of two dimensional slices taken from a DFN and analyzed for closed polygons 
(Miyoshi, et al., 2018). A new method of using data obtained when considering fracture intensity is 
proposed that directly queries the DFN model for a variety of block sizes for the presence of any 
fractures. This allows for block sizes to be determined from any number of fracture groups with any 
degree of persistence as they are measured directly from the DFN model. From this data an estimate 
of ISBD can be obtained as demonstrated in Section 6.4. 

3.3. Rock bridges 

Rock bridges are defined as the parts of intact rock surrounded by fractures (Alghalandis and Elmo, 
2018). A definition that is very similar to what one would consider an in situ block. Whereas block 
size distributions are significant to fragmentation and the magnitude of potential slope failure, due 
to the quantity of rock that may fail, rock bridges are important in that they can define a route that 
existing fractures will coalesce during rock failure. Both of these factors are integral to a subject such 
as blast design as the block size will determine the amount of explosives to be used and the 
knowledge of rock bridges could be used to determine blasthole location that will optimize the use 
of the blast energy in the area that is to be fragmented. Aghlandis and Elmo propose the use of a 
measurement analogous to fracture intensity measures. In two dimensions an RB21 measurement 
gives the minimum linear length of intact rock between fracture traces needed to contact two 
boundaries of a DFN model.  

The RB21 value could be useful as an additional emergent property of DFN models useful for design 
optimization. An RB32 measurement can also be made in three dimensions that could be calculated 
using the same approach of voxelation as proposed in this paper. The degree to which rock bridge 
intensities change with sample size would be a useful parameter to determine how energy will flow 
through a rock mass during failure or blasting. 

3.4. Orientation and fracture size distributions 

Fracture group orientation and size distributions are required to model fractures with MoFrac. Being 
the main inputs to the DFN recipe it is important to verify that the inputs assigned have in fact been 
realized. Figs. 4 and 5 visually show the process of verifying orientation and size distributions. This 
is the main method used to verify a stochastic DFN model compared to measuring the degree to 
which traces and assigned orientations are honoured in a deterministic DFN. There are additional 
tests and comparisons that can be accomplished once a DFN has been generated that would qualify 
as an emergent property. For example in Table 1 the input orientations for the stochastic model were 
given as a mean and standard deviation for strike and dip separately. An alternative method is to give 
the strike and dip along with the Fisher k statistic which is a measurement of clustering when 
visualized on a stereonet. A larger Fisher k value is associated with a tighter cluster of orientations. 
The stereonets show that fracture group three is much more clustered than groups one and two. This 
is due to the lower standard deviation assigned to the dip value for the third group. This clustering is 
verified by calculating the Fisher k value as shown in Table 1. In a similar way the fracture intensities 
for the stochastic models are defined using a CAD curve, once a DFN model has been generated it 
is then possible to consider P32 values as a verification and comparison. There is a need for future 
work to consider the relation between both types of intensity and orientation measurements 
specifically related to MoFrac-generated DFN models.  

4. DFN Characterization Technique 

DFN models have shown to demonstrate opportunities in modelling heterogeneity in a rock mass 
when compared to equivalent medium techniques. DFN models that represent actual rock masses are 
generally considered to be a combination of fractures seeded from mapped fractures with stochastic 
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fractures derived from statistics associated with what has been mapped (Elmouttie and Poropat, 
2012). Stochastic fracture size distributions are generally shown to be power law when the effect of 
sampling bias is minimized and thus power law distributions are used for determining fracture size 
through use of a Cumulative Area Distribution (CAD) (Tonon and Chen, 2007). 

A DFN characterization is proposed that allows for a DFN model to be analyzed after discretization 
through voxelization as shown in Fig. 2. The P32 values of component voxels is determined and 
mapped by layer using a heat map designed using Excel Visual Basic for Applications (VBA). The 
goal of this method is to create a heat map that characterizes the DFN model implicitly where fracture 
location can be identified by increases in fracture intensity, the second goal is to identify the 
distribution of intensities throughout the DFN establishing a measure of heterogeneity of intensity 
within the DFN models generated. The characterization of these regions will be verified by using 
simulated boreholes in the DFN models used to measure P10 values that will show the same trends as 
predicted using the analysis of individual voxels.  

5. Analysis of Canadian Shield DFN Model 

Ten realizations of the Canadian Shield deterministic DFN were generated to be analyzed at different 
scales of voxelization. All five models were verified using a metric for the location error of the 
fracture traces. Results were similar to those found in previous validation studies using the dataset 
(Junkin et al., 2018). Longitudinal Root Square Mean Error (LRSME) values comparing the input 
traces to traces from an inspection slice on the surface averaged 4.09 m with a standard deviation of 
11.91 m. The method followed that of previous validation studies (Junkin et al., 2017; 2018) 
Variability in the strike to dip ratio and Trace Area Constraint (TAC) factor resulted in randomness 
to the geometry of fractures thus yielding a variety of different realizations for analysis. The location 
error remained constant meaning that fracture traces were honoured to the same degree despite the 
geometry of individual fractures changing. One realization of the Canadian Shield DFN is shown in 
Fig. 6, the model extends to 200 m depth with a surface area of 200 km2. The trace map and an 
inspection plan on surface from a single realization are shown superimposed on each other in Fig. 7 
to visualize the degree of fit between fractures and input traces. 

 
Fig. 6. Single DFN realization of the Canadian Shield dataset, coloured by fracture group. 
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Fig. 7. Comparison of input traces to an inspection plane of a single realization of the Canadian Shield DFN 

model cut on the same plane as input traces. 

5.1. Coefficient of variation (CV %) plot 

In order to characterize heterogeneity of fracture intensity at multiple scales the coefficient of 
variation (CV %) is considered for each size of inspection cube. This is a useful measure of fracture 
intensity variation in a DFN as multiple scales are considered and the trends in changes in CV% 
dependent on sample size can be easily visualized. It is proposed that the curve resulting from plotting 
CV% against block size is characteristic to a representative DFN model. This method can be used to 
verify that multiple realizations of the same DFN are demonstrating similar characteristics over the 
scales used for sampling. A CV% value is considered low variance when below 1, meaning the 
standard deviation is less than the mean. A high variance occurs when CV% is greater than 1. Fig. 8 
shows the plot of the CV% vs block size for the Canadian Shield model as well as the stochastic 
model which will be discussed in Section 6. Based on the Canadian Shield curve it can be seen that 
when considering the whole model high variance occurs when a block size of approximately 200 000 
m2 is used. These curves will be dependent both on the DFN and the geometry of the sample blocks.  

 
Fig. 8. Coefficient of variation plotted against inspection block size for both the Canadian Shield and 

stochastic DFN models. 
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5.2. In situ block size estimation 

A benefit of calculating the P32 fracture intensity for a variety of sizes of blocks within a DFN and to 
calculating the intensity for all blocks is that an estimate of the ISBD can be achieved by counting 
null blocks, blocks that have a fracture intensity of 0. For this case ISBD curves were achieved by 
considering the number of null blocks. The largest block encompasses the entire DFN and thus a 
fracture intensity of 0 will not occur if any fractures are present. The largest null cubes are 
encountered when using a voxelization of 10 x 10 x 10 for analysis. This equates to a block size of 
200 000 m3. As progressively more null blocks are found and higher resolutions the volume of blocks 
accounted for by larger blocks are subtracted from the new sum volume of null blocks. This ensures 
that null blocks are not counted twice when creating this plot. It can be seen that the resulting 
distribution follows the power law as is expected with a block size distribution. As there is no 
association of null blocks with neighbouring null blocks it is expected that this estimate will 
overestimate small blocks and underestimate large blocks. This will result in an overestimation of 
fracturing in the model but still provides an indication as to the actual ISBD for the DFN and could 
be incorporated into optimization models. The ISBD estimate associated with a single DFN 
realization of the Canadian Shield DFN models is presented in Fig. 9. 

 
Fig. 9. Estimated In situ block size distribution from counting null cubes for a single realization of the 

Canadian Shield DFN model as measured over ten DFN realizations. 

6. Analysis of Stochastic DFN Models 

Ten realizations of the stochastic DFN model were generated for analysis. By including both a 
deterministic and stochastic DFN in this study the methods of analysis presented are shown to be 
highly versatile, it is also inferred that these methods will be applicable to analysis of hybrid models 
and will be integral for determining the scale of geological mapping that should be included in DFN 
models used for engineering design. Fig. 10 shows two views of a single realization of the stochastic 
model, one view showing the fractures coloured by group and another showing the fractures coloured 
by region. Although all regions are defined as having the same intensity and the result is that each 
region is composed of 30 fractures it can be seen that they differ greatly when sampled individually. 
A boundary effect is expected on exterior blocks that will result in a slightly lower intensity as no 
fractures are able to leak into these regions from the exterior of the model which would not be 
representative of the natural case. The orientations and intensities of these models were validated as 
shown in Fig. 4 and Fig. 5.  
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Fig. 10. A single realization of the stochastic model including deterministic fractures (a) coloured by fracture 

group and (b) coloured by region. 

6.1. Fracture intensity mapping 

By considering the intensities of all cubes in a DFN model it is possible to generate maps showing 
changes in intensity throughout a DFN. As an example Fig. 11 shows data from ten layers of a single 
realization of a stochastic model. From top down, left to right, layers 1 to 10 are shown as a trace 
map, a fracture intensity heat map and a histogram showing the distribution of intensities specific to 
the layer. The boundary effects can be seen by comparing the slices from the top and bottom of the 
model to the interior slices. It can be seen visually that there is a larger number of low intensity blue 
squares for these layers. This method of visualization can be applied both to layers in a DFN or 
defined volumes. This allows for the area of influence of a blast hole to be isolated and considered 
alone. By changing the amount of explosive used the area of influence is changed and thus can be 
optimized to incorporate only the desired range of fracture intensity in the area of influence for a 
single blast hole. 

 
Fig. 11. Comparison of fracture intensities graphed on a heat map with histogram showing intensity 

distribution by layer of a purely stochastic DFN model (green-low intensity, green-medium intensity, pink-
high intensity, red-very high intensity). 

The mapping of fracture intensity also allows for a visual validation of the method of visualization. 
By superimposing fracture traces on the heat map generated a shown in Fig. 12 the location of high 
fracture intensities can be seen to match the high intensity squares (pink and red). This shows that if 

(a) (b) 
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the location of specific fractures is not required but it is still desired to consider a disaggregate 
representation of a rock mass that a three dimensional heat map can be used. This would require 
significantly less memory for visualization and for incorporating DFN data into other engineering 
computer models. 

6.2. Boundary effects 

As fractures can propagate from one region to another depending on their seed point within a region 
a boundary effect is expected that will result in lower intensities on exterior blocks. This is due to 
the fact that no fractures are seeded out of bounds that could leak into a region that is within the 
DFN. For example a block in the center of a DFN would have 6 neighbouring blocks but a block on 
the corner of a DFN would only have 3 neighbouring blocks. It would be expected that the corner 
blocks would have half as many fractures propagate into them as would blocks in the center of the 
DFN.  

The P32 fracture intensity is plotted by layer in Fig. 13 with the standard deviation of intensity for 
each layer. This graph shows that there is an observable decrease in intensity for the top and bottom 
layers. The standard deviation for these layers does fall into the range of intensities of the interior 
layers. This demonstrates that although the overall intensity is lower that there will still be some 
areas of high intensity on the exterior of the DFN models as can be seen by comparing layers in Fig. 
11. 

 
Fig. 12. Close up of heat map for layer 5 and layer 10 of a purely stochastic DFN model with superimposed 

fracture traces from the midpoint of the layer (green-low intensity, green-medium intensity, pink-high 
intensity, red-very high intensity). 

Based on the fact that a boundary effect is expected and the fact that it is demonstrated through visual 
inspection and quantitatively when comparing fracture intensities, it was deemed necessary to further 
investigate this phenomenon. Fig. 14 shows a curve that considers the difference between the mean 
fracture intensity for exterior and interior blocks in a DFN model based on block size. It is proposed 
that the extent of the boundary effect can be determined through this analysis. A peak is noted in the 
difference in intensities for a block size of 20 m3. This equates to a boundary effect of approximately 
2.75 m, or one quarter of a 10 x 10 m2 region with fractures from 50 to 100 m2 being seeded.  

 

(a) (b) 
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Fig. 13. Variability in P32 in a single realization of a stochastic DFN model by layer (5 m thick, numbered 

from bottom to top), error bars show standard deviation. 

 

 
Fig. 14. Difference between interior and exterior P32 intensities vs. sample block size 

6.3. Fracture intensity distributions and CV% plot 

In order to view the distributions of fracture intensities that result from stochastic seeding Fig. 15 
was created. By considering how the distribution of fracture intensities changes with sample size and 
estimation can be made as to what size of block should be used for sampling and what distribution 
would be expected. This allows for a prediction of fracture intensity if there is a limited number of 
sampled cubes. For the case of Fig. 20 only 10 000 blocks were sampled for the 100 x 100 x 100 
voxelation. The distribution has appeared to break down at this point with peaks at P32 of 2, 4, and 
potentially 6. These peaks need to be further investigated to determine if they are representative of 
the entire DFN and if so to determine the cause.  
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Fig. 15. Fracture intensity distributions with respect to voxelation.  

Through the generation of this figure it is possible to view the fracture intensity distribution, 
estimation of ISBD (y axis values) and the CV% by considering the deviation of the distribution 
from normal. A CV% curve was plotted for all ten realizations of the stochastic DFN model and is 
included in Fig. 8. When compared directly to the Canadian Shield curve it can be seen that both 
the location and shape of the curve has changed. It is proposed that this shape is characteristic of a 
DFN. The shift in the curve to the left means that there is a lower degree of variance at smaller 
scales than the Canadian Shield which is likely a function of fracture size and orientation with 
respect to the experimental volume.  

6.4. In situ block size estimation 

Using the method of ISBD estimation presented in Section 5.2 a block size distribution for a 
realization of the stochastic was created and is presented in Fig. 21. This curves again is indicative 
of a power law relation as is expected. The largest blocks are predicted to be about 125 m3 or 5 x 5 
x 5 m3. By using progressively smaller sample blocks it is possible to define blocks using this method 
to a very small size given the computing power. The smallest block size shown in Fig. 21 is a result 
of a 22 x 22 x 22 m3 inspection of the DFN.  

7. Discussion 

A new method of analysis is presented in this study that applies directly to MoFrac-generated DFN 
models. MoFrac DFN models contain non-persistent, undulating fractures and thus estimates of 
fracture intensity and block size distribution must be derived from generated models. DFN models 
are both generated and analyzed using the MoFrac code.  

By dividing the DFN into component blocks at different scales and measuring fracture intensity it is 
possible to derive several tools for analysis. Three of these tools are: 

 The CV% plot 

 Intensity distribution analysis 

 ISBD estimation 

The values used to determine values that enable these three tools are all visible in Fig. 16. Further to 
these three tools a new method of visualizing MoFrac fractures is presented that replaces actual 
fractures with inspection cubes that shows fracture intensity in a sense analogous to a heat map. This 
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visualization allows for understanding of any boundary effect with MoFrac that was characterized in 
further detail in this study. It would be necessary to calculate the boundary effect for any new DFN 
until relation between fracture intensity and orientation in a MoFrac DFN can be used to generate a 
function that predicts block size. The use of CV% is a measure of fracture intensity variation over 
different scales and is useful to determine if fractures of the correct size are included in DFN models 
for engineering design and also of use to optimize such designs. AN estimation of ISBD has been 
presented that utilizes the data collected to obtain the CV% plot. Although this method serves as an 
estimate only there is indication that with refinement the method can be used to measure actual block 
sizes within a DFN by querying null blocks for neighbouring null blocks and summing the volume 
of connected blocks. This would mean that only one analysis would be required with a block size 
equivalent to the smallest block volume desired for consideration.  

 
Fig. 16. Estimated In situ block size distribution from counting null cubes for a single realization of a 

stochastic DFN model. 

7.1. Applications to Rock Engineering Systems solutions 

Rock Engineering Systems (RES) solutions to civil engineering problems were developed by Hudson 
(1992) as part of research to develop a new methodology for civil engineering design that considers 
the interaction of a variety of parameters that are identified to be pertinent to a specific project 
(Hudson , 1994). This approach to developing designs for civil projects has been applied to blasting 
by a variety of researchers. This application was initiated by Lu in 1997 which was followed up with 
papers to characterize the blastability of a rock mass using a RES approach (Lu and Latham, 1999). 

A rock engineering systems approach involves identifying the parameters of interest to a specific 
problem and formulating an interaction matrix that describes the relationship between each 
parameter. This approach is a total systems approach that develops an analytic model defining the 
environment for a particular system that is to be analyzed (Hudson, 1992). Interaction matrices 
developed for determining blastability have been previously developed (Lu, 1997; Lu and Latham, 
1999). These interaction matrices involve the parameters listed below: 

 Strength 

 Resistance to fracturing 

 Sturdiness of rock 

 Elasticity of rock 

 Resistance to dynamic loading 
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 Hardness of rock

 Deformability

 Resistance to breaking

 In-situ block sizes

 Fragility of the rock mass

 Integrity of the rock mass

 Discontinuity plane’s strength

It is suggested that this model can be used with modifications to incorporate emergent variables 
derived from MoFrac-generated models. Parameters that could be included in a modified interaction 
matrix would include the coefficient of variability for a DFN, mean fracture intensity for the area of 
influence of a blast hole, and in situ block size distributions as calculated by MoFrac. Together with 
the ability to visualize rock surfaces and determine exact burdens and fracture locations and 
orientations through laser scanning, a new blast optimization technique using the emergent properties 
in calculating optimized hole locations and powder factors can be developed. Improvements will also 
be available for the visualization of the blast and for exact calculations of rock volumes (Jian, et al., 
2018). It is also suggested to develop an interaction matrix that is friendly to the skill set of the blaster 
and not the rock engineer. Often it is the blaster that makes decisions about blast design based on 
previous blasting results at the same site. To have a method to verify changes in a blast plan or to 
develop entirely new blast plan strategies, such as irregular patterns that utilize information available 
to the blaster would prove to be very useful under a variety of conditions where blast results are 
unpredictable. 
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