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ABSTRACT 

Planning of an underground mine poses considerable difficulties in the areas of safety, environment, 
ground control and production scheduling. To maximize the profitability of these operations, an 
integrated optimized stope layout and production schedule is required to coordinate underground 
mining activities such as development, extraction, haulage, dumping, stockpiling and processing. An 
optimal mine life is detailed in proper scheduling of all available resources and more importantly 
the mining sequence. The process of preparing such strategic mine plan is an optimization decision-
making process which entails a mining sequence that takes into consideration the physical 
limitations, resource and production constraints, financial performance and uncertainties of the 
mine, and meets the required quantities of ore type at each period throughout the life of the mine. 
The current underground stope layout optimization and production scheduling algorithms in 
literature lack the ability to deal with real�world large�scale complex underground mine planning 
problems. Most of the algorithms and solvers available do not integrate production scheduling with 
stope layout optimization. A few that integrate this two important mine planning processes do not 
have the ability to address: i) the broad range of mining methods (exhaustiveness), ii) practical 
problem sizes, and iii) stochastic parameters. This paper reviews relevant literature on existing 
solvers and algorithms for underground stope layout and production scheduling optimization, and 
outlines their limitations and potential research opportunities. 

1. Introduction

Underground mining has aided the extraction of deep occurring hard rock minerals such as gold, 
copper, silver, and iron for centuries. The extraction of these minerals generally require extensive 
development work that is time-consuming. Fig. 1 is a section through an underground mine showing 
some developments. Underground mining has a low level of flexibility in its operations. To maximize 
the profitability of these operations, an integrated optimized mine plan and schedule are required to 
coordinate underground mining operations including development, stoping, haulage, dumping, 
stockpiling and processing. To determine the optimal mine life, proper scheduling of all available 
resources and a strategic mine plan is required. Preparing such strategic mine plan is an optimization 
decision-making process that involves a mining sequence that takes into consideration the physical 
limitations, available resources and production constraints, financial performance, and uncertainties 
in the mine to meet the required quantities and quality of ore type throughout the mine life. Planning, 
optimization and production scheduling of underground operations are relevant to ensuring the 
efficient utilization of resources which in effect reduces production cost.  
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Planning an underground mine is a complex procedure consisting of five stages (Kuchta et al., 2004): 
i) determining the geometry and grade (or quality), ii) deciding how to mine the ore by underground 
mining, iii) designing the mine infrastructure, or layout of the mine to efficiently exploit the ore, iv) 
planning how to mine and process the ore, and v) decommissioning the mine and restoring the site 
to an environmentally acceptable state. 

 
 Fig. 1. A cross-section through a typical underground mine modified after Erdogan and Yavuz (2017). 

The mining and processing (or production) phase require detailed scheduling. Specifically, a 
production schedule that must provide a mining sequence that considers the physical limitations of 
the mine and, meets the demanded quantities of each ore type at each period throughout the life of 
the mine. Mines, therefore, employ schedules as long-term strategic planning tools to determine 
when to start mining a production area and as short-term operational guides.  

According to Hamrin et al. (2001) and Topal and Sens (2010), a stope is an underground opening 
from which ore has been excavated. O’Sullivan and Newman (2015) describe stope layout as 
analogous to the ultimate pit limit in open pit mining, and that it defines the design in underground 
mining. The optimal stope layout is defined by the size, location and number of stopes within an 
orebody model. This model is described as consisting of a series of layers for which each is composed 
of a number of rows referred to as panels, where the panels are made up of a series of rings. Selecting 
the best combination of available stope layout directly affect the profitability of an underground 
mining operation (Dimitrakopoulos and Grieco, 2009; Topal and Sens, 2010). 

Production scheduling can be defined as the allocation of resources and mined out ore reserves over 
a period of time with particular sets of constraints. Mine production scheduling is an optimization 
process which assigns the extraction sequence of mining blocks based on constraints which 
incorporate, among other things, a method of mining, slope size in other to maximize the Net Present 
Value (NPV) of a mine (Martinez and Newman, 2011; Gangawat, 2014). Pourrahimian (2013) 
explains that production scheduling defines the tonnages and grades to be mined throughout the 
mine-life. Scheduling in any mining system has an enormous effect on the operation’s economics.  
It is becoming essential to generate production schedules that will provide optimal operating 
strategies while meeting technical and environmental constraints. Improvements in computing power 
and scheduling algorithms over the past years have allowed planning engineers to develop models to 
schedule more complex mining systems. Production scheduling problems are usually complex due 
to the nature and variety mining constraints. 
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Production scheduling is known to significantly influence the viability of mining operations and 
scheduling techniques with the capacity to provide optimal results within a reasonable time frame. It 
presents mining operations with the ability to examine a variety of situations and quickly respond to 
revised and updated data. This helps to reduce uncertainty and assists in the decision-making process, 
for future strategies which may result in less volatile operating performance and often higher 
profitability (Nehring et al., 2010). 

Nehring et al. (2012) classified mine production scheduling into two main categories: long-term 
production scheduling and short-term production scheduling. Long-term production scheduling is 
done over the life of the mine. In short-term production scheduling, the result generated from the 
long-term production scheduling is broken down according to task or time period that need to be 
studied, and different sets of constraints active in short-term are applied to minimize the deviations 
from the pre-defined capacities. 

Long-term underground mine production scheduling problems have been studied by researchers 
(Jawed, 1993; Nehring et al., 2010; Pourrahimian et al., 2012). These studies have been based on the 
development of algorithms using operation research methods such as Linear Programming (LP), 
Mixed Integer Programming (MIP) and Mixed Integer Linear Programming (MILP). The current 
optimization algorithms in the literature lack the ability to deal with real world large scale and 
complex, underground mine planning problems. They do not have the ability to address: i) the broad 
range of mining methods (exhaustiveness) ii) practical problem sizes and iii) stochastic parameters. 

This paper reviews relevant literature on existing models and algorithms for underground stope 
layout and production scheduling optimization for further integration and improvements. The next 
section of this paper covers summary of the literature review on underground optimization. Section 
3 gives details of underground stope layout/limit optimization models and algorithms. Section 4 
covers limitations of underground stope layout/limits optimization models and algorithms. Section 5 
highlights the underground production scheduling models and algorithms. Section 6 presents the 
integrated stope layout/limit and production scheduling optimization mathematical programming 
models and algorithms. In Section 7, stochastic mine planning approaches in underground mining 
are presented. Research opportunity is presented in section 8. Section 9 documents the rationale 
behind the proposed PhD research approach and finally, Section 10 presents the summary and 
conclusions. 

2. Summary of Literature Review 

Generally, optimization is best described as a process that finds the best or optimal solution for a 
given problem (Chakraborty, 2010). Mine optimization is an inherent iterative process since all facets 
of mine design and scheduling are interrelated. It is not possible to change e.g. the level spacing of a 
mine, without affecting the scheduling, or the stoping efficiencies and number of crews without 
considering the development requirement (Smit and Lane, 2010). For this reason, changes to design 
and schedule are usually tested using graphic designs and scheduling applications such as Datamine, 
Surpac, MineShed, MineSight, NPV Scheduler, Deswik, Maptek Vulcan, Gems and Whittle 
(Musingwini, 2016; Erdogan et al., 2017). 

Optimization in terms of mine planning has also been defined as a descriptive set of techniques that 
introduce analytic mathematical methods to arrive at an option out of multiple choices; thus bringing 
it into planning activities. The technique embodies three stages (Shahriar et al., 2007):  

 Creation of a mathematical model of the activity;  

 Adoption of a criterion; and 

 Development of an algorithm. 
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Underground optimization is considered as a constrained optimization problem, which is aimed at 
finding the highest profitable stope layout subject to geometric constraints (Bai, 2013). Chakraborty 
(2010) and Ataee-Pour (2000) further explain that optimization problems are centered around three 
main factors which are formal procedures of Operations Research (OR): 

 An objective function which is either to be maximized or minimized; 

 A set of unknowns or variables that affect the objective function; and 

 A set of constraints that allow the unknowns to take on certain values but exclude others. 

The idea of an optimization problem is therefore to find values of the variables that maximize or 
minimize the stated or defined objective function while satisfying the stated constraints. The optimal 
mine layout is greatly influenced by the chosen optimization criteria. The following criteria have 
been used in mine geometry optimization (Ataee-Pour, 2000): 

 Maximization of the total mine economic value; 

 Maximization of value per tonne of the saleable product; 

 Maximization of the life of the mine provided that the value per tonne does not fall below a 
certain figure; and  

 Maximization of the metal content within the mine. 

It is worthy of note that in stope geometry optimization, maximization of the total mine economic 
value or NPV is frequently used. 

Ataee-Pour (2000) asserts that mine geometry or layout is one of the most important stages of mine 
planning for both surface and underground operations. Outlining the mineable ore assists in 
determining the amount of reserve, as well as mine life and production scheduling. There is a 
relationship between mine layout and other mine planning stages such as equipment selection and 
haulage routes. In effect, mine design and optimization is an interactive process with inconsistency 
between mine layout definition and production scheduling. However, the optimal layout cannot be 
determined until the values of the blocks are known or defined. The definition of the block values 
also depends on factors such as commodity prices and mining costs that in turn depend on when the 
blocks are to be exploited. Conceptualizing a stope optimizer as a solid box, the input data to the box 
is the ore block model quantifying the mineral content or economic profit of block volumes on 
regular grids and the output is the geometry of stope indicating the blocks to be mined (Bai, 2013). 

It is a common practice for underground mine plans to be created sequentially, where results from 
one planning process form the input data for another. The disadvantage to this method is that 
optimizing an individual mine process, such as stope layouts introduces a likelihood of increasing 
costs or decreasing revenues associated with other areas such as production scheduling, as harmful 
decisions must be balanced. This is practical for manual methods; computerized optimization 
techniques should consider an integrated approach to creating the global mine plan. Considering the 
interaction and influence that individual underground mine planning processes have on each other 
during optimization will provide more profitable results than if ignored (Little et al., 2013). 

Due to the significant nature of optimization in the designing and planning of mines, researchers 
have carried out several works.  However, little has been done in the formulation, optimization of 
design and the long-term production scheduling problems for underground mines. In addition, 
limited algorithms are available for the optimization and scheduling of underground mine 
production. It is worth noting that until the last few years, comprehensive computer-based designing, 
planning, and scheduling tools for underground mining did not exist hence process was manual, 
tedious and inefficient. Mining software developers were able to tackle underground mine design, 
planning and production problems after their success in applying computer techniques that have been 
embedded in commercial software packages to open pit mining. This can be attributed to the large 
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number of underground mining methods, lack of versatility and complexity of underground mining 
economic block modeling (Ataee-Pour, 2000; Newman et al., 2010).  

Little et al., (2013) reported that software tools for strategic underground mine planning and 
scheduling are lacking and that the demand for tools will increase as deeper deposits amenable to 
underground mining continue to grow in value. A number of optimization techniques have been 
developed for stope layout design and progress continues to be made in the area of production 
scheduling, both of these mine planning areas are amenable to improve in terms of guaranteeing 
optimal results. 

3. Underground Stope Layout/Limit Optimization Models and Algorithms 

A stope is an underground opening from which ore has been or is to be extracted. Selection of the 
best combination of available stope boundary will directly affect the profitability of the operation 
(Topal and Sens, 2010). 

From 1965-2000, out of 62 publications that contributed to mine geometry optimization, only 10 
papers focused on underground mining related. Generally, algorithms for open pit limit optimization 
are numerous, amounting to approximately two and a half times more than that for underground 
methods. True optimum solution for the open pit limit optimization is often guaranteed and, 
additionally, several computer packages are available to the industry. However, only few algorithms 
have been developed for optimization of ultimate stope layout or boundaries in underground mining 
(Ataee-Pour, 2005). Nikbin and Ataee-Pour (2016) reported that the first algorithms were presented 
about five decades ago for optimization of mining limits. Most of the algorithms presented are 
applied to optimization of open pit limits. Few algorithms have been presented for underground 
cases, most of which have been tailored for a specific mining method or based on heuristic 
techniques. These heuristic algorithms do not guarantee the true optimum. There are, however; some 
rigorous algorithms, which provide a true optimum, but fail to provide a 3D solution. Each of the 
algorithms developed for ultimate underground layout has only considered few constraints. 
Consequently, the Floating Stope of Datamine, Maximum Value Neighborhood (MVN), can be run 
on 3D block models, but they are heuristic and cannot find the true optimum layout. Although Branch 
and Bound technique and Dynamic programming also called Optimum Limit Integrated Probable 
Stope (OLIPS) are rigorous, they have been presented for 1 and 2-dimension problems only. 
Underground mine optimization has attracted more attention in the last 15 years. Less effort has been 
committed to  the field of underground mining and only a few algorithms are available for economic 
optimization of underground stope boundaries (Sotoudeh et al., 2017). 

The available algorithms for underground stope boundaries or layout limit optimization are 
illustrated in Fig. 2 (Ataee-Pour, 2000; Ataee-Pour, 2005; Grieco and Dimitrakopoulos, 2007; 
Shahriar et al., 2007; Bai, 2013; Little et al., 2013; Sandanayake, 2015; Erdogan et al., 2017; 
Sotoudeh et al., 2017; Nhleko et al., 2018): These optimization techniques are discussed in the 
subsequent sessions. 

3.1. Stope boundary/layout limit algorithms based on heuristic logic 

Porumbel (2012) explains that a practical approach to solving many intractable problems of large 
size is by using heuristic search algorithms or simply, heuristics.  They are generally used to explore 
only a small part of a very vast search space. Heuristic algorithms use reasonable resources and are 
able to produce acceptable solutions, but without any theoretical guarantee. They have the ability to 
produce competitive results not only on well-known Nondeterministic Polynomial (NP) complete 
problems, but on any computational problem for which exact or rigorous algorithms require 
prohibitive time.  

Cheimanoff et al. (1989) developed the Octree Division Approach. The technique evolved from the 
prototype production scheduling tool BONANZA which forms part of GEOCAD package used for 
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the development of geological resources to mining reserves. The features of CAD and artificial 
intelligence modules are used to develop a rule-based system to generate the shape of the mineable 
ore while imposing the underground mining constraints. The program uses the octree space division 
algorithm to remove undesired mining blocks based on the minimum size.  

BONANZA is designed in three steps, the first step is gathering data, including borehole data or 
geological underground sampling, results from geostatistical analysis or interpreted contours 
supplied by the geologist and intuition from geoscientist of the mining engineer such as the shapes 
of geological objects. These data are used to build a geometrical model. The second step is 
transforming the modelled geological resources into mineable reserves. In this step different 
production factors are simulated to build possible workable volumes, using the available geological 
resources. In the final step the geological resources are economically evaluated to determine 
workable reserves and mining sequence. The mine layout is determined by using a rule-based 
programming method. The two main constraints are geometric and economic ones (Topal and Sens, 
2010). According to Sandanayake (2015) the algorithm consequently divides the reserves into sub-
volumes for further economic evaluations. These sub-volumes are either stored or removed from the 
model, if their mineral content or dimensions violates the constraints set by the algorithm. 

 
Fig. 2. Taxonomy of underground stope layout/limit optimization algorithms and models. 

Alford (1995) explains that the mineable volumes, well-adapted to these constraints are determined 
through two main modules: Objective Manipulator and Shape Generator. The first phase “Objective 
Manipulator” gathers mineralized veins into convex blocks distinguishing “large” veins that justify 
a mineable block by themselves, merges those “close enough” into a single block, and separates those 
“too far from one another” into two separate blocks. A second phase, “Shape Generator”, 
progressively subdivides a boundary volume in an octree until the smallest subdivision matches the 
smallest unit. The Octree division algorithm generates a 3D feasible solution for the stope geometry, 
but it leads to more waste being added to the final mine layout because the algorithm does not analyze 

276



Appianing, E. J. A. et al.  MOL Report Nine © 2018 308-7 
 

the sub-volumes jointly. It includes individual sub-volumes that consider the minimum allowable 
dimensions in the final layout but not the amount of waste in these sub-volumes. As such, the 
algorithm does not guarantee the optimality of stope layouts hence, heuristic. 

The Floating Stope algorithm was developed by Alford (1995) as an optimization tool used by 
Datamine to define optimal limit for mineable ore or stope envelope which can be economically 
extracted by underground stoping methods and was implemented on a fixed economic block model 
of an orebody (Shahriar et al., 2007). This tool is analogous to the Moving Cone method of open pit 
limit optimization. The main constraint in this algorithm is the geometry of the stope, which is 
translated into a minimum stope dimension in three orthogonal directions. The term floating stope is 
derived from the technique of floating a stope shape of the minimum stope dimensions around any 
block to locate the stope position of the highest stope grade. Different optimization objectives offered 
by the floating stope algorithm include the maximization of ore tons, the grade, and accumulated 
(dollar) value and minimization of the cutoff wastes. The problem is then to determine if any block 
above the specified cutoff grade can be included into a stope. The Floating Stope technique and its 
open pit analogue have different constraints. The Moving Cone technique examines cones 
independently. In fact, the mutual support between blocks is ignored in this method. As a result, two 
different cones may individually be uneconomical but when they are jointly considered the cones 
may be profitable. The Floating Stope approach has the opposite limitation. Two overlapping best 
stopes considered individually may be economical due to a number of high grade blocks. However, 
when they are considered together, the combination of the stopes may be uneconomical. 
Sandanayaka (2015) illustrates the issue using a hypothetical 2D scenario. The two stopes measure 
5×5 blocks, i.e., five blocks along the x axis and five blocks along the y axis, overlap and share six 
mining blocks. The two overlapping stopes are designed as stope 1 and stope 2 and the economic 
values of their shared mining blocks are indicated.  

The total economic value of the combination of stopes differs from the actual economic value. 
Therefore, the algorithm does not guarantee an optimal solution to the problem. The most significant 
advantage of this algorithm is its simplicity. A new version of the algorithm, the Multiple Pass 
Floating Stope Process (MPFSP) employs multiple-optimization process. It provides a 3D evaluation 
over the optimization and sensitivity analysis for mineable reserves and stope geometry while 
considering partial blocks in the final layout. Moreover, the algorithm benefits from generality. It is 
not specialized for a certain mining method. Finally, a commercial software package has been 
developed for the Floating Stope algorithm and it is has been reported by Shahrair et al. (2007) to 
give true optimality among the list of stope limit optimizers. However, it is a heuristic approach and 
lacks the rigorous mathematical support (Ataee-Pour, 2000). 

The Maximum Value Neighbourhood (MVN) algorithm is another heuristic approach that was 
developed and implemented by Ataee-Pour (2000). He developed a Stope Limit Optimizer (SLO) on 
a Fortran 90 based program with Winteracter software developer to implement MVN algorithm. He 
proposed this algorithm in 1997 to optimize stope boundaries using a 3D dimensional fixed economic 
block model to locate the best neighborhood of a block which guarantees the mine geometry 
constraints (Shahriar et al., 2007). According to Ataee-Pour (2005), the neighborhoods are restricted 
by the mine geometry constraints. The neighborhood concept is based on the number of mining 
blocks equivalent to the minimum stope size (stope/block ratio). Since several neighborhoods are 
available for each block, the one that provides the maximum net value is located for inclusion in the 
final stope. Sandanayake (2015) explains with an example using a hypothetical row of six mining 
blocks. The six mining blocks are labelled a-f in alphabetical order for easy reference. This algorithm 
can also be applied to any underground mining method although it does not guarantee the true 
optimum stope layout (Shahriar et al., 2007). 

The Multiple Pass Floating Stope Process (MPFSP) was developed by Cawrse (2001) to extend and 
improve the functionality of Datamine software. The process of the algorithm relies on the same 
principals as the floating stope algorithm. The MPFSP process is divided into three steps: input 
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parameter definition, file generation and file management. Input parameters (multiple), such as the 
head grade, cutoff grade and maximum waste, are defined by the user. During the file generation 
step, economic stope envelopes are created for each set of parameters. Finally, the data files or the 
statistical files generated in the process are converted into a Microsoft Excel compatible (CSV) 
format. The generated envelopes based on input parameters can provide extra information during the 
mine design process helping the designers to improve the efficiency of their mine design. Although 
the method can assist in stope boundary selection and design, it does not generate optimum stope 
layouts (Topal and Sens, 2010; Sandanayake, 2015). 

The Simulated Annealing (SA) approach is an algorithm that was developed by Manchuk (2006) and 
Manchuk and Deutsch (2008) for stope geometry and sequencing optimization. In this method, a 
stope is parameterized as a geometric object consisting of a set of vertices and edges that formed a 
triangulated mesh. This notably facilitated the manipulation of stope geometric constraints in 
optimization. The rationale behind the optimization is to randomly adjust the shape of stopes, 
respecting the geometric constraints, in order to find the shell enclosing maximum profits. The 
algorithm offers a general 3D solution to engineers, integrating full geometry constraints regardless 
of the mining methods selected. One of the limitations of the simulated annealing process is that it 
can be long. This is seen especially when the number of vertices is large to construct a complex 
geometry.  Another is that the time of convergence to optimality can be unrealistic. Therefore, in 
practice, SA is regarded as a heuristic for which the quality of the approximation to the real optimal 
solution is difficult to assess (Bai, 2013). 

Alford and Hall (2009) developed a method for automated stope design. In this method, the stope 
optimization is run at a sequence of cut-off grades to generate a series of ‘nested stopes’ which is a 
similar concept in the pit optimization where ‘nested pits’ are generated. The method is able to define 
the best set of extraction levels and stope heights. However, it does not take into account mining cost 
as a function of the size and the shape of the stop. It specifies a fixed cutoff grade in the design 
process, which does not allow an optimum solution (Erdogan et al., 2017). 

Topal and Sens (2010) heuristic approach is a methodology that consists of three basic elements: the 
block converter, stope optimizer and visualizer (Topal and Sens, 2010). During initialization, the 
given mining block model is converted to a regularized block model, i.e., a block model that 
constitutes mining blocks with consistent sizes. Given their dimensions (height, length and width) 
stopes are generated from the regularized block model. Finally, a heuristic stope optimization 
algorithm is implemented in Matlab software based on the economic value of stopes and the results 
are visualized with respect to different user-defined parameters. The advantage is that it locates stope 
boundaries using different stope sizes and selection strategies in 3D. To its disadvantage, the 
algorithm selects the stopes in descending order of the stope economic values while removing the 
overlapping stopes. To clarify, this process discards the possibility of multiple stope combinations 
that can be derived from a given stope set. Among these multiple combinations, there may be 
combinations with higher total economic values (Topal and Sens, 2010; Sandanayake, 2015).  

Sandanayake (2015) also proposed and developed a new 3D heuristic algorithm for the stope layout 
optimization.  It finds a unique solution that maximizes the economic value of the stope layout under 
physical and geotechnical constraints. The suggested algorithm recommends a unique solution for 
stope layout and generates non-overlapping stopes. Moreover, it includes variable stope sizes with 
or without pillars and satisfies the mining and geotechnical constraints. However, in order to find the 
optimal solution, the algorithm needs to evaluate all the possible unique combinations that require 
significant computational power in large-scale applications. This limits the algorithm to find the 
optimal solutions in large-scale data-sets (Erdogan et al., 2017). 

3.2.  Stope boundary/layout limit algorithms based on rigorous logic 

Rigorous algorithms can be described as the algorithms based on a mathematical model and hence 
they guarantee an optimum solution. Such algorithms are robust, possess objectivity, they are 
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tractable, provide model solutions and facilitate sensitivity. Furthermore, optimal solutions provided 
by refined rigorous algorithms can often be reached more rapidly with basic meta-heuristics 
(Martinich, 2008; Porumbel, 2012; Nhleko et al., 2018). 

Dynamic Programming (DP) algorithm was proposed by Riddle (1977) to undertake optimization of 
stope layout of block caving mining method. It was developed as an extension of 3D dynamic 
programming method for ultimate open pit optimization that had been developed by Johnson and 
Sharp in 1971. The algorithm was developed in Fortran and implemented on hypothetical economic 
block models. The algorithm is a multi-section 2D solution for 3D problems. This simply implies 
that the approach is provided as an optimum stope in 2D section but fails to determine the actual 
optimal stope in 3D (Ataee-Pour, 2005; Shahriar et al., 2007; Sotoudeh et al., 2017). In running the 
algorithm, it assumes that there is no footwall in the optimization process and that the maximum 
profit is achieved irrespective of the footwall design. It then defines a footwall in operational regions 
and examines the profitability of all feasible solutions for mining and non-mining regions. In the 
subsequent steps, the process divides the defined footwall region into two sub-regions if the profit is 
greater than or equal to an assumed profit. However, the process terminates when there are no more 
profitable footwalls to examine, or no further feasible footwalls can be introduced into the operational 
region (Sandanayake, 2015). The algorithm is a rigorous mathematical solution to the problem. This 
method is known to be limited to block caving mines and for that matter unable to function in 
optimizing the layout of other underground stopping methods (Ataee-Pour, 2005; Shahriar et al., 
2007). 

The downstream geostatistical approach also known as the mathematical morphology approach was 
proposed by Deraisme et al. (1984). The introduction of this approach was to determine the outline 
of the mineable orebody shape in underground mines. This approach was constructed for cut-and-
fill and sublevel stoping methods and was based on a 2D sectional block models of the deposit. 
Mathematical morphology was used to transform the image of ore blocks above cut-off grade to 
another image satisfying the stope geometry constrains (Erdogan et al., 2017). The main 
disadvantage of the algorithm is its complexity. The traditional algorithm has been developed for 
specific mine (project) and tailored for two specific mining methods (cut and fill and sublevel stoping 
methods). The algorithm benefits from a mathematical support and is expected to provide the real 
optimum solution at least in 2D (Erdogan and Yavuz, 2017). However, reported by the developers 
that the economically optimized images do not necessarily respect the geometrical constraints. 
Further modifications of the images are required to make them meet the constraints and this makes 
the results non-optimum (Ataee-Pour, 2005). The approach takes into account grade uncertainty in 
the optimization process. It controls only the stope geometry so it does not consider the economic 
profit related. This limits the optimality of results in 3D (Erdogan et al., 2017).   

Branch and Bound Technique is a mathematical programming technique for economic optimization 
of stope boundary. It was developed by Ovanic and Young (1995). An optimal economic stope 
boundary was developed by optimizing the starting and ending locations for mining within each row 
of blocks. To determine these locations, two piecewise linear, cumulative functions known as Type-
Two Special Ordered Sets (SOS2) were used for each row (Ataee-Pour, 2005; Shahriar et al., 2007).  
SOS2 technique, referred to a separate programming, is used to optimize piecewise linear functions. 
It is defined as an ordered set of special variables for which the solution allows at most two variables 
to be non-zero, they must be adjacent. The first function sums block values along the row for 
inclusion within the stope boundary, while the second function sums block values for exclusion. It is 
an apparent advantage that the branch and bound algorithm removes some restrictions from mine 
layout design and, in particular, stope geometry optimization. There are no restrictions for blocks to 
be treated as a whole, but rather partial blocks can be included in the optimal stope. Moreover, blocks 
are not limited to be regular or uniform in shape. Whatever their shape or size it does not influence 
the optimization since the block cumulative function is used in modeling. In other words, branch and 
bound method allows regular or orthogonal block geometry so blocks can be formed following the 
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geologic variation and discontinuities. However, it optimizes the stope boundary in one dimension 
and neglects the wall slope constrains hence lacks a 3D implementation (Shahriar et al., 2007; 
Sandanayake, 2015; Erdogan et al., 2017; Sotoudeh et al., 2017). 

Ovanic and Young (1999) introduced a Mixed Integer Programming (MIP) model to optimize stope 
boundaries. The model works by locating the optimal starting and ending points for mining within a 
row (mining panel) in a block model and in effect, it establishes the optimum stope boundaries. In 
order to determine the optimum starting and ending location of each panel, two piece-wise linear 
cumulative functions are calculated. The major advantage of this technique compared to the others 
is that the block geometry is not required to be regular or orthogonal. A disadvantage, however, is 
that the algorithm optimizes the stope boundary along the row of blocks in only 1D. Therefore, 
examples and results for using the algorithm in 3D do not exist. Another disadvantage is that the 
algorithm also only allows the user to optimize the design of extraction rows only, as the locations 
of these rows are determined earlier in the design process the algorithm only partially optimizes the 
mine design (Topal and Sens, 2010). 

The Probable Stope (PS) algorithm was established by Jalali and Ataee-Pour (2004) based on 
Riddle’s Dynamic Programming (DP) algorithm to optimize the stope limits of the mining methods 
which are feasible for vein deposits. The main difference between PS technique and the others is 
that, the algorithm is implemented on a particular economic block model including the constraints of 
stope dimensions. In effect, the most significant constraints within the objective function are 
eliminated. It has resulted in the algorithm being simple in concept, easy to program and reaches a 
solution quickly (Shahriar et al., 2007).  

A probabilistic algorithm based on MIP was developed by Grieco and Dimitrakopoulos in 2007 and 
the application of the method at Kidd Creek Mine, Canada has been reported (Grieco and 
Dimitrakopoulos, 2007). In this approach, the ore body is initially divided into layers. Each layer is 
then subdivided into a number of panels and each panel is further subdivided into a series of rings. 
Each ring is assigned to a binary variable of the mixed integer model. The objective function of the 
algorithm maximizes the metal content at a given time. The minimum and maximum mining rings, 
and the sizes of the pillars that are to be left unmined between two primary stopes, are limited by the 
constraints of the model. Although the proposed method is the first stope design methodology that 
has acknowledged uncertainty and greatly assists stope design by considering geological uncertainty, 
it has potential drawbacks. Because the methodology is based on rings that have been predefined in 
terms of location and size to determine the most profitable stopes, it finds optimum stopes layout 
based on those rings. This approach does not allow accurate examination of the orebody over smaller 
areas and examination of stopes in different locations. In addition, as each ring is represented as a 
binary variable within the MIP model, it encourages a very long solution time as the number of rings 
increases within the model (Grieco and Dimitrakopoulos, 2007; Dimitrakopoulos and Grieco, 2009; 
Topal and Sens, 2010; Sandanayake, 2015). 

Optimum Limit Integrated Probable Stope (OLIPS) is an algorithm developed in 2007 based on the 
Dynamic Programming method by Jalali et al. (2007). The algorithm complies with all technical and 
geometric constraints, provides mathematical proof and optimality. OLIPS algorithm has two major 
steps. In the first step, a conventional economic model of mining panel is constructed and in the 
second step, the probable stope economic model and integrated probable stope economic model are 
derived from a conventional model. Based on OLIPS algorithm, a computer program named Stope 
Boundary Optimizer (SBO) was developed and validated by 2D hypothetical models (Sotoudeh et 
al., 2017). 

Network Flow method is an optimization algorithm that was introduced by Bai (2013) to optimize 
stope design based on graph theory and specifically applicable for the sublevel stoping method. The 
algorithm is based on a cylindrical coordinate system, which is defined around a specified vertical 
raise (initial) (Bai, 2013; Sandanayake, 2015). In the process, the graph is constructed using vertical 
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arcs for the footwall and hanging wall slope constraints, with horizontal arcs for the stope width 
constraint. Selecting a particular mining block for a stope should aim to maximize the stope value 
subject to two additional constraints: the maximum distance of a block from the raise and the 
horizontal width required to bring the most distant mining block to the raise. The stope profit is 
optimized as a function of location and height of the raise and consequently, the best location and 
height for raises are identified. Finally, the performance of the algorithm is compared with the 
floating stope algorithm and obtaining better solution values. However, the algorithm is limited to 
relatively small sub-vertical deposits mined by the sublevel stoping method (Sandanayake, 2015; 
Erdogan et al., 2017).  

Global Optimization for Underground Mining Area (GOUMA) algorithm was presented as a new 
comprehensive algorithm that proves optimality in 2016 (Sotoudeh et al., 2017). The algorithm has 
two important characteristics, which makes it very useful. Firstly, it is executed on the Variable Value 
Economic model (VVEM). Secondly, constraints and technical limitations of all conventional 
underground mining methods used for tabular deposits are applied in this algorithm. Therefore, the 
main difference between this computer program and other programs and software tools is the type of 
algorithm used. For easy use of this algorithm on large�scale problems, a computer program called 
GOUMA�CP was written in C++ programming language (Jalali et al., 2016). 

3.3. Comparative implementation and performance of existing models and algorithms 

Intrinsically, underground mine planning is more complex because there are numerous permutations 
of the direction of mining, such as advance or retreat mining, depending on the mining method 
chosen. These contribute to the reasons why there is a lack of extensive optimization algorithms and 
commercial software packages for underground mining, and why most of the work on optimization 
in underground mine planning is largely academic (Musingwini, 2016).  

One of the most effective ways to identifying the strengths and weaknesses of existing models and 
algorithms for further research is by assessing their comparative implementation and performance. 
A number of software packages and optimization tools that have the algorithms embedded in them 
have been developed to enable the implementation of the algorithms. As a result, most of the existing 
stope layout/limit models and algorithms have been implemented and their results assessed (Bai et 
al., 2013; Musingwini, 2016; Erdogan and Yavuz, 2017).   

The Floating stope algorithm (heuristic) and its extension, the Multiple pass floating stope have been 
implemented in some commercial software packages, such as Datamine, Vulcan stope optimizer by 
Maptek Snowden's Stopesizer mining software package, used internally by Snowden Consultants to 
produce a single mining outline for a selected cut-off grade and the Anglo Platinum Optimization 
Tool (APMOT) (Smit and Lane, 2010; Bai, 2013; Musingwini, 2016). In Bai (2013), a new 
algorithm, the Network flow algorithm to optimize stope design for sublevel mining method was 
proposed and implemented by a comparative work with the Floating stope technique. In the work, 
the floating stope technique and the network flow technique were applied on three synthetic cases 
and one real case study. In the three synthetic cases, the profits obtained with respect the Network 
flow were larger than with the inner and outer envelopes obtained with the Floating stope algorithm. 
On the real case study based on a metal deposit located in Canada (name and location withheld), the 
Network flow approach provided an equivalent profit to the inner envelope and more profit than the 
outer envelope (+53%). It is worth noting also that neither of the floating stope envelopes met the 
slope angle constraints, as these constraints are simply not considered in the Floating stope algorithm. 

Nikbin and Ataee-pour (2016) described a new Integer Programming (IP) model for optimization of 
underground stope layout. Their model is run on a specific block model, which is called secondary 
block model. The objective function of this model has been presented based on maximizing the profit. 
Almost all of the important and critical constraints in this scope have been considered and even some 
of them such as the minimum width of rib pillars are taken into account for the first time. The value 
of stopes found by the new model is the same as that obtained from OLIPS algorithm by Jalali et al., 
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(2007). Results show that the new model provided more stope value compared to using Dynamic 
Programming of Riddle (1977). Also, the wide range of application and mathematical formulation 
of this model are its advantage. However, it is a 2D model and it is recommended that a 3D model is 
presented in the future researches. 

Nelis et al. (2016) proposed a new algorithm for the optimal stope design problem. The algorithm is 
based on the methodology developed by Bai et al. (2013) where a cylindrical coordinate system is 
used to define geomechanical restrictions and to find the optimal stope around an initial raise. The 
proposed algorithm extends this work based on an Integer Programming (IP) formulation 
incorporating a new set of constraint, directed to solve geomechanical issues present on the original 
methodology. The results of a test of the new formulation on two synthetic and one real deposits 
were reported. An economic, geomechanical and feasibility analysis was performed and results 
compared with Bai’s approach. Results indicated that the new approach allows the determination of 
optimal stope designs, fulfilling geomechanical requirements. It also generates feasible stopes in 
disseminated orebodies, avoiding unstable and irregular geometries. The generated designs comply 
with technical requirements such as the stope drilling pattern. The model can be solved in reasonable 
times for real life cases, and it can be extended to allow further regularization of stope design or 
faster resolution times with heuristics. 

In the work by Erdogan et al. (2017), the capabilities and limitations of four heuristic algorithms are 
evaluated and compared to each other and then, compared with the stope optimization results from 
an existing underground mine. The algorithms and the corresponding commercial software packages 
selected were Floating Stope (Datamine), Maximum Value Neighbourhood (MVN) (Minesight), and 
two special applications that were developed by Sens and Topal and Sandanayake and Topal. 
Mineable Shape Optimizer (MSO), an optimization tool introduced by DATAMINE software it was 
also included in the study to compare with other algorithms. For the success of the comparison, a 
section of an economic block model that represents a gold deposit located in South Australia and a 
relatively deep, extending from 150 m below the surface to 600 m was used. The research aimed to 
find optimal solutions and maximize the value of the operation based on the defined constraints and 
rules. Results reflected that in terms of net profit values, MSO tool produced the highest followed by 
Sandanayake and Topal approach, MVN approach, the real mine case, Sens and Topal approach and 
the Floating Stope approach respectively. However, none of them can give a true optimum solution; 
they however provide only approximate solutions in 3D. 

Sotoudeh et al. (2017) reviewed some existing underground stope layout algorithms for optimization  
and developed a computer program called Stope Layout Optimizer 3D (SLO3D) with  C sharp user 
interface to implement a heuristic algorithm for optimization of underground stope boundaries on 
data from an actual copper mine located in southeast Iran. The developed optimizer provides an 
interactive environment to define and edit important parameters related to the stope layout 
optimization, including block model parameters, stope geometry, cutoff grade and economic factors. 
Finally, an example was presented to demonstrate the implementation of the algorithm with different 
stope limits and selection type strategies. At the end of the implementation, the SLO3D optimizer 
generated an optimized non-overlapping layout with 29 stopes  

Nikbin et al. (2018) introduced a new hybrid algorithm that is a combination of dynamic 
programming and greedy algorithm. Although this proposed algorithm fails to provide a true 
optimum solution, it generates better solutions than some existing algorithms. The new proposed 
algorithm and three existing algorithms were used to find the optimal stope boundaries on a real case 
ore body. The results demonstrate that the proposed algorithm improved the profit by 117.78%, 
16.86% and 0.42% compared to Floating Stope, Maximum Value Neighborhood (MVN), and Greedy 
algorithm solutions, respectively, on a real case study at a reasonable CPU time. 
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4. Limitations of Existing Underground Stope Layout/Limit Models and Algorithms 

A variety of optimization techniques have been developed to generate optimal stope layouts. These 
techniques use the term optimization to describe their approach, but all fail to truly generate optimal 
results in 3D (Little et al., 2013). The complexity of underground stope optimization problem 
generally necessitates solution by heuristic approaches, i.e. search algorithms. However, the few 
algorithms that have been developed for optimizing underground mining stope envelopes fail to 
guarantee an optimum solution in 3D space. For real 3D stope definition, earlier approaches 
employed include: mathematical morphology tools, floating stope technique, maximum value 
neighborhood method, octree division, and network flow approach. These approaches share two 
major drawbacks: they are heuristic approaches which do not guarantee true optimality in stope 
layout and unable to directly incorporate specific geotechnical constraints, such as load carrying 
capacity of rock mass, wall stability of stopes etc., which influence not only the stope boundary but 
also production scheduling. Some of these methods may incorporate an additional step to test the 
stability of the current solution in order to generate stable designs, but they cannot address the 
geotechnical restrictions directly. Although the Simulated Annealing-based algorithm, had some 
mining constraints incorporated, it is very slow and the convergence to a global optimum is 
impractical. In addition, the restriction of disturbance to movements respecting all constraints on 
slopes in 3D setting can seriously halter the capacity of the algorithm to finding a good solution. To 
this effect, the mining engineer has to adjust the stope solution in other to obtain a feasible stope 
(Manchuk, 2005; Bai, 2013; Bai et al., 2014; Musingwini, 2016; Erdogan et al., 2017; Nhleko et al., 
2018).  

In the case of rigorous algorithm, works on stope optimization relied mostly on strong simplifications 
of the initial problem. For example, the 3D problem was simplified by considering optimization 
along only 1D or 2D. The dynamic programming method, and branch and bound techniques which 
find optimality were developed in this manner. Although the simplifications decrease the complexity 
of the optimization, it precludes incorporating realistic geotechnical constraints into the optimization 
(Ataee-Pour, 2000; Ramazan et al., 2005; Bai et al., 2013; Musingwini, 2016; Nelis et al., 2016).  

Another limitation identified in almost all the optimization algorithms was grade uncertainty and the 
contributions of individual ore types to stope value. Consideration of grade uncertainty should be 
evaluated in the stope optimization procedure. For example, in Bai et al., (2014) the true grade values 
of the deposit used were assumed known everywhere or obtained using a conditionally unbiased 
estimator for simplicity sake and so the effect of the uncertainty on grades with regard to the stope 
design is not considered in this study. With the exception of downstream geostatistical approach or 
mathematical morphology and the probabilistic optimization algorithm based on MIP developed by 
Grieco and Dimitrakopoulos that considers grade uncertainty and geological uncertainty respectively 
in the optimization process, the others do not incorporate uncertainty (Grieco and Dimitrakopoulos, 
2007; Dimitrakopoulos and Grieco, 2009; Topal and Sens, 2010; Sandanayake, 2015; Erdogan et al., 
2017; Erdogan and Yavuz, 2017).  

Again, a limitation identified in the algorithms is the problem of mining methods to which they can 
be applied. The existing algorithms cannot be applied to all the mining methods. Algorithms like 
Network flow can only be applied to Sublevel stoping method. The existing algorithms therefore 
require some improvements in terms of design criteria in order to take into account different mining 
or stoping methods, which could affect the economics of the mining operation (Erdogan et al., 2017).  

Lastly, Musingwini (2016), Erdogan et al. (2017) and Erdogan and Yavuz (2017) assert that, the 
underground optimization techniques should consider an integrated approach for stope boundary 
optimization, development and production schedule optimization. This approach will provide more 
realistic and profitable results than individual evaluations of the stope boundary optimization 
methods. 
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5. Underground Production Schedule Optimization Models and Algorithms 

Production scheduling is said to specify the mining sequence for economic stopes and the associated 
mine development required to bring the specified stopes into production. The decision to optimize 
centres on variables that represent the time at which to mine each stope in order to maximize NPV 
subject to operational constraints such as mining infrastructure, production capacity constraints, 
milling capacity constraints, grade and geometallurgical constraints, and rules on precedence 
relationships between specified stopes (Musingwini, 2016). The complexity of underground mining 
has resulted in the delay of software for underground operations and hence a lot of the scheduling 
concepts and algorithms produced for surface mining operations have eventually found their way 
into underground mining. The stoping methods employed in underground mining are branded by 
complex decision combinations, conflicting goals and interaction between production constraints 
(Kuchta et al., 2004; Pourrahimian, 2013).  

As chronicled by Askari-Nasab et al. (2010); Askari-Nasab et al. (2011); Pourrahimian et al. (2012); 
and Pourrahimian (2013), production scheduling optimization models and algorithms available in 
literature are not just limited to, but can be divided into two main areas: heuristic and exact 
algorithms.  However, the main disadvantage of heuristic methods is that there is no quality measure 
to solutions provided compared to the optimum. In addition, most of the results are not reproducible. 
Generally, heuristic methods are employed when there is no available approach to establishing an 
optimal solution under given constraints though they are widely known to generate good solutions 
within reasonable times. Currently, underground mine scheduling practice has inclined toward the 
use of simulation and heuristic software to determine feasibility rather than optimal draw schedules. 
Notwithstanding the flaws associated with heuristics such as frequently required intervention and 
lack of ways to improve optimality, simulations and heuristics are capable of handling non-linear 
relationships as part of the scheduling procedure. It was concluded by Gershon (1987) that schedules 
generated with heuristic techniques should only be considered as useful guide. Other methods such 
as queuing theory, network analysis, and dynamic programming have also been used to schedule 
production and/or material transport (Pourrahimian, 2013).  

Within the past few decades many researchers have employed the use of Operations Research (OR) 
techniques in the mining industry. The application of OR techniques to optimization in the mining 
industry started to emerge in the early 1960s. Since then, optimization techniques have been applied 
to solve widely different mine planning problems. One of such OR techniques is mathematical 
programming. Mathematical programming techniques have been employed for many open pit 
optimization and scheduling and has therefore been investigated for similar applications in the 
underground mine environment. Mathematical models are capable of providing mathematically 
provable optimum schedules. To this effect, mathematical programming models that have been used 
for underground mine planning production scheduling, (short and long term) problems include: 
Linear Programming (LP), Integer Programming (IP), Mixed Integer Programming (MIP), Mixed 
Integer Linear Programming (MILP), Goal Programming (GP), and Quadratic Programming (QP) 
approaches (Alford et al., 2006; Nehring et al., 2010; Newman et al., 2010; Pourrahimian, 2013; 
Musingwini, 2016).  

The application of LP in underground mine planning was first reported by Williams et al. (1973). LP 
was used to produce a schedule for the Nchangua Consolidated Copper Mines, limited which used 
to undertake production scheduling manually based on the experience of the mine planner for three 
underground ore sources. The mine planning system had already employed a heuristic solution but 
had no favorable results. The results from the LP schedule for one out of the three mines showed 
reduction in deviations from set targets subject to hoisting capacity, tramming capacity, profile 
constraints and manpower requirements. The application of LP on the other two shafts was less 
effective due to their much smaller size and the complicated mining sequencing resulting from the 
folded nature of the orebody. 
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Another application of LP was reported by Jawed (1985). In a case study on a group of coal mines, 
LP was employed to optimize production planning and scheduling. The application of LP resulted in 
the minimization of deviation from prescribed targets subject to operational constraints, manpower 
requirements, extraction capacity, plant capacity and lower bounds on the quality of extraction. 

In 1997, Pendharkar (1997) developed and used a fuzzy LP model which incorporated fuzzy 
measures of quality to evaluate different production alternatives in the context of the coal industry. 
The authors applied the developed model on a hypothetical problem. The goals of the formulated 
model were to determine production outputs by coal mines, the satisfactory quality level of the coal 
to be delivered to the market and profitability. Results from the research indicated that the model had 
potential for solving decision making problems (production schedule problems) in the coal mining 
industry and could solve both simple to very complex problems that were dynamic in nature. They 
further proposed that the model could be extended to consider Non-Linear objective function since 
Non-Linear Programming has an advantage over LP because it considers certain factors like 
economies of scale and economies of scope which are ignored by LP.  

An application of mathematical programming (Integer Programming/Mixed Integer Programming) 
in short-term and long-term production scheduling was reported by Guest et al. (2000) in block 
caving. the objective function in the work was defined as, to maximize draw-control behavior. In his 
conclusion, he iterated the benefits and advantages of using LP/MIP options and added that in 
comparison with spreadsheet manual systems, LP and MIP results had improved by 20%. However, 
Pourrahimian (2013) attests that the objective was to optimize Net Present Value (NPV). He further 
identifies two major problems associated with the approach: maximization of tonnage or 
minimization of reserves will not necessarily lead to maximization of NPV and draw control is a 
planning constraint rather than an objective function. He concluded that the objective function will 
therefore be to maximize tonnage, minimize dilution, or maximize mine life. 

The application of integer programming to optimize underground mine production scheduling was 
first attempted by Trout (1995). The author uses MIP to develop an optimal production schedule with 
maximization of Net Present Value (NPV) as an objection function. The work was carried out on a 
sublevel stoping underground copper ore operation situated at Mt Isa, Australia. The objective 
function was subject to stope sequencing, stope extraction and backfilling quantities, equipment 
capacities and production grade as constraints. Due to an interruption from lack of memory, the proof 
of optimality could not be realized. Solution after 1.6 hours indicated a 25% improvement over the 
NPV generated by current operational policies. The model was not implemented at the mine due to 
additional improvements. Nevertheless, the study indicated the relative merit of employing MIP 
techniques over manual techniques for scheduling stopes (Little et al., 2008; Pourrahimian, 2013). 

Carlyle and Evans (2001) developed a large MIP model which factors several constraints such as  
planned mine layout, projected ore quality, and projected costs for basic mining activities. The model 
presented maximized discounted ore revenue when applied to only a part of the sublevel stoping 
platinum and palladium mine in Stillwater, Montana. The system obtained a near optimal schedule 
of various planning scenarios (Pourrahimian, 2013). 

An application of mathematical programming in block caving was also presented by Rubio (2002). 
The author presented a methodology and subsequently, an application that would enable mine 
planners to compute production schedules in block caving. The research demonstrated an integration 
and formulation of two main planning concepts as potential goals to optimize the long-term planning 
process, thereby maximizing NPV and mine life. 

Smith et al. (2003) constructed a large-scale, time-dynamic, life-of-complex mixed integer  program 
production schedule to optimize copper and zinc cash flow based on a detailed life of project 
production-scheduling at a copper and zinc underground mine at Mount Isa, Australia. The objective 
was to maximize NPV subject to operational constraints such as ore availability, mill capacity, mine 
infrastructure production capacity, grade limits, continuous production rules, and precedence 
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relationship between production blocks. However, the authors were unable to solve all instances of 
their problem in a reasonable amount of time (Newman et al., 2010). 

A mathematical programming model to determine the levels of extracted ore from several different 
underground copper mines to maximize profit was presented by Epstein et al. (2003) at El Teniente, 
the largest underground copper mine in the world. In the formulated MIP model, the geological area 
of interest is strategically outlined by profitable extraction points, resulting from vertical aggregation 
of blocks. Mined material is sent through a network of alternative technologies and infrastructure 
investments. This capacitated network contains hundreds of thousands of variables and constraints. 
A rounding heuristic, developed and implemented by the authors gave a resulting solution indicating 
an improvement of more than 5% on the current operations of the mine (Newman et al., 2010). 

Rahal et al. (2003) also described a Mixed Integer Goal Program (MIGP) model with dual objectives 
of minimizing the deviation from the ideal draw while achieving a production target in block caving. 
The developed algorithm assumes that the optimal draw strategy is known. In addition, a life-of-
mine draw profiles for notional scenarios were developed and showed that by using the results from 
their integer program, they greatly reduced deviation from ideal draw point depletion rates while 
adhering to a production target. 

Rubio and Diering (2004) in their work expand the analysis to include cost considerations based on  
previous work by Rubio (2002) by using his operational constraints. They described the application 
of mathematical programming to formulate optimization problems in block-cave production 
planning by formulating two main planning strategies: maximization of NPV and maximization of 
mine life (Newman et al., 2010; Pourrahimian, 2013).  

Sarin and West-Hansen (2005) developed a MIP model for generating mine production schedules 
with constraint set consisting primarily of enforcing precedence, smoothing quality, and production 
levels and limiting the quantity of sections simultaneously mined. The authors in their presentation 
maximize NPV for an underground coal mine that consists of sections mined with longwall, room-
and pillar, and retreat mining. The model is based on the definition of the mine layout as a precedence 
network, with the nodes representing mining sections. Binary variables track whether a section is 
scheduled to start being mined by a given set of equipment at a given time, whereas continuous 
variables track the quality and production volume of the material extracted.  They tailored and 
developed a general solution methodology based on the Benders’ decomposition model to 
successfully solve the original problem in mining (Newman et al., 2010). 

McIssa (2005) also employed MIP to generate a long-term mine plan for a polymetallic narrow vein 
mine. The objective function was to maximize the cash flow of the operation. His model determined 
the sequence of development and stoping activities of eleven separate sectors based on three month 
intervals for a four-year period set at a production rate of 500 tonnes per day. Production schedules 
were generated for each zone rather than individual stopes. Failure on the part of the formulated 
model to schedule individual stopes but rather just specify zones, however, provides the mine with 
only a very general indication of where production should take place. Nehring and Topal (2007) 
reported that if the schedule model was applied to weekly or monthly periods, this general 
specification may not actually assist in generating optimal results. Though the model was solved in 
30 minutes with 1,200 variables, it is not stated how many of these variables are integer variables 
and there is no mention of a previously generated manual production schedule with which to compare 
results. 

Nehring (2006) further advances on the work of Trout (1995) by formulating a new constraint to 
limit multiple fill mass exposures without breaking other operational constraints. The model 
contained a total of 315 integer variables and 774 binary variables. His research also demonstrated 
the benefits of using MIP for generating production schedules over a common manual method of 
selecting production from the next highest available cash flow stope. It is reported by Nehring and 
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Topal (2007) that based on a conceptual nine stope operation, results showed an improvement in 
NPV. 

Newman and Kuchta (2007) formulated a multi-period mixed integer program model for both short 
and long-term production scheduling of iron ore production at Kiruna, Sweden. They describe how 
they modify the model to consider several different levels of time resolution in the short versus long-
term, and provided guidance for increasing model tractability. They then demonstrate numerically 
the increase in schedule quality and model tractability as a result of these modifications aggregating 
the periods and then solved the original model using information gained from the aggregated model 
(Pourrahimian, 2013). 

Similarly, Nehring and Topal (2007) presented a new constraint formulation for limiting multiple 
exposures of fill masses for a small conceptual sublevel stoping operation. Comparative results of a 
schedule generated by the MIP production scheduling model and a manually generated model on a 
nine stope example was presented. Results from the work indicated that the potential benefits of the 
MIP production scheduling model for the purpose of maximizing NPV are significant. Finally, the 
new constraint was implemented in conjunction with other constraints without violating or limiting 
a mixed integer programming production schedule’s capacity to optimize production from a series 
of stopes.  

Little et al. (2008) and Nehring et al. (2010) in their research presented a classical MIP model that 
generates optimal production schedules for sublevel stoping operations. They further proposed a new 
formulation that significantly reduces the number of integer variables, specifically binary variables, 
and solution times without altering results while maintaining all constraints. The proposed model 
proved to have a better ability to provide all sublevel stope mining operations with the capacity to 
quickly produce new schedules in response to updated data and examined a variety of situations. 
Their work was based on two theories relating to natural sequence and natural commencement. 
However, they did not recognize stope grades over smaller volumes within each stope hence assumed 
an average grade for the entire stope. Therefore, in situations where a particular metal quantity must 
be satisfied, this requirement could violate the constraint where stope extraction occurs over more 
than one-time period. Also, timing constraints were not formulated to limit stope production to the 
extent of development. Generally, not all stopes are available over all time periods for production. 
This is particularly relevant if a great deal of development is required to access a stope because 
development costs could outweigh the benefits of mining that specified stope in that particular time 
period. Other researchers like Bley and Terblanche (2012) and King (2016) also worked to reduce 
the solution times while maximizing the mine’s discounted value. 

Pourrahimian et al. (2012) presented two Mixed Integer Linear Programming (MILP) formulations 
for long-term production scheduling of block caving mining operations. They first solved the 
problem at the draw point level and then aggregated the draw points into larger units referred to as 
clusters. Their formulations were developed, implemented and verified in the TOMLAB/CPLEX 
environment. The objective of the production scheduler is to maximize the Net Present Value (NPV) 
of the mining operation. The models also provided the mine planner the flexibility to have control 
over the development rate, vertical mining rate, lateral mining rate, mining capacity, maximum 
number of active draw point and advancement direction.  

As an improvement of the previous work by Pourrahimian et al. (2012), Pourrahimian (2013) in his 
study developed, implemented, and verified a theoretical optimization framework based on a mixed 
integer linear programming (MILP) model for block cave long-term production scheduling to 
generate near-optimal life-of-mine production schedules for block cave mining operations. He 
introduced three MILP formulations for three levels of problem resolution; cluster level, draw point 
level, and draw point-and-slice level. These formulations could be applied in two ways; i) as a single-
step method in which each of the formulations is used independently; ii) as a multi-step method in 
which the solution of each step is used to reduce the number of variables in the next level and 
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consequently to generate a practical block cave schedule in a reasonable amount of CPU runtime for 
large-scale problems. His model however was based on deterministic data and hence did consider 
attribute uncertainties, stochastic variables, ore dilution and other mine planning parameters.  

O’sullivan and Newman (2014) employed mathematical optimization technique to determine a 
production schedule of extraction and subsequent filling of resultant voids for a complex 
underground mine in Ireland. The goal of the mining operation was to maximize metal production 
over the life of the mine, subject to constraints on maximum monthly extraction and backfilling 
quantities, maximum and minimum monthly metal production, and sequencing between extraction 
and backfilling operations. The authors solved the integer programming model with a heuristic to 
produce a schedule that adds value to the mining operation by: shifting metal production forward, 
reducing waste mining and backfilling delays, avoiding expensive mill-halting drops in ore 
production, and enabling smoother workforce management. The formulated module produced near-
optimal production schedules for the mine that is more consistent with managerial goals than the 
mine’s previous manual scheduling method was. Although both the manual and the IP schedules 
added value to the mining operation. It is reported by Brickey (2015) that the authors utilized 
aggregation techniques to reduce variables and developed methods for assigning precedence to the 
various activities; however, the disadvantage of aggregation is that it is limited as a result of the 
complicated precedence structures. 

Brickey (2015) presented a generalized, mathematical formulation that results in a large-scale integer 
optimization model. His model maximizes NPV and determines the optimal or near-optimal 
sequence of activities related to the development, extraction and backfilling of an underground mine. 
Defined constraints in his work include physical precedence and resource capacities. He used data 
from an existing underground mine. Interestingly, the formulated model had the ability to serve other 
underground mines with similarly structured data and provides the ability to customize constraints. 
He included a constraint that treats available mine ventilation as a consumable resource. 

Terblanche and Bley (2015) proposed a MIP model which is in relation to similar works by Little et 
al. (2008); Nehring et al. (2010) and Newman and Kuchta (2007). The rationale behind the approach 
is that the number of variables in the formulation was reduced by introducing a lower time period 
resolution while maintaining enough information to enable the optimization model to boost profits 
through selective mining. In addition, a generic formulation of the mine scheduling optimization 
problem cast within a resource production framework is introduced, with the purpose of simplifying 
notation used in formulating underground mine scheduling optimization problems. The presented 
MIP model is applicable to underground selective mining but not limited to a specific mineral where 
the ore grade is highly variable and by selecting out only high-grade areas to mine a reduction in cost 
can be achieved, thus improving profitability. 

Ben-Awuah et al. (2016) developed, implemented and verified a MILP formulation and methodology 
with the objective to maximize the Net Present Value (NPV) of an orebody using different mining 
options with complex production requirements. The mining options considered were: i) open pit 
mining; ii) underground mining; and iii) concurrent open pit and underground mining. The MILP 
optimization framework proved to be robust in providing a global optimization solution when 
assessing the different mining options. In addition, the framework could also be extended to 
determine the change-over point between an open pit mining operation and an underground mining 
operation. The different mining options were evaluated based on the assumption of a high 
preproduction capital investment with low operating cost. The authors concluded that implementing 
open pit mining generated a higher NPV than underground mining but considering the investment 
required for these mining options, underground mining generated a better return on investment than 
open pit mining. For concurrent open pit and underground mining scenario, the optimizer preferred 
extracting blocks using open pit mining. Although the underground mine could access ore sooner, 
the mining cost differential for open pit mining was more than compensated for by the discounting 
benefits associated with earlier underground mining. They further recommended that an additional 
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study could be done to investigate the mining options including their pre-production capital 
expenditure requirements. 

6. Mathematical Programming Models and Algorithms for Integrated Underground 
Stope Layout/Limit and Production Schedule Optimization  

Available literature as discussed under Sections 3 and 4 of this paper indicates that there has been 
several optimization techniques that have been developed for stope layouts and progress is being 
made in the area of production scheduling. However, both areas are still open to improvement.  

It is reported by Little et al. (2011) that stope layout methods struggle to produce true optimal results 
whereas scheduling techniques are hindered by excessive solution times. The available techniques 
aim to provide local optimal solutions that do not consider simultaneously how other designs or 
planning areas will affect the optimality of results. Clearly, to date, no method has been proposed, or 
given consideration, to expanding the scope of underground mine optimization to integrating key 
areas of long term underground mine design and planning such as to merge stope layouts and 
production scheduling into one technique. Chadwick (2009) states that, optimization has the ability 
to add significant value to a mining operation but only if the whole process is considered. However, 
if concentration is based solely on one part of the process there is a possible risk of transferring cost 
or reducing revenue elsewhere. Simultaneous optimization would allow for the interaction and 
influence of one area on another to be assessed and mine plans appropriately improved, in effect, 
providing more profitable mine plans than currently possible (Little et al., 2011). 

Poniewierski et al. (2003) in his investigation into the relationship between stope layouts, production 
schedule and cut-off grade optimization acknowledges and establishes the complex interaction that 
exist between the three aforementioned areas. His work describes aspects of the detailed investigation 
into estimating a practical static cutoff grade for the two main orebodies in Mount Isa Mine’s 
Enterprise Mine, a deep underground copper mine. The approach described by Poniewierski et al. 
(2003) shows the first step towards achieving a practical application of Lane’s theory on optimum 
cutoff grade in selective underground mining. He iterates in his work that, the key to determining an 
optimum cutoff grade is the ability to rapidly perform complex mine layout designs combined with 
rapid output of multiple potential schedules. For the over 200 schedules that were generated for 13 
stope layouts, he examined each case using mining, concentrating and smelting net cash flows and 
the NPV. For each orebody, a cutoff grade was selected based on the cutoff grade which achieved 
the maximum NPV while allowing for an appropriate production rate. However, due to the 
limitations of the commercially available software package, the process did not consider all possible 
designs and schedules together. The process in effect illustrated the connection and complex 
interaction between stope design and production scheduling and established the need to take into 
consideration stope design and production scheduling simultaneously if globally optimal results are 
to be achieved in underground mine planning. However, work completed by Smith and O’Rourke 
(2005) concludes that using cutoff grades to drive mine design and planning is unnecessary as the 
optimization process will mine the portion of the deposit which is most economical within the limits 
of the operation. 

As an attempt to address the issue of obtaining globally optimal results by simultaneous optimization 
of  stope layout and production scheduling,  Little et al. (2011) and Little (2012) proposed a model 
that simultaneously optimizes stope layouts and production schedules using integer programming 
technique mixed integer programming for sublevel stoping operations. They emphasized that MIP 
techniques are used because it has been shown that they can successfully handle multi-constrained 
problems while providing a multi-period production schedule that satisfies a required objective. The 
authors successfully applied the MIP model to 64 443 blocks over a 23-year mine life, which 
demonstrated the model’s ability to produce optimal long term mine plans for a sublevel stoping 
operation with a $22.7m maximized NPV. The formulated model works by selecting the best stope 
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sizes, identifying the best stope locations and generating a corresponding optimal long term 
production schedule simultaneously for a given block model. In solving the optimization problem, 
the model did not necessarily select the most profitable stope to be produced, it rather resulted to 
producing different stopes in different configurations, while identifying the best timing for 
preparation, extraction and backfilling for each stope, which eventually maximizes the mine’s NPV. 
As part of the future works and recommendations, the authors reiterate the need to revise the model 
formulation to reduce the solution time and memory requirements due to increases in problem sizes. 
This will make the model more applicable because the reduction in the solution time will make the 
model more acceptable for practicable mining purposes. They emphasized the need to employing 
stochastic techniques to geological and economic uncertainties, such as grade and metal prices as 
these will increase the reliability and success of the mine plan than using deterministic assumptions 
only. They conclude that poor consideration of these uncertainties recurrently becomes the main 
reason why many mine sites consistently do not achieve their forecasted performance. 

To compare the strength of an integrated stope layout and production schedule optimization with the 
isolated optimization, Little et al. (2013) developed an Integer Programming (IP) model that allows 
for either integrated or isolated optimization. He applied both approaches separately to a block model 
of a gold deposit. Results demonstrate the formulated model’s ability to produce optimal long-term 
sublevel stoping mine plans and the benefits of using an integrated approach. Though the 
optimization of a part of a mine plan generally tend to yield better results than that of the manual 
planning methods, the integrated optimization approach provides better operational and financial 
advantages owing to its ability to assess the interaction and influence between planning areas. It is 
realized that the isolated approach has a narrow, outlook because its initial focus is solely on the 
selection of stope layouts without consideration for the impacts on production scheduling. Invariably, 
this limits the scope in which production scheduling optimization can work due to the various 
constraints specified, and this ultimately harms the NPV because costs are either transferred or 
revenues reduced elsewhere in the mine plan. However, the integrated approach, rather takes a 
holistic look at the operation. This approach predicts and manages issues between the mine planning 
areas and can accommodate all constraints. As an advantage over the isolated approach, it ensures 
generating a more considerable and comprehensive mine plan, hence achieving a better NPV. The 
integrated approach further allows for risks and opportunities to be identified more readily, hence 
risks can be reduced or opportunities capitalized on more easily in the planning process. Musingwini 
(2016) highlights the fact that this approach of integrated optimization means a more realistic and 
sound comparative evaluation of projects within reasonable time frames, facilitating better informed 
operational and financial decisions is to be expected. The model however did not incorporate 
development optimization. It only has one development consideration; the location of extraction 
levels this does not assess if other development requirements, such as shaft or decline construction 
time or their placement underground, can satisfy the proposed production schedule, or if the proposed 
stope layouts and schedule works well with development requirements both technically and 
financially.  It is worthy to note that optimizing development along with stope layouts and the 
production schedule will provide a globally optimal strategic mine plan. 

Gangawat (2014) developed an integer programming formulation and solved using CPLEX solver 
for a single stope. His work is divided into two parts; optimal designing of stopes for open stoping 
method based on constraints of stope extraction angle and stope height and production scheduling of 
the generated stopes employing heuristic approaches. The algorithm was solved using part of the 
zinc mine of India with data containing 4,992 blocks. After successfully solving and eliminating the 
first stope and respective crown pillar data from the data set, the algorithm was solved again for the 
second and subsequently a third stope from the remaining data set. In all, a total of 3 stopes were 
designed. After stope design, production scheduling of the stope blocks was carried out heuristically 
satisfying extracting angle, mining and processing constraints. However, heuristic approaches are 
known to give solutions which are just close to the optimal but not an optimal solution though they 
have the ability to significantly reduce computational time. A flaw in his work, however, was that 
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consideration was not given to the cost of development in the objective function. Considering it could 
bring the generated NPV close to the real time solution. 

7. Stochastic Mine Planning Approaches in Underground Mining 

There are two approaches of conducting mine planning, namely; deterministic and stochastic 
approaches. Deterministic mine planning uses historical data collected from previous mine 
production activities and assumes that this trend will continue in future processes. Conversely, 
stochastic mine planning can be described as a premeditated course of action based on data collected 
from historical mine production figures and also incorporating uncertainty into the modelling 
processes. Deterministic approaches are known to ignore variations; hence stochastic mine planning 
is promoted because it incorporates variations considering the fact that mine production activities are 
erratic in nature and not static. Stochastic mine planning is a complex scheduling process due to its 
ability to incorporate uncertainties such as geological, technical and economic, inherent in mining 
operations (Magagula, 2016). 

The application of stochastic mine planning in production scheduling has been reported by various 
researchers in open pit mining taking into consideration grade uncertainty and associated risk 
(Dimitrakopoulos et al., 2002; Dimitrakopoulos and Ramazan, 2004; Leite and Dimitrakopoulos, 
2007), orebody uncertainty, in situ grade and geological uncertainty (Ramazan and Dimitrakopoulos, 
2004; Dimitrakopoulos et al., 2007; Dimitrakopoulos and Ramazan, 2008; Godoy and 
Dimitrakopoulos, 2011; Silva et al., 2015), geological and market uncertainty (Sabour and 
Dimitrakopoulos, 2011) and NPV (Ramazan and Dimitrakopoulos, 2012) to mention a few. 

Conceptual developments in open pit mining have gradually led to the application of stochastic mine 
planning in underground mine planning notwithstanding the intricate nature of underground mine 
planning. The uncertainty related to orebody is a critical aspect affecting the forecasted performance 
of designs and is linked to the failing of meeting production targets and project financial expectations 
in mine planning (Grieco and Dimitrakopoulos, 2007).  

Grieco and Dimatrakopoulos (2007) developed and explored a new probabilistic mixed integer 
programming model to optimise stope designs, including size, location and number of stopes under 
consideration of grade uncertainty and predefined levels of acceptable risk. The model was applied 
on data from Kidd Creek Mine, Ontario, Canada to demonstrate its practicality. The application 
exhibited aspects including risk quantification for contained ore tonnes, grade and economic 
potential. The authors reported that unlike any conventional stope optimization approach, the stope 
designs generated based on the concept of acceptable risk gives the mine planner control over the 
final stope layout and its potential future performance while considering grade uncertainty. The 
application of the proposed approach is based on the ability to stochastically simulate equally 
probable representations of the deposit. 

Martinez (2009) gives a classic presentation on why accounting for uncertainty and risk leads to an 
improvement in decision making so far as mine evaluation is concerned. He introduced a new mine 
evaluation framework; the Integrated Valuation/Optimization Framework (IVOF). He presented this 
as an alternative tool for mine project evaluation where uncertainty and risk are incorporated in the 
evaluation process. His paper highlights two main objectives; i) it shows what problems can arise 
when single estimated values are substituted for a distribution of values when evaluating a mine 
project in the face of uncertainty and ii) it shows how the ability to deal with uncertainty and risk in 
mine project evaluation can have a significant impact on the owners’ and stakeholders’ investment 
decision-making. The author asserts that the complexity of mine projects makes it a business that 
requires constant assessment of risk due the fact that the value of a mine project is typically 
influenced by many underlying economic and physical uncertainties, such as metal prices, metal 
grades, costs, schedules, quantities and environmental issues, among others, which are not known 
with absolute certainty. He identifies the main sources of uncertainty that arise at the commencement 
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of a mine project evaluation to be uncertainty in orebody modelling, uncertainty in metal prices and 
costs, and uncertainty and risk in mine planning and design. 

Dimitrakopoulos and Grieco (2009) adopted risk-based concepts developed in open pit mining to the 
underground stoping environment and shows examples employing data from Kidd Creek Mine. The 
example illustrates how conventional technologies cannot quantify risk since they are unable to 
foresee a significant upside potential and/or downside risk for the conventionally produced designs. 
The work quantified risk is in terms of the uncertainty a conventional stope design has in expected: 
contained ore tones, grade and economic potential. They further outlined a new probabilistic 
mathematical formulation that optimizes the size, location and number of stopes in the presence of 
grade uncertainty with an additional constraint introduced as the minimum acceptable risk allowed 
in a design. The model was applied to demonstrate the advantages of a user-defined level of 
acceptable risk. It is worth mentioning, that the authors recommended that further developments of 
the work could be to include: i) the formulation of a stope optimization formulation that replaces the 
probability of grades above cutoff with the direct use of all available simulated orebodies, integrating 
more geological information; ii) consider sequencing and thus accommodate risk management and/or 
geological risk discounting as part of the stope design process; and iii) extend to integrate 
geotechnical uncertainties starting from over-breaking and under-breaking. 

Dimitrakopoulos (2011) proposed a risk-based Stochastic Integer Programming (SIP) optimization 
model which incorporates uncertainties from both the geological and economic factors while 
minimizing cost. The model integrates two elements: stochastic simulation and stochastic 
optimization. These elements provide an extended mathematical framework that allows modelling 
and direct integration of orebody uncertainty to mine design, production planning, and valuation of 
mining projects and operations. This stochastic framework increases the value of production 
schedules by 25%. Case studies also show that stochastic optimal designs i) can be about 15% larger 
in terms of total tonnage when compared to the conventional design, while ii) adding about 10% of 
NPV comparing to the traditional scheduling using a determined averaging orebody model designs. 
Results suggest a potential new contribution to the sustainable utilization of natural resources. 
However, Magagula (2016) reports that the author indicated the difficulties surrounding creating 
such planning process. 

To integrate ore/metal uncertainty into the optimization of mine production scheduling, a Stochastic 
Integer Programming (SIP) formulation is proposed and tested at a copper deposit by Leite and 
Dimitrakopoulos (2014). The stochastic solution maximizes the economic value of a project and 
minimizes deviations from production targets in the presence of ore/metal uncertainty. Unlike the 
conventional approach, the SIP model accounts and manages risk in ore supply, leading to a mine 
production schedule with a 29% higher NPV than the schedule obtained from the conventional, 
industry-standard optimization approach, thus contributing to improving the management and 
sustainable utilization of mineral resources. 

Macneil (2015) uses stochastic mine planning methods to identify the optimal open pit to 
underground mining transition depth by identifying a series of candidate scenarios where it is feasible 
to make an OP-UG transition. The author evaluated the economic viability of each member of the 
set of candidate transition depths by producing uncertainty-based life-of-mine production plans that 
were used to outline expected yearly cash flows. The benefits of using stochastic mine planning to 
provide well-informed long-term strategic decision-making criteria are observed. Results of the 
application of the stochastic approach produced operational schedules with an increase NPV 
compared to the corresponding deterministic framework. An application of the proposed method at 
Geita gold mine, a large gold mine in Eastern Africa indicate that future ore production is forecasted 
to fall well below the mill’s capacity, and to supplement this deficiency a transition from open pit to 
underground mining is being considered. Interestingly, results of the analysis from the proposed 
stochastic framework reflects that the most profitable decision favored continuing production 
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through solely open pit mining for the foreseeable future. Valuable insights towards the risk 
associated with the proposed mine design are gained through stochastic risk analysis. 

As the need to incorporate multiple components of the mining value chain increased a number of 
methods were developed over the past decades. Efforts have been made by these new methods to 
incorporate more decisions and flexibility to the mining optimization of a mining complex, however, 
they either ignore uncertainties associated with the mining project or consider decisions taken before 
optimization (Montiel et al., 2016). A method that optimizes mining complexes comprised of 
multiple open-pits, underground operations and processing destinations was presented by Montiel et 
al. (2016). The proposed method simultaneously optimizes mining, blending, processing and 
transportation decision variables while accounting for geological uncertainty. The method employs 
a simulated annealing algorithm at different decision levels in order to generate a stochastic-based 
extraction sequence and processing policies. An application based on a case study shows the methods 
ability to generate a higher NPV while facing a reduced amount of risk when compared to traditional 
optimization methods. 

Malaki (2016) employs the application of grade uncertainty in block cave mining. The author 
presents a methodology to find the best extraction level and the optimum sequence of extraction for 
that level under grade uncertainty. The work uses stochastic sequential simulation to address this 
problem by modelling a set of simulated realizations of the average mineral grade. MILP model was 
formulated to obtain the maximum NPV given some constraints such as mining capacity, production 
grade, extraction rate and precedence. Finally, risks associated with grade uncertainty are 
investigated and analyzed, considerably helping the decision makers in better understanding of 
various cases and conditions. The author concludes among other things that more uncertain attributes 
other than grade should be added to the optimization problem. Hence, the MILP model should be 
extended to take stochastic variables into account during optimization. 

A new SIP model incorporating geological uncertainty to optimize long-term scheduling of an 
underground project extension was introduced by Carpentier et al. (2016). In order to represent a 
deposit integrating the uncertainty, they stochastically generated a set of simulations and put them 
into the optimization model. The results show that the schedule generated has a higher expected value 
when considering and managing grade risk. They also demonstrate the benefits of risk control, 
allowed by the approach. 

MacNeil and Dimitrakopoulos (2017) provide an approach to determine an optimal depth at which a 
mine should transition from open pit to underground mining, based on managing technical risk. The 
proposed approach is tested on a gold deposit. This work aims to approve on previous attempts to 
solve this problem by jointly considering geological uncertainty and describing the optimal transition 
depth effectively in 3D. Results show the benefits of managing geological uncertainty in long-term 
strategic decision-making frameworks. The stochastic result produces a 9% increase in NPV over a 
similar deterministic formulation. The risk-managing stochastic framework also produces 
operational schedules that reduce a mining project ‘s susceptibility to geological risk. The authors 
direct future studies to aim at improving the method by considering more aspects of financial 
uncertainty such as inflation and mining costs. Table 1 presents the summary of current stope 
layout/limit optimization algorithms and their limitations. 
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Table 1. Limitations of stope layout/limit optimization models and algorithms. 

Classification Algorithm/Author (s) Mining method Dimensional shape Optimality Stochastic 
Consideration 

Production 
Scheduling  

H
eu

ri
st

ic
 

Octree Division (1989) All 3D No No No 

Floating Stope (1995) All 3D No No No 

Maximum Value 
Neighbourhood (MVN) 
(2000) 

All 3D No No No 

Multiple Pass Floating Stope 
Process (2001) 

All 3D No No No 

Simulated Annealing (2006) All 3D No No No 

Generation of Stope shapes 
for nominated range of Cut-
off grades (2009) 

Not indicated Not indicated No No No 

Topal and Sens (2010)  Not indicated 3D No No No 

Sandanayake and Topal 
(2015) 

Sublevel stoping 3D No No No 

R
ig

or
ou

s 

Dynamic Programming 
(1977) 

Block caving 2D No No No 

Downstream Division (1984) Cut and fill; 
Sublevel stoping 

2D No Yes (Grade 
uncertainty) 

No 

Branch and Bound (MIP) 
(1995, 1999) 

All 1D Yes No No 

Probable Stope (2004) All 2D No No No 

Grieco and Dimitrakopoulos 
(MIP) (2007) 

Blasthole/Longhole 
stoping with 

cemented backfill 

Not indicated No Yes (Geological 
uncertainty) 

No 

Network Flow (2013) Sublevel stoping 3D No No No 

OLIPS (2007) All 2D Yes No No 

GOUMA (2015) All 2D Yes No No 
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8. Research Opportunities 

It is evident from literature that underground stope layout/limit and production scheduling 
optimization remains a vital area in the underground mining industry and opportunity for research 
into improving and/or obtaining global optimality is still open. Most of the research carried out in 
the area has been towards developing algorithms and models separately for stope layout/limit 
optimization and for production scheduling optimization. According to Erdogan et al. (2017), 
Sotoudeh et al. (2017), and Nhleko et al. (2018), various algorithms and models have been developed 
to solve the problem of underground stope layout/limit optimization. The authors further explain that 
majority (70%) of these algorithms have gradually managed to define stope boundary in 3D, this 
used to be the problem with earlier developed algorithms and models due to the fact that mining is a 
3D problem. Almost, about 70% of these algorithms are heuristic based and hence true optimality is 
not guaranteed with these algorithms even in 3D. A majority of the algorithms and models are found 
to be applicable to all mining methods except the Dynamic Programming by Riddle (1977) and 
Downstream Geostatistical Algorithm by Deraisme et al. (1984). However, Nhleko et al. (2018) 
concludes that all these algorithms are based on deterministic orebody models and, therefore, fail to 
consider the existence of uncertainty in ore deposits. Consequently, there is a need for further 
research in the field of stope boundary optimization.  

Erdogan and Yavuz (2017) mentioned that there is a clear need for improved algorithms and software 
that guarantee optimal solutions and that the underground optimization techniques should be 
considered as a whole and techniques should be developed that covers all three areas of optimization: 
stope boundary optimization, development and production schedule optimization in the future. 
Currently, the only exception can be mentioned in the case of Little (2012) and Gangawat (2014) 
who considered a holistic look at simultaneously optimizing stope layout and production scheduling.  

In the report by Musingwini (2016), it is mentioned that the idea behind Little’s algorithm was to 
integrate the two and optimize them simultaneously. He highlighted on the fact that the algorithm 
was developed using the Integer Programming (IP) technique and that previously, most underground 
optimization techniques focused on optimizing stope layouts and production schedules separately.  

The flaw in the attempt by Little (2012) was the inability of the IP model formulation to reduce the 
solution time and memory requirements due to increase in problem sizes. This would have made the 
model more applicable because the reduction in the solution time will make the model more 
acceptable for practicable mining purposes. The model did not also employ stochastic techniques to 
geological and economic uncertainties, such as grade and metal prices that would help increase the 
reliability and success of mine plans. The consideration of these uncertainties will help mine sites to 
achieve their forecasted performance. Finally, the model was developed and tested for sublevel 
stoping mining method. No mention was made of its applicability on other underground mining 
methods. 

Similarly, the failure on the part of Gangawat (2014) after using an IP formulation to undertake stope 
design was the use of a heuristic approach to undertake production scheduling of the stope blocks 
satisfying extracting angle, mining and processing constraints. The flaw in his work was that 
heuristics are known to give solutions that are just close to the optimal but not an optimal solution 
though they have the ability to significantly reduce computational time. In addition, he gave no 
consideration to the cost of development in the objective function which could have brought the 
generated NPV close to the real time solution. Again, the author did not make mention of the 
applicability of the model to other underground mining methods in addition to open stoping.  

Recently, numerous researchers have explored and advanced industrial knowledge on the use of 
Mixed Integer Programming (MIP)/Mixed Integer Linear Programming (MILP) for the purpose of 
generating optimal mine production schedules from defined stope boundaries (Trout, 1995; Kuchta 
et al., 2004; McIsaac, 2005; Nehring and Topal, 2007; Pourrahimian, 2013). The account by these 
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authors clearly demonstrate the strength of mathematical programming techniques when applied in 
the area of production schedule and stope sequence optimization compared to manual production 
scheduling. Scheduling underground mining operations is primarily characterized by discrete 
decisions to mine blocks of ore, along with complex sequencing relationships between blocks. Since 
LP models cannot capture the discrete decisions required for scheduling, MIPs are generally the 
appropriate mathematical programming approach to scheduling. The advantage of using these 
methods for production scheduling is that they can provide a mathematically provable optimum 
schedule. These methods are able to approximate some non-linear systems, though not as flexible as 
simulation. 

In the MILP method, any feasible schedule produced has an associated gap that provides a measure 
of how far the feasible schedule is from its linear relaxation. This gap is based on the difference 
between the best node and best integer feasible value found within the branch-and-bound search tree. 
In a typical mine production scheduling problem, the number of integer and continuous decision 
variables and the number of constraints determine the complexity and solution time. The model 
decision variables need to assume integer variables to suit the discrete problems in certain conditions. 
When this restriction as well as the binary restriction is added to the problem, i.e., IP and MIP, the 
mine production scheduling problems are nicely addressed. Mixed integer programming models are 
recognized as having significant potential to optimize production scheduling for underground mines. 
The integer variables can represent entities that cannot be divided. And the binary variables can be 
used to represent Yes/No decisions such as to extract or not to extract the ore in a given time period 
(Topal, 2008; Pourrahimian et al., 2012; Little et al., 2013; Ben-Awuah et al., 2016)  

It can be deduced from Musingwini (2016) that in order to meaningfully interpret and communicate 
results for decision-making it is always important to understand the optimization processes in mine 
planning. This implies: i) developing more robust mine planning through stochastic optimization by 
considering probability underground excavation design of stopes and development in order to 
improve confidence in the placement and sizing of excavations; ii) integrating stochastic 
optimization within the four broad areas in underground mine planning i.e. development layout, 
sizing stope envelopes, production scheduling, and equipment selection and utilization so that these 
can be executed simultaneously and enable planning of just-in-time development. Finally, the 
integrated optimization should guarantee true optimality in 3D space and incorporate uncertainty, 
thus making a case for integrated 3D stochastic optimization. 

9. Rationale behind PhD and Proposed Research Approach 

Mine planning should be geared towards producing an optimized plan. An optimized mine plan is 
expected to be sufficiently robust to ensure that actual outcomes are close or equal to planned targets, 
provided that variances arising from poor performance are minimal. However, due to the geological, 
technical, and economic uncertainties inherent in mining operations, this does not always happen in 
practice; hence the gulf that mine plans tend to be based on deterministic frameworks, while actual 
mining operations are stochastic in nature. This observation explains the emerging paradigm shift 
towards stochastic mine planning. The failure to have actual outcomes close to or the same as planned 
targets is widely acknowledged in the mining industry due to the way the industry models its systems 
(Magagula, 2016; Musingwini, 2016). 

Literature review has shown that a holistic look at underground mine optimization problem in the 
areas of stope layout/limit and production scheduling and integrating stochastic considerations is 
imperative. Few attempts have proved unsuccessful. This therefore calls for the need to formulate 
robust and tactical models capable of solving the problem of global optimality by maximizing NPV 
while satisfying all available constraints and not affecting the function of other constraints. To solve 
such a task will require employing Operations Research (OR) techniques capable of solving such 
complex real-world modern optimization problems. One of such techniques to employ would be an 
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optimization model; a mathematical formulation that is solved using an exact algorithm to produce 
a single optimal solution through a process of either maximization or minimization. To this effect, 
Mixed Integer Linear Programming (MILP) with its advantages in the formulation and solving of 
such complex real-world optimization problems should be employed.  

Long-term underground mine production scheduling problems have been studied by researchers 
including Jawed (1993), Nehring et. al. (2010) and Pourrahimian et al. (2012). These studies have 
been based on the development of algorithms using operation research methods such as Linear 
Programming (LP), Mixed integer Programming (MIP) and Mixed Integer Linear Programming 
(MILP). The current optimization algorithms in the literature lack the ability to deal with real�world 
large�scale complex underground mine planning problems. They do not have the ability to address 
i) the broad range of mining methods (exhaustiveness) ii) practical problem sizes, and iii) stochastic 
parameters. 

The research objective will be to investigate the application of algorithms or mathematical 
programming optimization for strategic underground mine planning in the case of both selective and 
bulk mining methods. Subsequently, the research will develop efficient algorithms to reduce the size 
and complexity of the real�world large�scale problems. Finally, the research will investigate 
techniques to incorporate stochastic variables such as grade and price into the optimization 
framework. The research will result in optimization models and methodology that can be used to 
generate a comprehensive stope designs and life of mine plan for a given orebody. The optimization 
framework will consider the economical mineable sections of the deposit and optimal sequence of 
extraction to maximize the Net Present Value (NPV). To validate the optimization framework, the 
research project will be applied to case studies of different orebodies that will be provided during the 
project. The research will therefore focus on the following tasks: 

 Investigate the application of algorithms or mathematical programming optimization for 
strategic underground mine planning; 

 Develop efficient algorithms to reduce the size and complexity of the real�world large�scale 
problems; 

 Investigate techniques to incorporate stochastic variables including grade and price into the 
optimization framework; and  

 Formulate optimization model and methodology that can be used to generate stope designs and 
a comprehensive life of mine plan for a given orebody. 

Appropriately scheduling the long-term production of a typical underground mine is very critical to 
the overall success of the mine. However, the major problem in long-term production scheduling for 
underground ore bodies generally relate to the substantial number of variables which makes it too 
complex to solve (Nehring and Topal, 2007). The numerous constraints and uncertainties especially 
with the geomechanics of an underground mine makes long-term underground mine production 
scheduling very challenging. A long-term plan must solve three main problems: i) Investment: 
determine the selection and timing of investments; ii) Extraction: determine the production in the 
mine; and iii) Processing: determine the operation of the plants. Solving each one of these problems, 
even separately, is a complex task. However, the need for a strategic underground production 
schedule approach cannot be dismissed. For instance, the real value of an investment is appreciated 
only once its coherence is verified with respect to the extraction and processing decisions (Epstein et 
al., 2012). 

The shortfalls of the available models in literature with underground mine production scheduling 
include: 1) considered constraints for the models are not exhaustive; 2) models are mostly applicable 
to only one underground mining method; 3) they cannot deal with practical and complex problem 
sizes; 4) they cannot handle stochastic variables such as grade and price, and 5) limited total schedule 
quality in terms of tractability (ease to apply), realism (applying to deployment settings) and 
generality (applying to many protocols). These main factors would often make real-world 
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underground production scheduling problems very difficult to solve by models in existing literature. 
In most cases, either the existing models cannot deliver optimal solutions in a reasonable time frame 
or they do not have the framework to overcome these limitations. Experimental based solutions have 
therefore been extensively relied upon in managing these challenges in the real-world underground 
mine settings. These have often affected the overall NPV, equipment and labor utilization, increased 
ore losses and dilutions, and increased mining costs for the operation. Therefore, finding an 
optimization framework that is devoid of the above-mentioned shortfalls would be of great benefit 
in the mining environment. Fig. 3 is a schematic of the proposed research protocol. 

 
Fig. 3. Schematic diagram of the proposed research protocol. 

10. Summary and Conclusions 

Discussions so far indicate that underground mine planning optimization work completed to date has 
focused on solving an individual mine planning area with little consideration for its flow-on effects 
to other planning areas. It is seen and generally accepted that the optimized solution for the first 
problem (stope layout/limit) forms the input for the following problem, and so on until a mine plan 
has been completed. Consequently, the acknowledgement of the importance of an integrated 
approach towards optimization is growing. Recent studies have shown that decisions made in 
individual planning areas naturally influence the overall outcome, and focusing on local sub-
objectives can be counterproductive to the overall objective (Little et al., 2013). 

Current literature shows that optimization in underground mine planning still remains largely fertile 
for new developments because the direction of mining in underground mines has numerous 
permutations, depending on the mining method used, making the underground mining optimization 
problem intrinsically more complex to solve. This complexity explains the isolated piecemeal 
developments for solving parts of the overall optimization problem in underground mine planning in 
four key interdependent areas, namely: development layout, sizing stope envelopes, production 
scheduling, and equipment selection and deployment. Many opportunities therefore, exist for the 
development of integrated 3D stochastic optimization models for underground mine planning. The 
failure to obtain actual outcomes close to our targets is widely acknowledged in the mining industry. 
This is due to the way the industry models its systems (Musingwini, 2016; Nhleko et al., 2018). 
Sabour and Poulin (2010) and Musingwini (2016) proposed that mining companies ought to develop 
adaptable mine plans to manage the impact of uncertainties such as commodity price volatility, thus 
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implicitly advocating stochastic mine planning. In effect, mine plans can incorporate uncertainty 
such as price volatility if a shift is made away from deterministic to stochastic optimization.  
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