
Nikbin V. et al. MOL Report Nine © 2018 307-1

Stope Boundary Optimization Using A 3D
Approximate Hybrid Algorithm1

Vahid Nikbin, Majid Ataee-pour, Kourosh Shahriar and Yashar Pourrahimian

Mining Optimization Laboratory (MOL)

University of Alberta, Edmonton, Canada

Amirkabir University of Technology, Tehran, Iran

ABSTRACT

Determining stope boundaries is one of the critical steps to be taken when an underground
mining method is selected; because of their significant impact on the profitability of the mining
project, the stope boundaries have to be optimum to achieve maximum profits. This paper
introduces a new hybrid algorithm that is a combination of dynamic programming and greedy
algorithm. Although this proposed algorithm may fail to provide a true optimum solution, it
generates better solutions than existing algorithms do. The new proposed algorithm and three
existing algorithms are used to find the optimal stope boundaries on a real case ore body. The
results demonstrate that the proposed algorithm can improve the profit by 117.78%, 16.86% and
0.42% compared to Floating Stope, Maximum Value Neighborhood (MVN), and Greedy
algorithm solutions, respectively, on a real case study at a reasonable CPU time.

1. Introduction

Due to the increase in stripping ratios and haulage distances in open pit mines, mining costs
increase. As a result, switching from open pit mining to underground mining may be more
beneficial. Also, underground mining can be the only alternative for deposits with large
overburdens.

When the underground mining method is selected, it is necessary to determine the optimal
workable layout as stope boundaries. The main purpose of optimizing stope boundaries is to
determine an appropriate plan to select the best combination of blocks in the block model. This
plan should maximize the overall profit subject to geometrical, geotechnical, and safety
constraints. Obviously, this plan should be optimal because even a minor deviation from the exact
plan's value may result in wasting millions of dollars of mining capitals.

The existing algorithms are either heuristic and therefore do not guarantee the optimal solution
or else they suffer from over simplifications that restrict their applications. Despite its
importance, because of the inherent complexities of the problem, a comprehensive algorithm has
not been reported. Most of the presented algorithms are heuristic, and true optimality is not
guaranteed. Also, other algorithms with solutions that are assumed to be optimal, either fail to
run on 3D problems or their applications are limited to a specific method. In sum, no efficient
algorithm has yet been reported.

Most of the mining problems are large scale while exact optimization methods are usually not
applicable to solve these problems. Inevitably, they should be solved by low computational time
(meta) heuristic algorithms. There exist a large number of strong heuristic and metaheuristic
algorithms in the literature to solve a variety of mining problems such as prediction of
hangingwall stability, slope stability, waste tailing recycling potential and so on (Qi et al.,

1This paper, in its entirety, is available online from 14 May 2018 in Computer and Operations Research.
https://doi.org/10.1016/j.cor.2018.05.012

257

Nikbin V. et al. MOL Report Nine © 2018 307-2

2017, Qi et al., 2018a, Qi et al., 2018b, Qi and Tang, 2018). Before describing next sections,
stope boundary optimization problem is defined as follows:

Let P an economic block model and pi,j, k be the obtained value from extraction of block Bi,j,

k. Each stope is a subset of P that has a cube shape and its sizes along the main coordination axis
are determined based on the minimum space required for labors and operating machines in each
production cycle. Each combination of these stopes creates a feasible boundary which is denoted
by q. Boundary value is equal to summation value of those blocks which are inside of the
set q i.e.,

, ,
, ,(, ,);

()


 i j k
i j ki j k B q p

value q p . Our goal is maximizing boundary value among the all

possible boundaries i.e., max{value(q) : q Q} . Where, Q is a set which consists of all feasible

boundaries.

The next section of this paper reviews relevant literature related to stope boundary
optimization. Section 3 highlights the development of the algorithm for stope boundary
optimization. Section 4 focuses on the application of the presented algorithm, and compares the
results with other existing methods. The paper concludes in Section 5.

2. Methodology

Even four decades after the presentation of the first algorithm for optimizing stope boundaries,
the growth rate of these algorithms has been slow. The reported works on the stope boundaries
optimization problem are either sub-optimal or over simplified. For instance, although
the Riddle's (1977) algorithm was designed based on the powerful dynamic programming
approach, it does not consider the constraints simultaneously; this weakness may lead to a sub-
optimal solution. Also, it is a two-dimensional algorithm that can only be used for the block
caving method. The mixed-integer programming model that was presented by Ovanic and
Young, 1995, Ovanic and Young, 1999) guarantees the optimal starting and ending points for
stopes in block model rows. It is a one-dimension model and it is not clear how the model can be
used to find the optimal stope boundaries in 2D or 3D ore bodies.

Floating Stope is a famous stope boundary algorithm that was proposed by Alford (1995) and
implemented on the Datamine software package. In this algorithm, two envelopes (the inner and
outer envelopes) are introduced as the output, and the final solution is located between the two.
The final solution is determined by users, which means it is greatly dependent on their
experience. Although, this algorithm is simple to understand and implement, its solution remains
sub-optimal due to its heuristic logic.

The MVN algorithm, another heuristic algorithm, was proposed by Ataee-pour, 2000, Ataee-
pour, 2005). It investigates all stopes that cover a block with a positive value and selects the stope
with the highest value. It then updates the solution by adding this stope to the stope boundaries;
this is continued until all positive blocks are checked. MVN is a fast algorithm and easy to
understand; however, it is also a heuristic algorithm (similar to the Floating Stope), and the
optimality of the solution is not guaranteed. The Optimum Limit Integrated Probable Stope
(OLIPS), another dynamic programming algorithm, was designed by Jalali et al. (2004). Despite
its strong mathematical background, the method uses complex logic and its application has been
limited to inclined vein deposits. Also, no analysis has been reported for its solution time, but
because it is complex it is expected to have a significant solution time. Therefore, applying this
algorithm to large-sized problems may lead to restrictions due to hardware limitations.

Topal and Sens (2010) presented a heuristic algorithm that can use different strategies to
optimize stope boundaries. At first, location, size and profit of all possible stopes are listed in a
table if they have a positive value. In the next step, the maximum value stope is selected from
this table and it is flagged as a minable stope. Then found stope and its neighboring overlapped
stopes which have common blocks with this selected stope are eliminated from the
aforementioned table. This procedure continues while all stopes are removed from the table. Low
computation time and application on 3D problems are the main advantages of this algorithm.
However, by removing overlapping stopes without performing any more accurate analysis on
them some feasible combinations of stopes are rejected from the problem which may have good

258

Nikbin V. et al. MOL Report Nine © 2018 307-3

potentials to yield a higher stope layout (Sandanayake, 2014, Nhleko et al., 2017). Therefore, due
to simplification of the problem by eliminating the overlapping stopes, its optimality is not
guaranteed.

Bai et al., 2014, Bai et al., 2013 have used an intelligent method to find the optimal boundaries
around the vertical raises based on the network flow algorithm. By converting the conventional
orthogonal block model to a cylindrical block model with this method, the complicated
underground mining problem is converted to an analogous, simpler, and well known open pit
problem. However, the raise locations are determined by heuristic methods and the application
of this technique is restricted to the sub-level stoping method.

Sandanayake et al., 2015a, Sandanayake et al., 2015b) developed two analogous heuristic
algorithms which obtained a better solution than MVN. Both these reported works track the
following five main steps sequentially in order to find the highest value stope layout. These steps
are: (1) standardize the irregular block model (2) create all possible stopes (3) assign a value to
each stope (4) define non-overlapping stopes set (5) find the maximum value combination among
the mentioned set. These methods are 3D and their validation was successful compared to other
alternatives (Erdogan et al., 2017). However, similar to Topal and Sens approach, these
algorithms do not consider the overlapping assumptions and because of this simplification, they
fail to guarantee the optimum solution.

Nikbin et al. (2017) introduced a greedy algorithm to find the highest value stope boundary
subject the minimum stope sizes. At first, the algorithm finds the most valuable probable stope
between the non-investigated stopes set. Then all of the blocks located in this stope are added to
the optimal stope boundaries set if the stope value is positive. The found stope is removed from
the non-investigated set. This procedure will iterate untill the stope value is positive. The
validation was successful compared to MVN on a 2D hypothetical economic block model.
However, this algorithm is not only heuristic but also it has not been employed on a real large-
size ore body.

Advantages, application domains and some other related features of these explained algorithms
have been summerized in Table 1.

Although the heuristic algorithms for the stope boundary problem mainly generate sub-optimal
solutions, they usually have low processing time and include fewer simplifications.
Consequently, they are more applicable than rigorous alternatives for solving the real world
problems. The heuristic algorithms’ solutions differ from each other. Any modification to these
algorithms to decrease the optimality gap is very valuable. The contribution of this paper is to
propose a new hybrid algorithm for stope boundaries optimization to achieve better results than
what is possible with current algorithms. A new polynomial-time dynamic programming
algorithm is proposed in this paper that guarantees the optimal solution for a given row or
column. It is a 1D algorithm and in order to make it capable of solving 3D problems, it is
combined by a greedy algorithm as a hybrid approach. Since dynamic programming optimality
has a direct effect on the hybrid algorithm, highest value results was recorded by this proposed
approach and its validation was completely successful on both hypothetical and real cases.

3. Methodology

In this paper, a new hybrid algorithm is proposed to optimize stope boundaries. This combines
greedy and dynamic programming algorithms. The main problem is solved using the proposed
greedy algorithm. In the greedy algorithm, by converting specific two-dimensional subsets of the
original economic block model to single blocks, the initial complicated 3D problem is converted
to a simple secondary one-dimensional sub-problem. Then, a new dynamic programming
algorithm is applied to find the optimal boundaries on the aforementioned secondary sub-
problem. Of the solutions to these simple sub-problems, the best is chosen based on greedy
approach criterion. Then corresponding blocks to this solution are added to the initial problem
solution.

259

Nikbin V. et al. MOL Report Nine © 2018 307-4

Table 1. Comparison of common existing algorithms to solve stope boundary optimization problem

Algorithm Model type Mining method Dimension Mathematical formulation Partial blocks True optimality

Dynamic Programming Fixed blocks Block caving 2D Yes No No

MIP model Irregular blocks All 1D Yes Yes Yes

Floating stope Fixed blocks All 3D No Yes No

MVN Fixed blocks All 3D No No No

OLIPS Fixed blocks All 2D Yes No Yes

Topal and Sens Irregular blocks All 3D No No No

Network Flow Cylindrical Sublevel stoping 3D No No No

Sandanayake et al. Irregular blocks All 3D No No No

Greedy Fixed blocks All 3D No No No

Stope	

 ௠ሻݔ௠ሺ߂

 ௝ݔ ௠ሻݔ௠ሺߔ

Stope	
݆

Stope	
݉

 ௠ݔ

෍ ܿ௡

௝ା௫ೕିଵ

௡ୀ௝

௠݂ሺݔ௠ሻ

Fig 1. Relative position of algorithm's variables to each other.

260

Nikbin V. et al. MOL Report Nine © 2018 307-5

3.1. One-dimensional exact dynamic programming algorithm (ODEDPA)

Dynamic programming is a well-known technique that can be used to solve a large number of
optimization problems. Using this technique, a complicated problem is broken into smaller sub-
problems and instead of solving the complex original problem, the sub-problems are solved and
their solutions stored. After solving all of the sub-problems, the algorithm investigates the sub-
problems solutions and combines the solutions to solve the original problem.

The new proposed algorithm is designed based on the dynamic programming procedure, and is
suitable for finding the optimal stope boundaries in a given row or column of a block model. It
is a one-dimensional polynomial-time algorithm and guarantees the optimal solution.

All dynamic programming algorithms almost use the same approach. They calculate the
cumulative value for each state at each stage; find the highest cumulative value and track it to
find other states located in the optimal solution. The algorithms’ steps are:

1. Calculate the cumulative value for all states and store their best previous states.
2. Find the highest cumulative value at the final stage; its value presents the optimal stope

boundaries value.
3. Track this highest value state at the final stage; dimensions, positions, and the number of

the stopes that make the optimal boundaries.

The algorithm's variables and parameters are as follows:

௝݀ Minimum stope size along ݆ axis in terms of blocks

 blocks along the ݆ axis; input of ܬ A 1D economic block model consists of ܥ
dynamic programming algorithm

ܿ௡ Value obtained by extracting ݊௧௛ block of ܥ

݆ Current stage number

݉ Previous stage number

 ௝ Discrete state variable at the ݆௧௛ stage; length of a stope that its left corner isݔ
located at ݆

 ௠ Discrete state variable at the ݉௧௛ stage; length of a stope that its left corner isݔ
located at ݉

௝݂ሺݔ௝ሻ Cumulative value of ݔ௝

௠݂ሺݔ௠ሻ Cumulative value of ݔ௠

 ௝ሻݔthat makes ௝݂ሺ ܥ ௝; a subset ofݔ ௝ሻ Cumulative blocks set ofݔ௝ሺܨ

 State set; set of all feasible stope sizes along the ݆ axis ߁

,௝ݔ௝,௠൫ܪ ௠൯ Overlap function; a function to recognize overlapping of two neighborhoodݔ
stopes

) ௝൯ The best previous stageݔ௝൫߂ ഥ݉) that maximizes the cumulative value; previous stope
position

 that maximizes the cumulative value; length of (௠ݔ̅) ௝൯ The best previous stateݔ௝൫ߔ
previous stope

 ௝൯ݔ௝൫ߨ
หߨ௝൫ݔ௝൯ห

Optimal path of ݔ௝; the union of all states that are created ܨ௝ሺݔ௝ሻ
Optimal path’s size, the number of states that are created ܨ௝ሺݔ௝ሻ

 ௗ௣ Dynamic programming valueݖ

 ௗ௣ Left corner position of stopes that are located at the dynamic programmingܬ	
solution

261

Nikbin V. et al. MOL Report Nine © 2018 307-6

ܺௗ௣ Length of stopes that are located at the dynamic programming solution

݃ሺܽ, ܾሻ
݃݁ሺܽ, ܾሻ

A function for comparing two numbers, 1 if ܽ is greater than ܾ, otherwise 0

A function for comparing two numbers, 1 if ܽ is greater than or equal to ܾ,
otherwise 0

 ିܯ

 ∗ܥ

௝ܿ
∗

A large negative number

A 1D binary matrix consists of ܬ blocks along ݆ axis; output of dynamic
programming algorithm

Value of ݆௧௛ block of 1 ,∗ܥ if the block is selected, otherwise 0

Input and output matrices are denoted by capital letters and their elements are defined by
lowercase letters.

The stage and state are the position (left corner) and dimension (length along j axis) of stopes
respectively (Fig. 1). Since, each stope should has a minimum size, the state set (Γ) consists of
all sizes equal to zero or greater than dj (Eq. (1)).

߁ ൌ ሼ0ሽ⋃ሼ ௝݀, … ,2 ௝݀ െ 1ሽ (1)

If xj is zero the state set is empty and no block is located in the stope. Therefore, the cumulative
value is equal to the highest cumulative value among the previous states. This is expressed
by Eq. (2).

௝݂ሺݔ௝ሻ
௝ݔ ൌ 0

ൌ maxሼ ௠݂ሺݔ௠ሻ :݉ ൏ ݆ሽ (2)

In other situations (i.e., xj is not zero), the right corner of stope is located at j + xj − 1. Similar to
the left corner, the right corner should not be located out of the block model boundaries. The
right corner is forced to be located in C (i.e., it should be less than or equal to J). Therefore, the
cumulative value is expressed by the following two-conditional equation (Eq. (3)):

௝݂ሺݔ௝ሻ
௝ݔ ് 0

ൌ

ە
ۖ
۔

ۖ
ۓ
െ∞	 ݆ ൅ ௝ݔ െ 1 ൐ ܬ

max൛ ௠݂ሺݔ௠ሻ ൅ ,௝ݔ௝,௠൫ܪ.ିܯ ݉:௠൯ݔ ൏ ݆ൟ ൅ ෍ ܿ௡

௝ା௫ೕିଵ

௡ୀ௝

݆ ൅ ௝ݔ െ 1 ൑ ܬ
(3)

The current cumulative value (௝݂ሺݔ௝ሻ) is maximized by a specific combination of ݉ and ݔ௠. This
combination is denoted by ഥ݉ and ̅ݔ௠ symbols and they are stored in two independent functions
(EQs. (4, 5)).

௝൯ݔ௝൫߂ ൌ ഥ݉ (4)

௝൯ݔ௝൫ߔ ൌ ௠ (5)ݔ̅

Also, the cumulative block set is defined by recursive Eq. (6). It is the union of the cumulative
block set of ̅ݔ௠ and the current state set.

௝൯ݔ௝൫ܨ ൌ ቐ
																																																							∅⋃௠ሻݔ௠ഥሺ̅ܨ ௝ݔ ൌ 0

௠ഥܨ ሺ̅ݔ௠ሻ⋃ሼܤ௡ ∈ :ܥ ݊ ∈ ሼ݆, … , ݆ ൅ ௝ݔ െ 1ሽሽ ௝ݔ ് 0
(6)

The union of all the state values from 1௧௛ stage to ݆௧௛ stage that create the ܨ௝൫ݔ௝൯, define the
optimal path of ݔ௝ which is denoted by ߨ௝ሺݔ௝ሻ. The mathematical representation of ߨ௝ሺݔ௝ሻ is

262

Nikbin V. et al. MOL Report Nine © 2018 307-7

illustrated in Eq. (7). This path consists of all ܥ blocks that create ܨ௝൫ݔ௝൯. In order to track these
paths, it is necessary to determine the path size. Therefore, after solving each sub-problem and
finding the best value of previous stage and state, the current path size is updated by Eq. (8). The
only difference between ߨ௝൫ݔ௝൯ and ߨ௠ഥ ሺ̅ݔ௠ሻ is the combination of	ሺ݆, ௝ሻ. Therefore, theݔ
relationship between the sizes of these two path sets is represented by Eq. (8).

௝൯ݔ௝൫ߨ ൌ ൞൮
⋰߂

೩೩೘തതതሺഥೣ೘ሻቀ೻೘തതതሺഥೣ೘ሻቁ
ቀ…ߔ௱೘തതതሺ௫̅೘ሻ൫ߔ௠ഥ ሺ̅ݔ௠ሻ൯ቁ

⋰ߔ
೩೩೘തതതሺഥೣ೘ሻቀ೻೘തതതሺഥೣ೘ሻቁ

ቀ…ߔ௱೘തതതሺ௫̅೘ሻ൫ߔ௠ഥሺ̅ݔ௠ሻ൯ቁ
൲ ,… , ቌ

௠ሻ൯ݔ௠ഥሺ̅ߔ௱೘തതതሺ௫̅೘ሻ൫߂

௠ഥߔ௱೘തതതሺ௫̅೘ሻ൫ߔ ሺ̅ݔ௠ሻ൯
ቍ ,

(7)

, ቌ
௠ഥ߂ ሺ̅ݔ௠ሻ

௠ഥߔ ሺ̅ݔ௠ሻ
ቍ , ൭

ഥ݉

௠ݔ̅
൱ , ቌ

݆

௝ݔ
ቍቑ

หߨ௝൫ݔ௝൯ห ൌ 1 ൅ ௠ഥߨ| ሺ̅ݔ௠ሻ| (8)

This algorithm does not allow the two adjacent states to overlap, without any negative effects on
the global optimality.

After identifying the overlap between the current state value and previous state path ߨ௠ሺݔ௠ሻ),	
selection of ݔ௠ as the best previous state of ݔ௝	is prevented by penalizing the recursive cumulative
value equation, ሺሺ ഥ݉ , ௠ሻݔ̅ ് ሺ݉, ௠ሻ). Overlapping is recognized by using a two-conditionalݔ
equation (Eq. (9)) which is denoted by ܪ௝,௠൫ݔ௝, and its output is binary; if two states overlap	௠൯ݔ
then the output is one; otherwise it is zero. If its output is one, the previous state has overlapped
with the current state. By adding a large negative number to the cumulative value equation, the
previous state has no chance of being selected as the best previous state of the current state.
When ݔ௝	is zero, the state set is empty and obviously the overlap set is also empty. In the other
situation, when ݔ௝ is not zero, overlapping is determined by comparing the right corner of
previous stopes on the	ߨ௠ሺݔ௠ሻ	to the left corner of current stope (j), the	overlapping	is	determined.	

,௝ݔ௝,௠൫ܪ ௠൯ݔ ൌ

ە
ۖ
۔

ۖ
ۓ
0																																											 ௝ݔ ൌ 0

෍ ݃ሺߣ௡ ൅ ߮௡ െ 1, ݆ሻ
|గ೘ሺ௫೘ሻ|

௡ୀଵ

௝ݔ ് 0
(9)

Where ߣ௡	and ߮௡ are respectively the left corner and the length of stopes that are located on
 ௠ሻ. By knowing the size and the final element of this path, all other elements are determinedݔ௠ሺߨ
by backward tracking Eqs. (10) and (11).

௡ߣ ൌ ቐ
݉																				 ݊ ൌ |௠ሻݔ௠ሺߨ|

ఒ೙శభሺ߮௡ାଵሻ߂ ݊ ൏ |௠ሻݔ௠ሺߨ|
(10)

߮௡ ൌ ቐ
					௠ݔ ݊ ൌ |௠ሻݔ௠ሺߨ|

ఒ೙శభሺ߮௡ାଵሻߔ ݊ ൏ |௠ሻݔ௠ሺߨ|
(11)

After calculating all the cumulative values, it is necessary to determine the optimal path (ߨ௃ሺݔ෤௃ሻ)
and its value (௃݂ሺݔ෤௃ሻ). This optimal path is represented the dynamic programming solution.
Therefore, the value of the optimal path is the same as the dynamic programming value (ݖௗ௣).
This value is calculated by Eq. (12).

ௗ௣ݖ ൌ max൛ ௃݂൫ݔ௃൯: ௃ݔ ∈ ൟ߁ ൌ ௃݂ሺݔ෤௃ሻ (12)

Also, the positions and dimensions of all the stopes that are located on the ߨ௃ሺݔ෤௃ሻ, are determined
by backward tracking Eqs. (13) and (14).

263

Nikbin V. et al. MOL Report Nine © 2018 307-8

∗௡ܬ ൌ ቐ
																				ܬ ݊ ൌ หߨ௃ሺݔ෤௃ሻห

∗௃೙శభ߂ ሺܺ௡ାଵ∗ ሻ ݊ ൏ หߨ௃ሺݔ෤௃ሻห
 (13)

ܺ௡∗ ൌ ቐ
																				෤௃ݔ ݊ ൌ หߨ௃ሺݔ෤௃ሻห

∗௃೙శభߔ ሺܺ௡ାଵ∗ ሻ ݊ ൏ หߨ௃ሺݔ෤௃ሻห
 (14)

To determine C blocks that are located on the ߨ௃ሺݔ෤௃ሻ, each block index is compared to the right
and left corners of stopes on the ߨ௃ሺݔ෤௃ሻ. If this index becomes greater than or equal to the left
stope's corner and also less than or equal to the right stop's corner simultaneously, Eq. (15)
returns one; otherwise ௝ܿ

∗ is zero.

௝ܿ
∗ ൌ ෍ ݃݁ሺ݆, ∗௡ܬ௡∗ሻ݃݁ሺܬ ൅ ܺ௡∗ െ 1, ݆ሻ

หగ಻ሺ௫෤಻ሻห

௡ୀଵ
௑೙∗ஷ଴

 (15)

 	
Algorithm 1 Pseudo-code of the One-Dimensional Exact Dynamic Programming Algorithm

ODEDPA(ܥ, ௝݀)

߁ 1 ൌ ሼ0ሽ⋃ሼ ௝݀, … ,2 ௝݀ െ 1ሽ
2 for (݆ ൌ 1 to ܬ){
3 for (ݔ௝ ∈ }(߁
4 if (ݔ௝ ൌ 0) {
5 ௝݂ሺݔ௝ሻ ൌ maxሼ ௠݂ሺݔ௠ሻ :݉ ൏ ݆ሽ
6 }
7 else{
8 if (݆ ൅ ௝ିଵݔ ൐ }(ܬ
9 ௝݂ሺݔ௝ሻ ൌ െ∞
10 }
11 else (݆ ൅ ௝ିଵݔ ൑ }(ܬ

12 ௝݂ሺݔ௝ሻ ൌ maxሼ ௠݂ሺݔ௠ሻ ൅ ,௝ݔ௝,௠൫ܪ.ିܯ ݉:௠൯ݔ ൏ ݆ሽ ൅ ∑ ܿ௡
௝ା௫ೕିଵ
௡ୀ௝

13 }
14 }
,௝ݔ௝,௠൫ܪ 15 ௠൯ in the above equations is calculated using Eq. (9)ݔ
16 Store the best previous stage and state: ߂௝൫ݔ௝൯ ൌ ഥ݉ and ߔ௝൫ݔ௝൯ ൌ ௠ݔ̅
17 Update the path size: หߨ௝൫ݔ௝൯ห ൌ 1 ൅ ௠ഥߨ| ሺ̅ݔ௠ሻ|
18 }
19 }
20 Find the highest cumulative value (ݖௗ௣) and its corresponding state (ݔ෤௃):

ௗ௣ݖ ൌ max൛ ௃݂൫ݔ௃൯ൟ ൌ ௃݂ሺݔ෤௃ሻ
21 Track the highest valued path (ܬௗ௣, ܺௗ௣) using Eqs. (13, 14)
22 Calculate values of ܥ∗elements using Eq. (15)
23 Return ܥ∗and ݖௗ௣

3.2. Three-dimensional approximate hybrid algorithm

The proposed hybrid algorithm uses a combination of greedy and dynamic programming
approaches to optimize stope boundaries. The dynamic programming is optimal but the
greedy approach does not consider its previous and future decisions in order to obtain the current
decision: therefore its optimality is not guaranteed. Consequently, a combination of these two
approaches as a hybrid algorithm remains sub-optimal. The symbols that are used in this hybrid
algorithm are as follows:

݀௜ Minimum stope size along ݅ axis; in terms of blocks

௝݀ Minimum stope size along ݆ axis; in terms of blocks

264

Nikbin V. et al. MOL Report Nine © 2018 307-9

݀௞ Minimum stope size along ݇ axis; in terms of blocks

ܲ A 3D economic block model; Input of Hybrid algorithm

 The number of ܲ blocks along ݅ axis ܫ

 The number of ܲ blocks along ݆ axis ܬ

 The number of ܲ blocks along ݇ axis ܭ

B௠,௡,௢ A ܲ block; ݉, ݊, ,݅ present its position along ݋ ݆, ݇ axes, respectively

 ௜,௝,௞ Net value obtained by extracting B௜,௝,௞݌

 ௛ Value of hybrid algorithmݖ

ܲ∗

 ݏ

̅ ܫ
̅ ܬ
 ഥܭ

Solution of hybrid algorithm; a subset of ܲ that presents the optimal or near-optimal
stope boundaries as the output of Hybrid algorithm

Scenario number

The maximum allowable index for origin blocks along ݅ axis

The maximum allowable index for origin blocks along ݆ axis

The maximum allowable index for origin blocks along ݇ axis

 ߗ

 ∗ܥ
Non-investigated set

solution of dynamic programming

In this algorithm, by converting a subset of ܲ blocks to a single block, a 1D matrix is built and is
denoted by ܥ. These subsets are 2D slices from ܲ that own specific attributes which are defined
as follows: the slices are fixed-size rectangles that are located in planes parallel to one of the ݅ െ
݆, ݅ െ ݇, or ݆ െ ݇ planes. They are identified by their origin blocks. Among the blocks of each
slice, a unique block exists that has a minimum index on the both two slice directions which is
named as origin block. Origin blocks have two indices on their parallel planes. The first index is
 are set behind each ߚ and ߙ Parallel slices with the same .ߚ and the second one is denoted by ߙ
other in a specific direction. Three possible scenarios are defined to identify these directions and
parallel planes. In the scenario 1, slices are parallel to the ݅ െ ݆ plane and their direction is along
݇ axis (Fig 2.a). In the two other scenarios, No. 2 and No 3, slices are located on the planes
parallel to ݅ െ ݇ and ݆ െ ݇ planes (Fig 2.a and Fig 2.b).

Blockjd

Block

i
d

3,4,4B

(,) (3, 4)  

(a) Scenario 1(s=1)

B
lo

ck
k

d

Block

i
d



3,5,2B

(,) (3, 2)  

i-k	plane

(b) Scenario 2 (s=2)



Blockjd

B
lo

ck
id

5,1,2B

(,) (1,2)  

(C) Scenario 3 (s=3)

Fig 2. Three possible scenarios for slice positions

265

Nikbin V. et al. MOL Report Nine © 2018 307-10

In these scenarios, slices are arranged in the ݆ and ݅ directions, respectively. Dimensions of these
slices depend on the minimum stope size at each plane. For instance, in scenario 1, the length
and width of the slice is equal to ݀௜ and ௝݀. The total value of ܲ\ܲ∗ blocks which are located
inside ߛ௧௛ slice is denoted by ܿఊ. For each ሺߙ, ,ߚ is built and ܥ ,ߗ ሻ combination located insideݏ
then Algorithm 1 is called. Algorithm 1 returns a binary 1-D matrix named as ܥ∗. Based on the
dynamic programming solution for each combination, the best combination is selected and
denoted as ൫ߙത, ,ߚ̅ ൯. Our criteria for selecting the best combination is the absolute ratio ofݏ̅
positive to negative blocks in the dynamic programming solution, i.e. max൛∑ ܿఊ∗ܿఊା௰

ఊୀଵ /
ห∑ ܿఊ∗ܿఊି௰

ఊୀଵ หൟ. The objective function value at each iteration is called the best ratio. The dynamic

programming solution that is obtained from the ൫ߙത, ,ߚ̅ In the .∗̅ܥ ൯ combination is denoted asݏ̅
next step, the ൫ߙത, ,ߚ̅ ௧௛ߛ Then all of the blocks located in the .ߗ ൯ combination is removed fromݏ̅
slice are added to ܲ∗ if ܿఊ̅∗ is equal to one. This procedure is iterated until the dynamic
programming solution becomes positive. The pseudo-code of this algorithm has been illustrated
as follows:

Algorithm 2 Pseudo-code of the Three-Dimensional Approximate Hybrid Algorithm

TDAHA (ܲ, ݀௜, ௝݀ , ݀௞)

௛ݖ 1 ൌ 0
2 ܲ∗ ൌ ∅
3 ሺܫ,̅ ̅,ܬ ഥሻܭ ൌ ሺܫ െ ݀௜ ൅ 1, ܬ െ ௝݀ ൅ 1, ܭ െ ݀௞ ൅ 1ሻ
ߗ 4 ൌ ሼሺ݅, ݆, 1ሻ⋃ሺ݅, ݇, 2ሻ⋃ሺ݆, ݇, 3ሻ: ݅ ∈ ሼ1,… , ,ሽ̅ܫ ݆ ∈ ሼ1, … , ,ሽ̅ܬ ݇ ∈ ሼ1,… , ഥሽሽܭ
݋݅ݐܴܽ	ݐݏ݁ܤ 5 ൌ 0
6 ൫ߙത, ,ߚ̅ ,ݏ̅ ଵൈ௰൯ܥ̅ ൌ ݈݈ݑܰ
7 for (s = 1 to 3){

8 ሺ޿, ,߀ ,߁ ݈ሻ ൌ ቐ
ሺܫ,̅ ̅,ܬ ,ܭ ݀௞ሻ ݏ ൌ 1
ሺܫ,̅ ,ഥܭ ,ܬ ௝݀ሻ ݏ ൌ 2
ሺܬ,̅ ,ഥܭ ,ܫ ݀௜ሻ ݏ ൌ 3

9 for (ߙ ൌ 1 to	޿){
10 for (ߚ ൌ 1 to ߀){
11 if (ሺߙ, ,ߚ ሻݏ ∈ }(ߗ
ଵൈ௰ܥ 12 ൌ ݈݈ݑܰ
13 for (ߛ ൌ 1 to ߁){

14 ܿఊ ൌ

ە
ۖ
۔

ۖ
∑ۓ ∑ :௠,௡,ఊ݌ ௠,௡,ఊܤ ∉

ఉାௗೕିଵ
௡ୀఉ

ఈାௗ೔ିଵ
௠ୀఈ ܲ∗ ݏ ൌ 1

∑ ∑ :௠,ఊ,௡݌ ௠,ఊ,௡ܤ ∉
ఉାௗೖିଵ
௡ୀఉ

ఈାௗ೔ିଵ
௠ୀఈ ܲ∗ ݏ ൌ 2

∑ ∑ :ఊ,௠,௡݌ ఊ,௠,௡ܤ ∉
ఉାௗೖିଵ
௡ୀఉ

ఈାௗೕିଵ
௠ୀఈ ܲ∗ ݏ ൌ 3

15 }
16 Call Algorithm 1: ODEDPA(ܥଵൈ௰, ݈)

17 if (
∑ ௖ം∗௖ംశ೨
ംసభ

ห∑ ௖ം∗௖ംష೨
ംసభ ห

൐ }(݋݅ݐܴܽ	ݐݏ݁ܤ

݋݅ݐܴܽ	ݐݏ݁ܤ 18 ൌ ∑ ܿఊ∗ܿఊା௰
ఊୀଵ /ห∑ ܿఊ∗ܿఊି௰

ఊୀଵ ห
19 ൫ߙത, ,ߚ̅ ,ݏ̅ ,ത߁ ,ଵൈ௰ܥ̅ ∗ଵ̅ൈ௰ܥ ൯ ൌ ሺߙ, ,ߚ ,ݏ ,߁ ,ଵൈ௰ܥ ∗ଵൈ௰ܥ ሻ
20 }
21 }
22 }
23 }
24 }
25 Remove ሺߙത, ഥ,ߚ ߗ :ሻ from non-investigated setݏ̅ ൌ ,തߙሺ\ߗ ,ߚ̅ ሻݏ̅
26 while (∑ ܿఊ̅∗ܿఊ̅௰ഥ

ఊୀଵ ൐ 0){

27 Update TDAHA value: ݖ௛ ൌ ௛ݖ ൅ ∑ ܿఊ̅∗ܿఊ̅௰ഥ
ఊୀଵ

28 Update TDAHA solution:

266

Nikbin V. et al. MOL Report Nine © 2018 307-11

29 ܲ∗ ൌ

ܲ∗⋃

ە
ۖ
۔

ۖ
ۓ ሼܤ௠,௡,ఊ:݉ ∈ ൛ሼߙത, … , തߙ ൅ ݀௜ െ 1ሽൟ, ݊ ∈ ቄ൛̅ߚ, … , ߚ̅ ൅ ௝݀ െ 1ൟቅ , ߛ ∈ ሼ1,… , തሽሽ߁ ݏ̅ ൌ 1, ܿఊ̅∗

ሼܤ௠,ఊ,௡:݉ ∈ ൛ሼߙത, … , തߙ ൅ ݀௜ െ 1ሽൟ, ݊ ∈ ቄ൛̅ߚ, … , ߚ̅ ൅ ݀௞ െ 1ൟቅ , ߛ ∈ ሼ1, … , തሽሽ߁ ݏ̅ ൌ 2, ܿఊ̅∗

ሼܤఊ,௠,௡:݉ ∈ ቄ൛ߙത, … , തߙ ൅ ௝݀ െ 1ൟቅ , ݊ ∈ ቄ൛̅ߚ, … , ߚ̅ ൅ ݀௞ െ 1ൟቅ , ߛ ∈ ሼ1,… , തሽሽ߁ ݏ̅ ൌ 3, ܿఊ̅∗

30
31 Go to Line 5
32 }
33 Output ݖ௛ and ܲ∗

A graphical visualization for converting 2D slices to 1D matrix (ܥ) is illustrated in Fig 3. The
green blocks are located in the ܲ∗ set and they are not considered in the calculation of C elements
(Algorithm 2).

3,4,2B
2,5,2B 2,6,2B

2,5,3B 2,6,3B3,4,3B4,3,3B

4,3,2B

2,1,3B 3,1,3B

2,1,2B 3,1,2B

2,2,3B 3,2,3B

2,2,2B 3,2,2B

2,3,3B 3,3,3B

2,3,2B 3,3,2B

2,4,3B

2,4,2B

2,5,3B 3,5,3B

2,5,2B 3,5,2B

2,6,3B 3,6,3B

2,6,2B 3,6,2B

2,7,3B 3,7,3B

2,7,2B 3,7,2B

3,5,4B3,4,4B

(, ,) (2,2,2)s   

3,4,3B

3,4,2B

      

1 2,1,2 3,1,2c =(p p
2,1,3 3,1,3+p p)

2 2,2,2 3,2,2c =(p p
2,2,3 3,2,3+p p)

3 2,3,2 3,3,2c =(p p
2,3,3 3,3,3+p p) 4 2,4,2 2,4,3c =p p 5c =0 6c =0

7 2,7,2 3,7,2c =(p p
2,7,3 3,7,3+p p)

Fig 3. Converting 2D slices of ܲ blocks to a single block in ܥ

4. Application of algorithm in a case study

A poly-metal silver-zinc-lead deposit was modeled using the proposed algorithm. This deposit
consists of 1,036,800 blocks. Block dimensions along the all main coordinate axes are 10 m and
the average grade of silver, zinc and lead is 139.21 gr/ton, %3.21 and %0.26, respectively. Due
to the high volume of the deposit's overburden, underground mining methods generate more
profit than open pit method. Also, feasibility studies show that the sublevel stoping method is
more compatible than other underground mining methods for extracting this deposit. The
minimum length, width and height of the stopes are assumed to be 50 m. Fig. 4 shows the stope
layouts generated by the Floating Stope, MVN, Greedy and proposed hybrid algorithms. The
codes are written in C# programming language and the algorithms are run on a personal computer
with an Intel(R) Core(TM) i5-2430 M CPU @ 2.40 GHz and 4.00GB of RAM. Table 2 shows
the net profits and solution times of these algorithms.

267

Nikbin V. et al. MOL Report Nine © 2018 307-12

(a) A 3D view of stopes obtained by Floating Stope algorithm (Inner Envelope)

(b) A 3D view of stopes obtained by MVN algorithm

(c) A 3D view of stopes obtained by greedy algorithm

(d) A 3D view of stopes obtained by new proposed hybrid algorithm

Fig 4. Visualization of stope layouts from (a) Floating Stope, (b) MVN, (c) greedy, (d) proposed hybrid algorithm

268

Nikbin V. et. al. MOL Report Nine © 2018 307-13

Table 2. Results from the Floating Stope, MVN, greedy and new hybrid algorithms

Algorithm Net profit ($) Solution times Number of minable blocks

Floating Stope 268,525,412 00:00:03 16,925

MVN 500,423,614 00:00:01 12,898

Greedy 582,352,644 00:02:08 11,678

Hybrid Algorithm 584,809,384 00:22:54 11,541

The new hybrid algorithm improves the profit by 117.87%, 16.86% and 0.42% compared to the
Floating Stope, MVN and Greedy algorithms, respectively. Although the new algorithm requires
more run time compared to its alternatives, its solution time still falls within a reasonable range
given the size of the problem.

5. Conclusion

Undoubtedly, stope boundary optimization is one of the main mining problems which plays an
important role in the economy of the mining industry. However, four decades after the first
algorithm was presented for this problem, there is yet to be a comprehensive algorithm. Most of
the algorithms are heuristic and their optimality is not guaranteed. Also, due to many
simplifications in designing rigorous algorithms, they are not appropriate to solve real case
problems. In this research, a new hybrid algorithm was introduced for stope boundary
optimization. Although it may provide a locally optimum solution, it can find a better solution
compared to its alternative algorithms at a reasonable CPU time. This hybrid algorithm and three
existing algorithms were employed to find optimal stope boundary in a silver-zinc-lead deposit.
The minimum and maximum improvements by this algorithm were 0.42% and 117.87%,
respectively. The obtained results confirm the introduced algorithm's ability to find a better
solution to stope boundary optimization problems. Better solution and better boundaries mean
less waste of mining project capital, while help mining companies to develop sustainable projects
that boost their profit. At the end, it should be noted that substitution of the proposed greedy
algorithm by one of its alternatives such as genetic algorithm (GA), particle swarm optimization
(PSO), simulated annealing (SA) and so on may yield to better solutions for the stope boundary
optimization problem. For further investigation, it is suggested to check these meta-heuristics
instead of the new proposed greedy algorithm.

6. References

[1] Alford, C., 1995. Optimisation in underground mine design. In: 25th Interna-tional
Symposium on the Application of Computers and Operations Research in the Mineral
Industry. The Australasian Institute of Mining and Metallurgy, pp. 213–218.

[2] Ataee-pour, M., 2000. A Heuristic Algorithm to Optimize Stope Boundaries Ph.D
Thesis. University of Wollongong, New South Wales.

[3] Ataee-pour, M., 2005. A critical survey of the existing stope layout optimization
techniques. J. Min. Sci. 41 (5), 447–466.

[4] Bai, X., Marcotte, D., Simon, R., 2013. Underground stope optimization with network
flow method. Comput. Geosci. 52, 361–371.

[5] Bai, X., Marcotte, D., Simon, R., 2014. A heuristic sublevel stope optimizer with mul-
tiple raises. South. Afr. Inst. Mining Metall. 114, 427–434.

[6] Erdogan, G., Cigla, M., Topal, E., Yavuz, M., 2017. Implementation and comparison of
four stope boundary optimization algorithms in an existing underground mine. Int. J.
Min. Reclam. Environ. 31 (6), 389–403.

269

Nikbin V. et. al. MOL Report Nine © 2018 307-14

[7] Jalali, S.E., Ataee-pour, M., Shahriar, K., 2004. A 2D dynamic programming algo-rithm
to optimize stope boundary. In: Proceedings of the Thirteenth Interna-tional Symposium
on Mine Planning and Equipment Selection, Wroclaw, Poland, pp. 45–52.

[8] Ovanic, J., Young, D., 1995. Economic optimisation of stope geometry using separa-
ble programming with special branch and bound techniques. In: Third Canadian
Conference on Computer Applications in the Mineral Industry. Quebec, pp. 129–135.

[9] Ovanic, J., Young, D., 1999. Economic optimisation of open stope geometry. In: 28th
International APCOM Symposium. Colorado school of Mines, Colorado, pp. 855–862.

[10] Riddle, J., 1977. A dynamic programming solution of a block-caving mine layout. In:
14th International Symposium on the Application of Computers and Opera-tions
Research in the Mineral Industry. Society for Mining, Metallurgy and Exploration,
Colorado, pp. 767–780.

[11] Sandanayake, D.S.S., 2014. Stope Boundary Optimization in Underground Mining
Based on a Heuristic Approach Ph.D Thesis. Curtin University, Western Australian
School of Mines.

[12] Sandanayake, D.S.S., Topal, E., Asad, M.W.A., 2015a. A heuristic approach to optimal
design of an underground mine stope layout. Appl. Soft Comput. 30, 595–603.

[13] Sandanayake, D.S.S., Topal, E., Asad, M.W.A., 2015b. Designing an optimal stope lay-
out for underground mining based on a heuristic algorithm. Int. J. Min. Sci. Technol. 25,
767–772.

[14] Topal, E., Sens, J., 2010. A new algorithm for stope boundary optimization. Coal Sci.
Eng. 16 (2), 113–119.

[15] Nhleko, AS., Tholana, T., Neingo, PN., 2017. A review of underground stope boundary
algorithms. Resour. Policy doi: 10.1016/j.resourpol.2017.12.004.

[16] Nikbin, V., Ataee-pour, M., Shahriar, K., Pourrahimian, Y., 2017. A Greedy Algorithm
for Stope Boundaries Optimization. 8th Annual Report Mining Optimization Laboratory
(MOL). University of Alberta, pp. 246–252. Report Eight.

[17] Qi, C., Fourie, A., Ma, G., Tang, X., Du, X., 2017. Comparative study of hybrid artificial
intelligence approaches for predicting hangingwall stability. J. Comput. Civil Eng. 32
(2), 04017086.

[18] Qi, C., Fourie, A., Chen, Q., Zhang, Q., 2018a. A strength prediction model using
artificial intelligence for recycling waste tailings as cemented paste backfill. J. Cleaner
Prod. 183, 566–578.

[19] Qi, C., Fourie, A., Chen, Q., 2018b. Neural network and particle swarm optimization
for predicting the unconfined compressive strength of cemented paste backfill. Constr.
Build. Mater. 159, 473–478.

[20] Qi, C., Tang, X., 2018. Slope stability prediction using integrated metaheuristic and
machine learning approaches: a comparative study. Comput. Ind. Eng. 118, 112–122.

270

