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ABSTRACT 

For oil sands mining, the production schedule must be integrated simultaneously with in-pit and ex-
pit dyke construction scheduling. The mined ore that exceeds the plant capacity is stockpiled for a 
limited duration. The topmost layer of the overburden is also stockpiled for land reclamation. 
Uncertainty is always present in the presence of sparse geological data. Kriged estimates with a 
variance penalty scheme are used to minimize the financial risk from grade uncertainty associated 
with the production schedule. An uncertainty-based mathematical programming model is developed 
based on Mixed Integer Linear Goal Programming (MILGP) for oil sands production scheduling 
and waste management. The model aims to generate a life of mine plan that maximize the NPV of 
the project. In addition, the model determines the rehandling strategy for the stockpiled ore and the 
destination of reclamation and dyke materials to minimize costs. The uncertainty-based model is 
implemented with two different scenarios. Scenario 1 generates an integrated mine plan with a waste 
management and stockpiling strategy that maximizes the NPV of the operation and minimizes dyke 
construction cost. Scenario 2 generates a range of total NPV and estimates the production scheduling 
risk associated with grade uncertainty. 

1. Introduction

In open pit mining, the goal is usually to maximize the Net Present Value (NPV) of the project by 
providing the plant with ore at full capacity while satisfying physical, operational and economic 
constraints. The very first and highly important step in the mine planning process is modeling the 
ore body appropriately. All other activities throughout the mine life starting from evaluating the 
economic viability of the entire mining operation to undertaking all the processes of mine planning 
will be based on the ore body model (Hustrulid and Kuchta, 2006). The different phases of the mine 
planning process include: 1) Block model determination that consists of drilling in different locations 
and depths of the mine; and obtaining samples of material for grade and density interpolation, 
dividing the orebody into blocks of equal sizes and assigning estimated tonnage and mineral grades 
to each block. As a result, the estimated extraction profit or loss for each block in the model needs 
to be computed. This generates what is referred to as an economic block model; 2) Definition of the 
Ultimate Pit Limit (UPL) which is the area in which extraction will take place. Before any block can 
be extracted, all blocks immediately above and at certain angles must be extracted. To determine the 
UPL, it is necessary to determine the slope angles. This depends on the structural composition of the 
rocks and the location and depth of each block; 3) Production planning, which involves the decision 
of which blocks and when and how they should be extracted (Chicoisne, et al., 2012). Extracting 
mining blocks from an open pit mine in a specific sequence to give the highest NPV is known as 
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open pit mine planning optimization. This is subject to a variety of production, grade blending and 
pit slope constraints (Whittle, 1989). 

The focus of this paper is Long-Term Production Planning (LTPP) optimization with integrated 
waste management. Oil sands mining of the McMurray formation was studied and used as a case 
study. The paper seeks to develop an uncertainty-based theoretical framework that maximizes the 
NPV of an oil sands mining operation and minimizes waste management cost using Mixed Integer 
Linear Goal Programming (MILGP) model. The model incorporates multiple material types with 
multiple elements for multiple destinations in oil sands long-term production planning. Although 
mathematical programming models have been applied in mine production scheduling, “very little 
work has been carried out in terms of oil sands mine planning, which has a unique scenario when it 
comes to waste management” (Ben-Awuah and Askari-Nasab, 2013). The proposed model integrates 
waste management strategy into the production plan as required by recent regulations from Alberta 
Energy Regulator (AER) Directive 085 (formerly interim directive ID 2001-7) (Alberta Energy 
Regulator, 2017). Muskeg, the topmost layer of the overburden, is stockpiled and will be used for 
land reclamation at the end of the mine life. The model also includes a limited duration stockpiling 
strategy for the mined ore that exceeds the processing capacity. Financial risk is defined as the 
deviation from expected historical returns within a specific period (Mangram, 2013). The optimal 
solution to the LTPP problem is affected by uncertainties related to the input parameters. To 
minimize the financial risk (risk) associated with grade uncertainty, kriging estimates with a variance 
penalty scheme are used for the production scheduling optimization.  

Subsequently, a case study with two different scenarios is examined using the proposed MILGP 
model. The first scenario, Scenario 1, uses goal functions with a limited duration stockpiling strategy 
for ore and stockpiling strategy for reclamation material. The second scenario, Scenario 2, evaluates 
the risk associated with the production schedule based on grade uncertainty and a variance penalty 
scheme. MATLAB (Mathworks, 2017) is used for coding the mathematical programming 
formulation and the resulting optimization problem is solved with a large-scale optimization solver 
IBM/CPLEX (ILOG, 2012). This solver uses a branch and cut algorithm which is a hybrid of branch-
and-bound algorithm and cutting plane methods to solve the optimization problem (Horst and Hoang, 
1996; Wolsey, 1998).  

The next section of this paper gives details of the problem definition. Section 3 covers a summary of 
the literature review on LTPP optimization problems based on deterministic and uncertainty 
approaches, clustering and paneling in mine planning, and stockpiling. The process of oil sands 
mining and waste management is explained in Section 04.  Section 5 highlights the concepts of block 
modeling, variography and kriged estimates with a variance penalty scheme to manage risk. Section 6 
presents the theoretical mathematical programming formulation. The implementation of the MILGP 
model is in Section 7. A case study is presented in Section 8. Finally, Section 9 documents the 
research conclusions and recommendations. 

2. Problem Definition

Oil sands mining operations result in different types of material: ore, interburden (IB), overburden 
(OB), reclamation material (RM) and waste. Material with a bitumen grade of 7% or more will be 
classified as ore Directive 082: (Alberta Energy Regulator, 2016). Processing the ore results in a 
huge amount of tailings. Based on the fines content, the tailings are divided into Tailings Coarse 
Sands (TCS) and tailings slurry. TCS is used for dyke construction and tailings slurry is deposited in 
the disposal areas created with dykes. Any ore material that has a bitumen grade less than 7%, known 
as interburden, will be reclassified based on the fines content. Material with fines content less than 
50% will be used for dyke construction; otherwise, it will be sent to the waste dump. Overburden 
(OB) comprises of the Pleistocene unit and Clearwater formation. OB will be used either for road 
construction or for dyke construction if it meets the fines requirement. Muskeg, the topmost layer of 
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the overburden, will be extracted, stockpiled and used to reclaim the land at the end of the mine life. 
Any material that does not meet the requirements of ore, dyke materials or reclamation material is 
classified as waste and will be sent to the waste dump.  

A schematic representation of the problem definition is presented in Fig. 1. The final pit block model 
is divided into pushbacks. The material intersecting a pushback and a bench is known as a mining-
panel. Each mining-panel contains a set of mining-cuts and is used to control the mine production 
operation sequencing. Mining-cuts are clusters of blocks within the same mining bench that are 
similar in terms of location, grade, rock type and the shape of mining-cuts created on the lower bench. 
The figure depicts the scheduling of an oil sands ultimate pit block model containing K mining-cuts 
within P  mining-panels. Each mining-cut k , could be made up of one or more of the following 
materials: ore, kO , interburden and overburden dyke materials,  and k kib ob , muskeg reclamation 

material, kmu , and waste, kw . The material in each mining-cut is to be scheduled over T periods 
based on the goals and constraints associated with the mining operation. The mined ore extracted 
from mining-cut k within mining-panel p in period t  will be sent to the processing destination a . 

Any material that exceeds the processing capacity will be sent to the stockpile sp  in period t  and 

will be reclaimed in period t ts , where ts is the stockpiling duration limit controlled by the planner 
to minimize oxidation of the stockpiled material. Oxidized ore reduces processing recovery.  The ore 
extracted in the current period t and the ore that has been sent to the stockpile in period t ts  together 
will be sent to the processing destination to extract the bitumen. The generated TCS material together 
with the OB and IB dyke materials will be used for constructing idyke  at site i . Muskeg material will 
be sent to the muskeg stockpile area for reclamation. This is referred to as operational material 
scheduling. 

These strategic and operational schedules to be developed are subject to a variety of economic, 
technical and physical constraints. The constraints control the mining extraction sequence and ore 
and dyke material blending requirements. The constraints also control mining, processing, muskeg 
and dyke material goals that specify the quantities of allowable material for the mining operation, 
processing plant, reclamation works and dyke construction. 

Considering uncertain input variables will minimize the difference between the theoretical and actual 
NPV, and will result in a high degree of confidence for the mining project. Based on this, production 
risk from grade uncertainty will be minimized using the variance and a penalty scheme. The strategic 
and operational schedules determine the profitability and sustainability of the project. The schedules 
control the NPV of the operation and enable a robust waste management planning strategy. Improper 
waste management planning can lead to environmental issues, resulting in immediate mine closure 
by regulatory agencies. It is assumed that when a mining-panel is scheduled, all the mining-cuts, 
blocks or parcels within this mining-panel are extracted uniformly. Also, it is assumed that when 
modeling the relationship between the mining-panels and mining-cuts, the planner has access to all 
the mining-cuts within each mining-panel. The stockpiling strategy is considered in the optimization 
problem for extra ore that exceeds the mill capacity and there are stockpile bins available for each 
period. It is considered that the exact amount of ore sent to the stockpile in period t   will be reclaimed 
after the stockpiling duration ts  controlled by the planner. 
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Fig. 1. Schematic representation of the problem definition showing strategic production and operational 

material scheduling. 

3. Summary of Literature Review 

Long-term production planning (LTPP) focuses mainly on ore reserves, stripping ratio and major 
annual investment plans (Newman, et al., 2010). The geologic block model is the backbone of open 
pit mine design and scheduling processes. Assigning the geological characteristics of each block and 
their grade can be done using available estimation techniques. Using financial and metallurgical data, 
the economic value of each block is also calculated (Osanloo, et al., 2008). Since the 1960s, 
researchers have studied and applied Mathematical Programming Models (MPMs) such as Linear 
Programming (LP), Integer Programming (IP), and Mixed Integer Linear Programming (MILP). 
These are commonly used in addition to Dynamic Programming (DP) and Goal Programming (GP) 
for mine production scheduling (Osanloo, et al., 2008). 

Johnson (1969) introduced linear programming as a MPM to the mine planning research area. The 
author’s model was for a long-term multi-destination open pit production planning problem. The 
results were not optimum and the size of the problem was computationally intractable. Subsequently, 
the initial LP model was modified by Gershon (1983) and Dagdelen (1985) to a MILP model. The 
authors considered a set of binary variables to satisfy the precedence of block extraction. The 
modified models could handle multiple ore processing options and multiple grades. However, their 
formulations could not ensure feasible solutions for all cases. Also, the number of binary variables 
makes the model intractable for real-size mine planning projects and difficult to be solved with the 
current state of hardware and software.  

Ramazan and Dimitrakopoulos (2004a) developed MILP formulations to reduce the number of 
binary variables and solution times. They set certain variables as binary and others as continuous. 
Their model resulted in partial mining of blocks that have the same ore value affecting the NPV 
generated. Askari-Nasab, et al. (2011) developed MILP models that use block clustering 

35



Maremi A. et al.  MOL Report Nine © 2018 103-5 
 
 
techniques. The models use a combination of continuous and binary integer variables and were 
applied to a large-scale problem. The authors stated that they successfully implemented the models 
for some basic large-scale production scheduling problems. A Dynamic Programming (DP) model 
that maximizes the NPV, subject to production and processing constraints was presented by Osanloo, 
et al. (2008). This model considers both the time value of money and block sequencing to determine 
the UPL. However, it cannot be applied to large-scale problems and there is no guarantee that mining 
and processing constraints will be satisfied. In general, applying MPMs to the LTPP result in large 
scale optimization problems with many integer and continuous variables which are difficult to solve 
with the available software and hardware and might need lengthy solution time. The efforts that have 
been made in reducing the solution time were inefficient for large-scale problems or could not 
generate integrated practical mining strategies. 

One of the deterministic approaches used to solve long-term production planning and scheduling 
problems is Goal Programming (GP). It is a popular deterministic approach for solving multiple 
objective optimization problems. The main idea of GP is that the optimizer provides results for the 
objective very close to the required goals, regardless of whether the goals are achievable or not. GP 
minimizes the deviations between the target values of the objectives and the satisfying solution 
(Orumie and Ebong, 2014). Ben-Awuah and Askari-Nasab (2013) formulated the oil sands LTPP 
and waste disposal planning problem using a combination of MILP and GP formulations. The hybrid 
termed as Mixed Integer Linear Goal Programming (MILGP) has an objective function, goal 
functions and constraints. These goals are prioritized according to the impact of a deviation from 
their targets on the entire mining operation. The authors stated that using MILGP is appropriate for 
their framework because, based on the importance of the goals, the MILGP structure will allow the 
planner to achieve some goals while others are traded off. According to the authors, solutions with 
known optimality limits are generated when using exact solution methods for LTPP problems. For 
the resulting production schedule, a higher NPV is achieved as the solution gets closer to optimality.  

In LTPP, the size of the problem grows exponentially as the number of blocks increases resulting in 
insufficient computer memory during optimization. Researchers have tried to classify the large 
amount of data into relatively few classes of similar entities (cluster) by maximizing both intra-
cluster similarity and inter-cluster dissimilarity. This classification is known as aggregation or 
clustering. Clustering will minimize the number of integer decision variables as well as maintaining 
the minimum mining width for large mining equipment (Askari-Nasab and Awuah-Offei, 2009). 
Clustering algorithms can be categorized into hierarchical, partitional or overlapping clustering 
(Tabesh and Askari-Nasab, 2011). In mine planning, only hierarchical and partitional clustering can 
be used because all blocks must belong to a single cluster. Tabesh and Askari-Nasab (2011) 
developed a new clustering approach more suitable to the mining industry. Paneling is another 
technique that has been introduced in production scheduling to maintain practical mining widths and 
reduce the size of the optimization problem. The intersections of pushbacks and mining benches 
generate mining panels (Ben-Awuah and Askari-Nasab, 2013). Each mining-panel contains a set of 
mining-cuts and is used to control the mine production operation sequencing. For this paper, 
hierarchical clustering algorithm developed by Tabesh and Askari-Nasab (2011) was used.  

In the implementation of most LP and MILP models, the material flow post-extraction is not 
considered (Moreno, et al., 2017). “In particular, the use of stockpiling to manage processing plant 
capacity, and the interplay of material flows from the mine to a stockpile, the mine to a processing 
plant, and a stockpile to a plant, have not been treated as an integrated part of mine extraction 
sequence optimization” (Moreno, et al., 2017). Stockpiling can be used in mine operations for many 
reasons such as the blending of material, storage of overproduced ore or low-grade ore for future 
processing, and storage of waste material for reclamation purposes. Asad (2005) cautioned that long-
term stockpiling could result in problems such as leaching, deterioration of material and oxidation, 
which might result in poor recovery in the treatment process. For oil sands mining, the stockpiled 
material must also be processed within a limited duration due to oxidation that affects efficiency of 
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the processing recovery process. For this paper, the stockpiling duration is limited to a maximum of 
two years to ensure there is no significant effect on the ore recovery. 

The geologic block model is the main input data for optimizing LTPP problems. Some random input 
variables such as grades, rock types, costs, prices, and recoveries might affect the optimal solution. 
In deterministic approaches, the best-estimated values of these random variables available at the time 
are used for the optimization run. A rerun is required when new data become available. Uncertainty 
can be reduced only by getting more data over time. Most researches have focused on minimizing 
the negative impacts of grade, geological, and market uncertainties on production schedules. The 
uncertainties involved in mine planning can be classified as: 1) orebody model and in-situ grade 
uncertainty and material type distribution; 2) technical mining specification uncertainty, for example, 
mining and processing capacities and slope consideration; and 3) financial uncertainties including 
prices and costs (Dimitrakopoulos, 1998). Results have shown that significant differences might exist 
between actual production and theoretical expectations due to geological and economic uncertainties 
(the most important sources of risk in mining operations), especially in the first years of production. 
A loss of $1.4 billion to the Canadian mining industry in early 1991 has been reported due to 
geological and economic uncertainties (Sabour and Dimitrakopoulos, 2011). A survey of mining 
operations in the early production years show that 60% of mines had 70% less production than 
designed capacity (Osanloo, et al., 2008). As hardware, software, and solution techniques evolve, 
more accurate models are expected (Osanloo, et al., 2008). 

Gholamnejad and Osanloo (2007) presented an uncertainty-based model for production scheduling. 
They considered grade uncertainty in which each block has a probability distribution function 
obtained using geostatistical simulation. However, they do not give details or examples. Koushavand, 
et al. (2009) presented two different methodologies based on grade uncertainty for open pit mine 
production schedules. They evaluated the output parameters such as NPV, ore tonnage, head grade, 
stripping ratio, amount of final production and annual target production. They stated that there is 
significant uncertainty in the long-term production schedules. Also, the long-term schedule based on 
one particular simulated ore body model is not optimal for other simulated geological models. 
Dimitrakopoulos and Ramazan (2008) presented a stochastic integer programming model to generate 
the optimal production schedule using multiple realizations as input. They used a penalty scheme for 
the deviation from the target production. The function is calculated from a Geological Discount Rate 
(GDR). They use linear programming to maximize NPV minus penalty costs. They stated that the 
production schedule is the optimum solution. However, they did not show how to define the GDR 
parameter. Sabour and Dimitrakopoulos (2011) built their model based on metal price and exchange 
rate uncertainties. They developed a system for mine planning and scheduling that instantly reacts to 
new information. They claimed that their results showed a significant difference and improved the 
design-ranking process. 

Solving MPMs with deterministic approaches generate solutions within known limits of optimality. 
Though, they result in large-scale optimization problems that are difficult to solve with the current 
computing software and hardware and may have lengthy solution times. In order to decrease the size 
of the optimization problem, clustering is used in mine planning. It generates practical schedules, the 
formulations are faster to solve and it is easy to implement. Stockpiling is introduced for material 
blending, storage of overproduced ore or low-grade ore for future processing, and storage of waste 
material for reclamation purposes. Geological and economic uncertainties are also used in mine 
planning to minimize the differences between actual production and theoretical expectations that will 
result in a high degree of confidence in the NPV of the mining project. The aim of this research is to 
propose a MILGP optimization framework that integrates oil sands production planning and waste 
management for multiple material types, elements and destinations with limited duration stockpiling. 
The research also aims to introduce an uncertainty-based MILGP model that evaluates production 
schedule financial risk associated with grade uncertainty.  
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4. Oil Sands Mining and Waste Management 

Oil sands mining is one of the most rapidly developing industries in North America. This industry 
started in the 1960s with surface mining operations that used Clark Hot Water Extraction (CHWE) 
to extract bitumen from the McMurray formation (Masliyah, 2010 ; Sanford, 1983). A truck-shovel 
system is used to extract the oil sands from the Athabasca Wabiskaw-McMurray deposit, which is 
located in the northeastern part of the province of Alberta. It is the largest deposit in the world and 
mostly located near the surface. The Pleistocene unit is the topmost layer of the formation. It contains 
muskeg, also known as bog peat, which is comprised mainly of organic matter. The Clearwater 
formation overlying the McMurray formation is comprised of marine clay, fine sand and siltstone. 
Both the Pleistocene and Clearwater formation are known as Overburden (OB). The McMurray 
formation contains bitumen, the element of interest. It is informally subdivided into Upper, Middle 
and Lower formations based on the environment of sediments deposition. Devonian carbonates mark 
the end of the oil sands deposit (Masliyah, 2010). Fig. 2 shows a sketch of the vertical soil profile 
for an oil sands formation. 

                                          
Fig. 2. Schematic view of the soil profile for an oil sands formation. 

During oil sands mining, huge amounts of bituminous sands are sent to the processing plant, which 
results in a huge amount of a mixture of water, fine materials, sands and residual bitumen known as 
tailings (Masliyah, 2010). There are three significant aspects in dealing with oil sands tailings, the 
most unwanted by-product of oil sands processing. First, the greenhouse gas emissions resulting from 
the CHWE process (Devenny, 2009). Second, the environmental challenges due to the toxicity of the 
tailings resulting in the contamination of the fresh water table by polluted tailings’ water leaks. Third, 
space limitations increases the need for in-pit tailings containment, and storage space since more 
mining processes lead to additional volume of tailings slurry (Devenny, 2009). 

Presently, plans for tailings deposition and mine reclamation are prepared after the optimization of 
the long-term mine production plans (Ben-Awuah and Askari-Nasab, 2013). Directive 085 (Alberta 
Energy Regulator, 2017) issued by the Alberta Energy Regulator (AER) requires oil sands operators 
to periodically publish their waste disposal and tailings plans publically (McFadyen, 2008; Ben-
Awuah and Askari-Nasab, 2013). 

It should be mentioned that according to Directive 082, any ore with a bitumen grade of 7% or more 
should not be left behind (Alberta Energy Regulator, 2016). Air flotation technique is used to separate 
bitumen from the fines results in tailings. Using the hydro-cyclone, tailings is classified into Tailings 
Coarse Sands (TCS ) and Fine Sands (Kalantari, et al., 2013). The ore with a bitumen grade of less 
than 7%, known as interburden (IB), will be used together with Overburden (OB) and (TCS) for dyke 
construction if they meet the dyke material requirements.  It is important that the sequence of 
extracting the ore and the supply of material for dyke construction be integrated to guarantee a 
uniform material supply to the plant and for dyke construction throughout the mine life (Fauquier 
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and al., 2009). Fig. 3 shows a conceptual mining model, which includes an oil sands deposit area to 
be mined and simultaneously used as an in-pit tailings storage facility. As mining advances in the 
specified direction, the in-pit tailings dyke footprints are released for dyke construction. 

Waste management is a significant part of oil sands mining operations. It requires special 
geotechnical considerations and tailings management techniques that may lead to economic 
liabilities and delayed reclamation if not well managed (Boratynec, 2003; Ben-Awuah and Askari-
Nasab, 2013; Azam and Scott, 2005). Additional documentation on oil sands solid waste and tailings 
management can be found in Ben-Awuah, et al., (2012); Badiozamani and Askari-Nasab, (2014); 
Badiozamani and Askari-Nasab, (2016). 

 
Fig. 3. Conceptual model for mining and waste management strategy  

modified after Ben-Awuah and Askari-Nasab (2013). 

5. Block Modeling, Variography and Kriging 

For this paper, a block model was created using Ordinary Kriging (OK) as the best linear unbiased 
estimator (Isaaks and Srivastava, 1989). For oil sands resource modeling, it has been found that OK 
with a large number of search data results in a low observed mean squared error (Deutsch, et al., 
2014). This makes OK a preferred resource estimation technique. With Geovia GEMS (Gemcom 
Software International, 2015a), the block model was used to define the orebody for reserve 
estimation and mine planning. The creation of interpolation profiles was required to determine the 
spatial correlation between the observations. A semi-variogram was used for this purpose. Variogram 
models are used in kriging estimation procedures, which can be used further to construct search 
parameters for interpolation techniques. To create a variogram model, an experimental variogram 
was calculated for the oil sands McMurray Formation being used as case study. Omnidirectional 
variograms for bitumen grades were prepared to identify the sill while vertical variograms were used 
to identify the nugget effect. Primary variogram maps were calculated to determine the orientation 
of the major axis in the presence of anisotropy. The directional horizontal variogram (major axis) 
was calculated and modeled. The secondary variogram maps (semi-major axis) were calculated and 
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modeled. The variograms were extracted along the ellipse axis. The major, semi-major and minor 
axes were selected for final modeling. Search ellipse profiles and semi-variogram profiles were 
updated from the semi-variogram models and used for interpolation within the ore rock types for 
bitumen and fines grades. 

Ordinary Kriging estimates are calculated for each block in the block model. Using the concept of 
Block Kriging (Gringarten and V. Deutsch, 2001), these kriging estimates are used together with the 
sill, the nugget effect and the range to calculate the Ordinary Kriging grade and variance for each 
mining-cut and mining-panel in the final pit limit. The kriged estimates together with a variance 
penalty scheme are used for mine planning to estimate the financial risk (risk) associated with grade 
uncertainty as explained in Section 5.2. 

5.1. Kriged estimates and a variance penalty scheme 

Ordinary Kriging (OK) estimates the expected value of a spatial variable (the grade in this case) and 
the surrounding uncertainty at a given location (Isaaks and Srivastava, 1989). It is the best linear 
unbiased estimator since it tries to have the mean residuals equal to zeros and aims to minimize the 
variance of the errors. OK uses statistical distance instead of geometric distance, which controls 
redundancy of estimation samples. As mentioned in Section5, the spatial continuity for bitumen and 
fines grades was modeled with semi-variograms, so the pattern and anisotropy are incorporated into 
the estimation using OK. The general equation for anisotropic spherical variogram is given by Eq. 
(1). The variogram models for bitumen and fines consists of two nested spherical models Table 1. 
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Table 1. Variogram model for bitumen and fines grades. 

Element Nugget Effect, C0 
Spherical 1 Spherical 2 

Sill, C Range, r Sill, C Range, r 

Bitumen 0.026 0.673 46.34 0.292 46.61 

Fines 0.000 0.600 29.15 0.400 44.13 

Using the semi-variograms, the kriged grade and kriged variance are determined using OK. The 
kriged variance is robust to most errors likely to be made in the semi-variogram model selection for 
spherical models. However, the nugget effect should be carefully selected to avoid understating the 
kriged variance (Brooker, 1986). 

The kriged block estimates (bitumen grades), sill, nugget effect and the range are used to determine 
the mining-cut and mining-panel kriged grades and kriged variances following the concept of Block 
Kriging. The estimated kriged variances for all mining-panels are used to calculate the frequency and 
probability of occurrence of the kriged variance. The latter is used to calculate the expected variance 
of the mining-panels. 

5.2. The effect of grade uncertainty 

Grade uncertainty affects the metal content in the material sent to the plant which will subsequently 
affects the NPV of a project. This uncertainty exists because of our ignorance or lack of knowledge. 
It is not an inherent feature of the deposit (Isaaks and Srivastava, 1989). 

For this study, the effect of grade uncertainty on the mine plan is investigated through the grade 
variance. A more robust method is to minimize the grade-variance effect while the expected value 
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of NPV is maximized. It is called the mean-variance method. The grade uncertainty can affect the 
Economic Block Values (EBV) that will affect the production plan due to the variation in ore 
tonnages sent to the mill. Consequently, this will affect the NPV of the project. This approach works 
based on the mean-variance method referred to as the Modern Portfolio Theory (MPT) for risk-based 
portfolio optimization (Markowitz, 1952). MPT requires calculating the expected value and expected 
variance of a portfolio’s return considering a weighted average combination of the assets’ return (Fig. 
4). MPT is a quadratic optimization problem that maximizes the expected return and minimizes the 
standard deviation. The decision variables are the weights or the portions of each asset’s contribution 
towards the objective function.  

 
Fig. 4. Return versus standard deviation, modified after dos Santos and Brandi (2017). 

In this paper, the mean-variance method is adapted and applied to production planning optimization 
in the presence of grade uncertainty using an uncertainty-based MILGP model to reduce project risk. 
The kriged mean and kriged variance for each mining block, mining-cut and mining-panel are 
calculated as well as the EBVs. The main concept of the mean-variance method deployed for long-
term mine planning is to find the low variance mining blocks, mining-cuts or mining-panels to be 
extracted earlier, such that the average project NPV is maximized and the mining of high-variance 
blocks, cuts or panels is deferred to later years. 

In the uncertainty-based MILGP model, the kriged variance for mining-panels together with a 
penalty scheme is used to minimize the risk associated with the production schedule. Applying the 
penalty postpones mining of high variance mining-panels to later years. Fig. 5 shows the kriged 
variance for mining-panels within the UPL for a case study. This paper investigates two options in 
applying the variance penalty for mining-panels. The first option is to apply the penalty for high 
variance mining-panels only. In this case, the expected variance of the deposit is the threshold above 
which the variance of a mining-panel is classified as high. The expected variance is used to determine 
whether a mining-panel should be penalized or not. Mining-panels with kriged variance greater than 
the expected variance will be penalized. The second option is to apply the penalty for all mining-
panels. The optimizer will give preference to the mining of low variance mining-panels earlier in the 
mine life to reduce the risk associated with achieving the production schedule. The term “grade 
uncertainty cost” is used in this study to represent a pseudo cost for each mining-panel calculated as 
a product of a penalty value and the mining-panel kriged variance. Subsequently, the grade 
uncertainty cost is used to enforce the mining of low variance mining-panels early in the mine life to 
reduce project risk. The “overall uncertainty cost” is therefore a quantitative parameter which 
estimates the difference in NPV of the production schedule from the MILGP model and uncertainty-
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based MILGP model due to grade uncertainty. The grade uncertainty cost is calculated from Eq. (2)
. 

 uGrade uncertainty cost PN  = Penalty cost × mining-panel kriged variance  (2) 

 
Fig. 5. Kriged variance for the mining-panels within the ultimate pit limit. 

5.3. Penalty cost determination 

The penalty cost is controlled by the planner. It starts from zero and increases gradually until the 
production schedule starts to change and consequently the NPV. As the penalty applied increases, 
the optimizer changes the production schedule, looking for low-variance mining-panels to be mined 
earlier to minimize the risk associated with the production schedule. At some point, increasing the 
penalty cost has no effect on the production schedule and subsequently the NPV (Fig. 6). Low penalty 
means high NPV and high risk, and vice versa. Increasing the penalty will minimize the risk that 
results in high degree of confidence in the mining project. 

 
Fig. 6. Net present value versus penalty cost. 

6. MILGP Theoretical Model Formulation 

The strategic production schedule considers the time and sequence of extracting the ore, muskeg, 
overburden, interburden and waste blocks, as well as their destinations from a predefined UPL. The 
proposed MILGP model is capable of considering multiple mining locations, multiple pushbacks and 
different types of materials. The stockpiled ore can be reclaimed after open pit mining is completed 
or simultaneously during active open pit mining with a pre-determined reclamation duration. 
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However, long-term stockpiling could result in problems such as leaching, the deterioration of 
material and oxidation, which can affect the processing recovery efficiency. For oil sands mining, to 
avoid the risk of oxidation, the ore will be reclaimed in a pre-determined period controlled by the 
planner. The proposed oil sands production scheduling model integrates waste management through 
dyke construction and stockpiling for a limited duration. Stockpiling is for the mined ore that exceeds 
the plant capacity in any given year. The MILGP model is subject to economic, technical and 
physical constraints that control the mining operation. The notations used in the formulation of the 
oil sands long-term production planning and waste management framework have been classified as 
indices, sets, parameters and decision variables. The details of these notations can be found in the 
list of nomenclature in Appendix. 

6.1. Modeling of economic mining-cut value 

Based on the value of the mining-cut and the costs incurred during mining and processing operations, 
the discounted economic value of each mining-cut can be calculated after applying a discount rate to 
calculate its present value since the mining-cuts are extracted in different periods. The discounted 
economic mining-cut value can be calculated using the following formula: 

Discounted Economic Mining-Cut Value = Discounted Revenue – Discounted Costs 

For a mining-cut, if there are valuable elements, its discounted economic value if it is sent from the 
mine to the processing plant ( ,d t

kdm ) or from the stockpile to the processing plant ( ,
,

d t
k spds ) is given by 

Eqs. (3) and (4), respectively. 

, , , , , , , ,d t a e t l t d t d t d t d t
k k k k k k kdm rm dw dmu dob dib dt        (3) 

, , , , , , , ,
,

d t a e t l t ts d t ts d t ts d t ts d t ts
k sp k k k k k kds rs dw dmu dob dib dt            (4) 

Eqs. (5) to (11) define the parameters used in Eqs. (3) and (4). Eq. (5) defines the discounted revenue 
generated from selling the final product within each mining-cut k minus the discounted processing 
cost; for mining-cuts sent directly from the mine to the processing plant. Eq. (6) defines the 
discounted revenue generated from selling the final product within each mining-cut k  minus the 
discounted processing cost, minus the extra discounted re-handling cost; for mining-cuts sent from 
the mine through the stockpile to the processing plant. Eq. (7) defines the discounted cost for 
extracting mining-cut k as waste. Eq. (8) shows the extra discounted cost of re-handling reclamation 
material (Muskeg unit). Eqs. (9)  to (11) show the extra discounted cost of mining the OB , IB and 
TCS  dyke materials from mining-cut k , respectively. 

 , , , , , , ,

1 1

E E
a e t e a e e t e t a e t
k k k avg k

e e

rm o g rp p sc o pc
 

          (5) 

 , , , , , , , , ,
,

1 1 1

E E E
a e t e a e e t e t a e t a e t
k k k avg sp k k sp

e e e

rs o g rp p sc o pc o pc
  

             (6) 

, ,( )l t l t
k k k k k kdw o mu ob ib w mc         (7) 

, ,d t d t
k kdmu mu muc     (8) 

, ,d t d t
k kdob ob obc    (9) 

, ,d t d t
k kdib ib ibc     (10) 

, ,d t d t
k kdt t tc    (11) 
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6.2. Uncertainty-based MILGP objective function 

The MILGP model objective function for oil sands long-term production planning and waste 
management is developed based on deterministic and risk-based approaches. The objective functions 
in general aim to: 

 Maximize the NPV of the project; 

 Minimize financial risk (risk) associated with the production schedule; 

 Minimize reclamation material mining cost;  

 Minimize dyke material mining cost;  

 Minimize deviations from the production goals. 

To develop the models, the concepts presented in Ben-Awuah and Askari-Nasab, (2013) are used as 
the starting point. The formulation uses continuous decision variables, ,l t

py  , ,a t
kx  , ,

,
a t
k spc  , ,d t

kv  , ,d t
kz  ,

,d t
ku  , and ,d t

kq  to model mining, processing from mine, processing from stockpile, RM, and OB, IB 
and TCS dyke material requirements, respectively; for all mining locations, and processing and dyke 
construction destinations. Continuous decision variables are used to allow for fractional extraction 
of mining-panels and mining-cuts in different periods for different locations and destinations. The 
model features the parameter grade uncertainty cost, PNu, which is a pseudo cost used to enforce 
preferential mining of low variance mining-panels. This is used to estimate risk associated with the 
generated production schedule. Continuous deviational variables, , ,

1
l tdv  , , ,

2
a tdv , , ,

3
d tdv , , ,

4
d tdv  , 

, ,
5

d tdv , and , ,
6

d tdv  are defined to support the goal functions that control mining, processing, RM, 
OB, IB and TCS dyke materials, for all mining locations and processing, reclamation and dyke 
construction destinations. They provide a continuous range of units (tonnes) that can be determined 
by the optimizer to satisfy the set goals. In the objective function, these deviational variables are 
minimized. There are also deviational penalty cost and priority parameters in the objective function 
used to model the focus of mine management in the presence of multiple conflicting goals. The 
deviational penalty cost parameters 1PN , 2PN  , 3PN , 4PN , 5PN , and 6PN  penalize the NPV for 

any deviation from the set goals. The priority parameters, 1P  , 2P , 3P , 4P , 5P , and 6P  are used to 
place emphasis on the most important goals. In general, the deviational penalty cost and priority 
parameters are set up to penalize the NPV if the set goals and the most important goals are not met. 
When setting up these parameters, the planner has to monitor how continuous mining proceed period 
by period, the uniformity of tonnages mined per period, and the corresponding NPV generated, to 
keep track of how parameter changes affect these key performance indicators. More weight should 
be assigned to a goal that has a higher priority for mine management. 

The uncertainty-based objective function presented in Eq. (12), aims to maximize the NPV of the 
project, minimize grade uncertainty cost, minimize reclamation and dyke material mining cost, and 
minimize deviations from the production goals. The production schedule risk is estimated through 
the grade uncertainty cost calculated by applying a mining-panel grade-variance penalty scheme to 
generate varying production schedules with different NPVs. 

 
   

     
   

, , , , , , , ,
, ,

, , , , , , , ,

, , , , , ,
1 1 1 2 2 2 3 3 3

, , , , ,
4 4 4 5 5 5 6 6 6

( )a e t a t a e t a t l t l t
k k k sp k sp p u p

d t d t d t d t d t d t d t d t
k k k k k k k k

l t a t d t

d t d t d

rm x rs c dw PN y

dmu v dob z dib u dt q
Max

P PN dv P PN dv P PN dv

P PN dv P PN dv P PN dv

  

  

      

      

     

      
1 1 1 1 1 1 1

,

p

j

L J D SP A E T

l j d sp a e t k MK
p Mp

t

       


  
  
  
  
  
  
     

        (12) 
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6.3. MILGP model goal functions 

There are tonnage targets for all mining locations and processing destinations as well as tonnage 
targets for muskeg as reclamation material and dyke material for dyke construction destinations. Eqs. 
(13) to (18) represent all required goal functions. Eq. (13) defines the mining goal function that 
controls the total amount of material mined from mining-panel p  within pushback j in each period. 
The negative allowable deviation from the set mining goal is controlled by the planner using the 

, ,
1

l tdv  decision variable. Eq. (14) defines the processing goal function that controls the total amount 
of ore from mining-cut k  within mining-panel p  sent from both the mine and stockpile in each 
period to the processing destination. It should be mentioned that the amount of ore sent to the 
processing destination from the stockpile in period t  and the amount of ore sent to the stockpile from 
the mine in period t ts  must be equal. The negative allowable deviation from the set processing 
goal is controlled by the planner using the , ,

2
a tdv  decision variable. Eq. (15) defines the RM tonnage 

goals that control the total amount of muskeg material to be mined from mining-cut k  within mining-
panel p  in each period. The negative allowable deviation from the set RM goal is controlled by the 

planner using the , ,
3

d tdv  decision variable. OB , IB  and TCS  dyke material goal functions control 
the dyke material production targets for different dyke construction destinations. These are defined 
by Eqs. (16) to (18), respectively. These functions provide a feasible schedule for dyke construction. 
The negative allowable deviation from the set OB , IB  and TCS  dyke material goals are controlled 
by the planner using , , , , , ,

4 5 6,    and d t d t d tdv dv dv    decision variables. 

  , , , ,
1

1 j

J
l t l t l t

p p p p p p
j p MP

o mu ob ib w y dv Mg

 

 
        

 
   (13) 

   , , , , ,
, 2

1 1p p

j j

P SP
a t a t a t a t

k k k k sp
p k MK sp k MK

p MP p MP

o x o c dv Pg

   
 

 
 

     
 
 

     (14) 

 , , , ,
3

1 p

P
d t d t d t

k k
p k MP

mu v dv MUg

 

 
    

 
    (15) 

 , , , ,
4

1 p

P
d t d t d t

k k
p k MP

ob z dv OBg

 

 
    

 
     (16) 

 , , , ,
5

1 p

P
d t d t d t

k k
p k MP

ib u dv IBg

 

 
    

 
    (17) 

 , , , ,
6

1 p

P
d t d t d t

k k
p k MP

cs q dv CSg

 

 
    

 
                  (18) 

6.4. MILGP model constraints   

6.4.1. Stockpiling capacity constraints 

Constraints that control ore stockpile tonnages are presented in Eqs. (19) and (20). These equations 
control the amount of ore sent from mining-cut k to stockpile sp  in period t . Material sent to the 
stockpile in period t are reclaimed in period t ts , where ts  is the stockpiling duration controlled 
by the planner. The planner also controls the upper and lower capacity limits for stockpile bins. 
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1 1

SP K sp tsp t
k k

sp k

o s os
 

    (19) 

,,

1 1

SP K
sp tsp t

k k
sp k

o s os
 

    (20)  

6.4.2. Bitumen and fines grade blending constraints 

The MILGP bitumen and fines grade blending constraints ensure that the quality requirements of the 
processing plant, stockpile and dyke construction destinations are achieved. These constraints are 
formulated using Eqs. (21) to (30). Ore bitumen grade blending constraints ensure the extracted ore 
from mining-cut k within mining-panel p  sent to either processing destination a  or to stockpile sp  
in period t  meets the grade quality requirements. Ore bitumen grade blending constraints are 
formulated using Eqs. (21) to (24). Eqs. (21) and (22) represent inequality constraints that control 
the limiting ore bitumen grade sent from the mine and stockpile to the processing plant. Eqs. (23) 
and (24) represent inequality constraints that control the limiting ore bitumen grade sent from the 
mine to the stockpile. 

   , ,, , , ,
, ,

1 1

0
p p

P Pa e te a t a t ts a t a t ts
k k k k sp k k k sp

p k MP p k MP

g o x c g o x c 

   

            (21)  
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1 1

0
p p

P P
a e t a t a t ts e a t a t ts

k k k sp k k k k sp
p k MP p k MP

g o x c g o x c 

   

            (22)  

, ,, ,

1 1

0
p p

P Pa e te a t a t
k k k k k

p k MP p k MP

g o s g o s
   

           (23)  

, , , ,

1 1

0
p p

P P
a e t a t e a t

k k k k k
p k MP p k MP

g o s g o s
   

            (24) 

Ore fines grade blending constraints ensure the extracted ore from mining-cut k  within mining-panel 
p  sent to either processing destination a  or to stockpile sp  in period t  meets the fines requirements. 

Interburden fines grade blending constraints also ensure that the interburden fines for dyke 
construction are within the upper and lower limits required. Fines grade blending constraints are 
formulated using Eqs. (25) to (30). Eqs. (25) and (26) represent inequality constraints used to control 
the limiting grade of ore fines sent from the mine and stockpile to the processing plant. Eqs. (27) and 
(28) represent inequality constraints used to control the limiting grade of ore fines sent from the mine 
to the stockpile. Eqs. (29) and (30) represent inequality constraints used to control the limiting grade 
of interburden dyke material fines sent from the mine to dyke construction destinations. 

   , ,, , , ,
, ,

1 1

0
p p

j

P Pa t ee a t a t a t a t
k k k k sp k k k sp

p k MK p k MK
p MP p MPj

o fn x c fn o x c
   

 

   
            

     

                (25)          

   , , , , , ,
, ,

1 1

0
p p

j

P P
a t e a t a t e a t a t

k k k sp k k k k sp
p k MK p k MK

p MPj p MP

fn o x c o fn x c
   

 

  
          

      

       (26)  
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6.4.3. Mining-panels extraction precedence constraints 

Five precedence constraints presented in Eqs. (31) to (35) are used to define the precedence 
extraction sequence for each mining panel p  based on its spatial location. These equations use the 

binary integer decision variable pb . This variable is equal to one if the extraction of mining-panel 

p  has started by or in period t; otherwise, it is zero. Specifically: 

 Eq. (31) defines the vertical mining precedence. Prior to the extraction of a specific mining-
panel, all the mining-panels above it must be extracted so that the mining-panel is accessible. 
The set  pIP Z   represents the set of immediate mining-panels that are above mining-panel p . 

 Eq. (32) defines the horizontal mining precedence. Prior to the extraction of a specific mining-
panel, all the mining-panels in a specified horizontal mining direction on a level must be 
extracted. The set  pIH Z   represents the set of immediate mining-panels in the specified 

horizontal mining direction. 

 Eq. (33) defines the pushback mining precedence. Eq. (33) checks all the mining-panels within 
the immediate predecessor pushback that must be extracted prior to the extraction of mining-
panels in pushback j. The set  jMP H   represents the set of mining panels in the predecessor 

pushback. 

 Eq. (34) ensures that mining-panel p  can only be extracted if it has not been extracted before.   

 Eq. (35) ensures that once the extraction of a mining-panel starts in period t , this mining-panel 
is available for extraction during the subsequent periods. 
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6.4.4. Decision variables’ control constraints 

In the MILGP model, all decision variables used to control mining, processing, stockpiling, 
reclamation material, dyke materials and goal deviations are continuous variables. Inequality Eq. 
(36) makes sure that all the material mined as ore (sent to either the processing destination a  or the 
stockpile sp ), and all reclamation and dyke materials extracted from the mining-cuts belonging to 
mining-panel p  in period t  are less than or equal to the total material mined from mining-panel p  

in period t  from any mining location.  

Eq. (37) ensures that the total fractions of ore mined from a mining-cut (sent to either the processing 
destination a  or the stockpile sp ) is less than or equal to one. Eq. (38) ensures that the fraction of 
ore extracted from mining-cut k  and sent to the stockpile sp  in period t ts  must be equal to the 

fraction of ore reclaimed from the stockpile sp  and sent to the processing plant a  in period t ; where 
ts  is the stockpiling duration. 

Eq. (39) ensures that the fractions of TCS dyke material produced from processed ore is less than or 
equal to the fractions of ore sent from the mine and stockpile to the processing plant in each period. 
Eq. (40) ensures that the fractions of mining-panel p  extracted and sent to different destinations in 
different periods is less than or equal to one. Eq. (41) ensures that the total fractions of reclamation 
material extracted from the mine and sent to its destinations in different periods is less than or equal 
to one. Eqs. (42) to (44) ensure that the total fractions of dyke materials extracted from the mine          
( OB  and IB ) or generated from the processing  plant (TCS ) and sent to all destinations in different 
periods is less than or equal to one.  
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6.4.5. Non-negativity constraints 

Eq. (45) ensures that the decision variables for mining, processing, stockpiling (ore sent and 
reclaimed), RM , OB , IB  and TCS  dyke material are non-negative. Eq. (46) ensures that the 
deviational decision variables that support the goal functions are non-negative as well. 

, , , , , , , ,
, ,y ,   ,   s ,  c ,   ,  ,   ,     0l t a t d t a t d t d t d t d t

p k k sp k sp k k k kx v z u q    (45)   

, , , , , , , , , , , ,
1 2 3 4 5 6,   ,   ,   ,   ,     0l t a t d t d t d t a tdv dv dv dv dv dv        (46)  

7. Implementation of the MILGP Framework for an Oil Sands Deposit 

A kriged block model is developed using Geovia GEMS Software (Gemcom Software International, 
2015a). The ultimate pit limit is generated using Geovia Whittle Software (Gemcom Software 
International, 2015b) which is based on 3D LG algorithm (Lerchs and Grossmann, 1965). The 
optimized pit shell from Whittle is used to design the final pit in GEMS software (Gemcom Software 
International, 2015a). The mining blocks within the pit limit are used as input data for the MILGP 
model. An agglomerative hierarchical clustering algorithm is used in clustering blocks within each 
intermediate pushback into mining-cuts (Tabesh and Askari-Nasab, 2011). The intersection between 
benches and intermediate pushbacks are used in creating mining-panels. MATLAB (Mathworks, 
2017) application is used as the programming platform to define the MILGP framework and 
IBM/CPLEX (ILOG, 2012) solver which uses a branch and cut optimization algorithm is employed 
to solve the MILGP problem. This section documents the application and results from the developed 
MILGP model for an oil sands dataset.  

Two implementation scenarios highlighting different aspects of the developed MILGP model are 
outlined in Fig. 7. These scenarios are designed to highlight features of the MILGP model including: 
1) integrating waste management, reclamation and limited duration stockpiling strategy into oil sands 
mine planning (Scenario 1); and 2) estimating the effect of grade uncertainty on the generated NPVs 
of the project (Scenario 2). 
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Fig. 7. Case study scenarios. 

7.1. MILGP model: Scenario 1 

The developed MILGP model for Scenario 1 features goal functions for mining, processing, dyke 
material, reclamation material and a stockpiling strategy for ore. The ore that exceeds the processing 
capacity in each period will be stockpiled for a limited stockpiling duration controlled by the mine 
planner. The revenue generated from processing the stockpiled ore is calculated. The grade 
uncertainty cost is set to zero. This MILGP model generates a smooth and practical production 
schedule, and an NPV with known limits of optimality. To model the mining, ore processed from 
mine, ore processed from stockpile, ore sent to stockpile, RM, OB, IB and TCS dyke material, the 
following continuous decision variables , , , , , , ,

, ,y ,   ,c  ,s ,  ,  ,   l t a t a t d t d t d t d t
p k k sp k sp k k kx v z u  and ,d t

kq  are used 

respectively in the proposed MILGP model, for all mining locations l , processing destination a  and 
other possible destinations d . To control the precedence of mining-panel extraction, the binary 

integer decision variable t
kb  is used.  

For Scenario 1, continuous deviational variables , ,
1

l tdv  , , ,
2

a tdv , , ,
3

d tdv , , ,
4

d tdv  , , ,
5

d tdv , and , ,
6

d tdv     
are used to support the goal functions that control mining, processing, reclamation material, OB, IB 
and TCS dyke materials for all locations and destinations. The deviational variables make a 
continuous range of tonnes available to the optimizer to choose from to satisfy the set goals. These 
deviational variables are minimized in the objective function. Deviational penalty cost and priority 
parameters are included in the objective function. Deviational penalty cost parameters 

1 2 3 4 5 6, ,  ,  ,   and PN PN PN PN PN PN  are used to penalize the NPV for any deviation from the set 

goals. The priority parameters 1 2 3 4 5 6, ,  ,  ,   and P P P P P P  are used to place emphasis on the most 
important goals. These parameters also penalize the NPV if the most important set goal is not met. 
While setting up the deviational variables, penalty and priority cost parameters, the smoothness of 
the mining schedule from one period to the next and the uniformity of tonnages mined per period 
needs to be monitored together with the corresponding NPV generated. Setting up the priority and 
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penalty cost depends on whether the planner needs to trade off NPV to meet some set goals consistent 
with mine management’s objective. 

7.2. Uncertainty-based MILGP model: Scenario 2 

The uncertainty-based MILGP model for Scenario 2 features the developments for the MILGP model 
in Scenario 1. In addition, the uncertainty-based MILGP model is implemented with a mining-panel 
grade variance penalty scheme through the grade uncertainty cost to estimate the risk associated with 
the production schedule. This is implemented using two different risk-based techniques: 1) applying 
the grade uncertainty cost for high variance mining-panels, and 2) applying the grade uncertainty 
cost for all mining panels. In applying either technique, different production schedules are generated 
as the pseudo penalty cost is varied resulting in a range of NPVs. An estimated overall risk value 
associated with the production schedule can then be calculated. This uncertainty-based MILGP 
model generates a smooth and practical production schedule, an NPV with known limits of 
optimality, is easy to setup with more flexibility for the optimizer and provides a quantified risk value 
associated with the production schedule. 

8. Case Study 

For this case study, no pushbacks prior to the UPL were considered. However, to create mining-
panels, the ultimate pit was divided into four pseudo pushbacks. Blocks in each mining-panel were 
clustered into mining-cuts using hierarchical clustering algorithm (Tabesh and Askari-Nasab, 2011). 
Two implementation scenarios as outlined in Section 7 are investigated with the oil sands data. The 
deposit is to be scheduled for 8 years for the processing plant, reclamation and dyke construction 
destinations.  Summarized information on the oil sands deposit final pit design is presented in Table 
2. Table 3 shows the economic parameters and operational capacities for production scheduling. The 
economic data are extracted and compiled based on (Ben-Awuah and Askari-Nasab, 2013). Table 4 
shows the upper and lower bounds of material quality requirements for ore and interburden dyke 
material. The model is implemented on a Lenovo Think Pad computer with i5 Core at 2.2 GHz, and 
8.0 GB of RAM. 

8.1. MILGP model: Scenario 1 

In Scenario 1 for this case study, the mining operation is limited by mining and processing capacities 
using the operational capacities in Table 2 and material quality requirements in Table 3. The main 
target is to achieve a smooth processing rate throughout the mine life and generate a uniform 
production schedule that generates the highest NPV. The overall NPV generated is $ 18,108.0 M and 
the results of the production schedule are shown in Table 5 and Error! Reference source not found. 
and Error! Reference source not found.. 

Table 2. Oil sands deposit final pit design characteristics. 

Description Value 

Total tonnage of material (Mt) 5,735.60 

Total ore tonnage (Mt) 1,906.90 

Total TCS dyke material tonnage (Mt) 1,351.60 

Total OB dyke material tonnage (Mt) 1,515.50 

Total IB dyke material tonnage (Mt) 1,925.50 

Total RM tonnage (Mt) 218.74 

Total waste tonnage (Mt) 168.96 

Number of blocks 79,095 

Number of mining-cuts 4,494 

Number of mining-panels 107 

Number of benches 8 
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Table 3. Economic parameters and operational capacities. 

Parameter (unit) Value Parameter (unit) Value 

Mining cost ($/tonne) 4.60 Processing capacity (Mt/year)  82.59 

Processing cost ($/tonne) 5.03 RM capacity (MT/year) 220.00 

Ore re-handling cost ($/tonne) 0.50 OB capacity (MT/year) 230.00 

Selling price ($/bitumen %mass) 4.50 IB capacity (MT/year) 200.00 

TCS dyke material cost ($/tonne) 0.92 TCS capacity (MT/year) 75.00 

OB dyke material cost ($/tonne) 1.38 Mining recovery fraction (%) 100.00 

IB dyke material cost ($/tonne) 1.38 Processing recovery (%) 90.00 

RM extra mining cost ($/tonne) 0.50 Discount rate (%) 10.00 

Mining capacity (Mt/year)  239.76   

Table 4. Material quality requirements. 

Parameter Value 

Upper bound of ore bitumen grade (wt %) 16.0 

Lower bound of ore bitumen grade (wt %) 7.0 

Upper bound of ore fines percent (wt %) 30.0 

Lower bound of ore fines percent (wt %) 0.0 

Upper bound of IB dyke material fines percent (wt %) 50.0 

Lower bound of IB dyke material fines percent (wt %) 0.0 

Table 5. Production schedule using goal functions with a 2-year ore stockpiling duration                           
from the MILGP model. 

Period Average bitumen grade (wt %) Material mined (Mt) Material processed (Mt) 

1 8.33 239.76 13.49 

2 10.33 239.76 62.43 

3 9.96 239.76 67.08 

4 10.32 239.76 58.24 

5 10.44 239.76 82.59 

6 10.51 239.76 82.59 

7 10.16 239.76 82.59 

8 10.74 239.76 82.59 

9 10.80 239.76 82.59 

10 11.13 239.76 82.59 

11 10.94 239.76 82.59 

12 10.44 239.76 82.59 

13 9.58 239.76 82.59 

14 9.60 239.76 82.59 

15 10.64 239.76 82.59 

16 11.28 239.76 82.59 

17 10.67 221.39 82.59 

18 10.58 209.76 82.59 

19 10.84 209.76 82.59 

20 10.38 209.76 82.59 

21 10.65 209.76 82.59 

22 9.79 209.76 82.59 

23 10.23 209.76 82.59 

24 8.89 209.76 82.59 

25 9.37 209.76 53.89 
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Fig. 8. Processing schedule using goal functions with a 2-year ore stockpiling duration from the MILGP 

model. 

 
Fig. 9. Production schedule using goal functions with a 2-year ore stockpiling duration                               

from the MILGP model. 

8.2. Uncertainty-based MILGP model: Scenario 2 

In Scenario 2 for this case study, the mining operation is limited by mining and processing capacities. 
To investigate in detail the features of the Uncertainty-based MILGP model, the scenario was setup 
with goal functions and no stockpiling, reclamation material or dyke materials are considered. First, 
this scenario is run with no penalty applied for mining-panels (Scenario 2A). Two different risk-
based techniques are examined: 1) applying penalty cost for only high-variance mining-panels 
(Scenario 2B) and; 2) applying penalty cost for all mining panels variance (Scenario 2C). The main 
focus is to achieve a smooth processing rate throughout the mine life and generate a range of NPVs 
corresponding to the varying penalty cost values. As the penalty cost values increases, the grade 
uncertainty cost increases, which forces the optimizer to preferentially mine lower variance mining-
panels thereby affecting the NPV. The relationship between NPV and penalty cost can be seen in 
Fig. 10 with selected data points. The selected results of the production schedule using both 
techniques are shown in Table 6. Fig. 11 shows the production schedule using Scenario 2A which is 

53



Maremi A. et al.  MOL Report Nine © 2018 103-23 
 
 
similar to 2B and 2C. It can be noticed that the extraction sequence is postponed to later years for 
some of the high variance mining-panels such as mining-panels number 15, 43, 51, 91, 96, 98, 100 
and 103. At the same time, the extraction sequence for some low variance mining-panels are 
extracted earlier such as mining-panel number 12, 35, 38, 45, 64, 65, 70, 83 and 93. In addition, there 
is an exceptional effect of penalty cost on the low variance mining-panels such as mining-panels 26, 
44, 52, 55 and 87 as the will give access to lower variance mining-panels. It is important to note that, 
the primary objective function of the uncertainty-based MILGP model is to maximize NPV and 
hence the optimizer looks for high grade mining-cuts in addition to low mining-panels variance. 

 
Fig. 10. Relationship between net present value and penalty cost. 

 

Table 6. Production schedule for selected mining-panels using goal functions from the uncertainty-based 
MILGP model. 

Mining-
Panel # 

Mining-Panel 
Variance 

Extraction Sequence (year) 

Scenario 2A Scenario 2B Scenario 2C 

12 0.0691 4 3 3 

15 0.2809 3 4 4 

26 0.0697 5 6 6 

35 0.0291 10 10 8 

38 0.0743 7 6 6 

43 0.2721 6 7 7 

44 0.0487 6 7 7 

45 0.0724 8 7 7 

51 0.2911 7 8 8 

52 0.0485 7 8 8 

55 0.0613 10 11 11 

64 0.0291 21 17 17 

65 0.0328 25 22 22 

70 0.0526 18 17 17 

83 0.0291 22 21 21 

87 0.0617 18 19 19 

91 0.4013 17 18 18 

93 0.0723 22 19 20 

96 0.4564 19 20 20 

98 0.4090 20 23 22 

100 0.4883 23 24 23 

103 0.3747 23 24 24 
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Fig. 11. Processing schedule using goal functions from the uncertainty-based MILGP model (Scenario 2A). 

8.3. Discussion of the results 

The performance of the MILGP models in Scenarios 1 is analyzed based on: NPV, mining and 
processing production targets and smoothness and practicality of the generated schedules. Scenario 
1 generates smooth schedules for mining, processing, reclamation and dyke materials. The total 
material mined is 5,735.60 Mt. This is made up of 1,906.9 Mt of ore, 218.74 Mt of RM, 1,515.50 Mt 
and 1,925.50 Mt of OB and IB dyke materials, whilst 1,351.60 Mt of TCS dyke material is generated. 
The model generated a uniform production schedule for OB, IB and TCS dyke material over the 25 
periods. This ensures the effective utilization of the mining fleet and processing plant throughout the 
mine life. 

The uncertainty-based MILGP model, Scenario 2, is developed based on grade uncertainty using 
the mining-panels grade variance. The first run (Scenario 2A) no penalty is applied and the 
NPV obtained is $ 18,482.00 M. For (Scenario 2B), the optimizer penalizes mining-panels with 
grade variance higher than the expected grade variance, calculated as 0.1219. The penalty cost 
applied starts from zero (no grade uncertainty cost) and increases gradually until the production 
schedule starts to change by postponing the mining of high variance mining-panels to later 
years. As the penalty cost increases, the NPV of the project decreases due to the changes in 
the production schedule. At some point, increasing the penalty cost has no effect on the 
production schedule and subsequently the NPV. The NPV obtained ranges from $ 18,482.00 M to 
$ 18,474.00 M. Thus, the potential risk associated with the production schedule can be estimated as 
a loss of $ 8.00 M in the most pessimistic case. For (Scenario 2C), the optimizer penalizes 
all mining-panels to give preference to low variance mining panels to be mined earlier. The 
NPV obtained ranges from $ 18,482.00 M to $M 18,475.00 M. Thus, the potential risk associated 
with the production schedule can be estimated as a loss of $ 7.00 M in the most pessimistic case. 
Among other things, by taking into consideration the NPV range and the production schedule 
risk, investors can make more pragmatic choices when managing their mining investment risk 
profile.  Table 7 shows the production schedule and grade profile over 8 periods for Scenarios 2A, 
2B, and 2C. Fig. 12 shows the grade profile comparisons when no penalty applied and when it is 
applied for the two risk-based techniques. 
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Table 7. Production schedule and grade profile for the two risk-based techniques. 

Period 

Scenario 2A Scenario 2B Scenario 2C 

Mining 
Schedule 

(Mt) 

Processing 
Schedule 

(Mt) 

Grade 
Profile 

(%) 

Mining 
Schedule 

(Mt) 

Processing 
Schedule 

(Mt) 

Grade 
Profile 

(%) 

Mining 
Schedule 

(Mt) 

Processing 
Schedule 

(Mt) 

Grade 
Profile 

(%) 

1 239.76 13.49 8.33 13.49 13.49 8.33 239.76 13.49 8.33 

2 239.76 65.71 10.37 65.71 65.71 10.37 239.76 65.71 10.37 

3 239.76 63.80 9.89 63.80 63.80 9.89 239.76 63.80 9.89 

4 239.76 75.24 10.41 75.24 75.24 10.41 239.76 75.24 10.41 

5 239.76 82.59 10.37 82.59 82.59 10.37 239.76 82.59 10.37 

6 239.76 82.59 10.34 82.59 82.59 10.34 239.76 82.59 10.34 

7 239.76 82.59 10.44 82.59 82.59 10.44 239.76 82.59 10.44 

8 239.76 82.59 10.77 82.59 82.59 10.77 239.76 82.59 10.77 

9 239.76 82.59 10.74 82.59 82.59 10.74 239.76 82.59 10.74 

10 239.76 82.59 10.86 82.59 82.59 10.89 239.76 82.59 10.86 

11 239.76 82.59 11.11 82.59 82.59 11.07 239.76 82.59 11.11 

12 239.76 82.59 10.43 82.59 82.59 10.43 239.76 82.59 10.43 

13 239.76 82.59 9.64 82.59 82.59 9.66 239.76 82.59 9.66 

14 239.76 82.59 10.22 82.59 82.59 10.16 239.76 82.59 10.21 

15 239.76 82.59 10.86 82.59 82.59 10.23 239.76 82.59 10.85 

16 239.76 82.59 10.17 82.59 82.59 10.63 239.76 82.59 10.19 

17 209.76 82.59 9.88 82.59 82.59 10.07 209.76 82.59 9.87 

18 211.52 82.59 10.70 82.59 82.59 10.79 209.76 82.59 11.07 

19 209.76 82.59 11.15 82.59 82.59 11.08 209.76 82.59 10.77 

20 209.76 82.59 10.93 82.59 82.59 10.92 209.76 82.59 10.93 

21 209.76 82.59 10.67 82.59 82.59 10.64 209.76 82.59 10.66 

22 209.76 82.59 10.03 82.59 82.59 10.06 209.76 82.59 10.05 

23 209.76 82.59 9.98 82.59 82.59 9.93 210.92 82.59 9.93 

24 209.76 82.59 9.25 82.59 82.59 9.29 209.76 82.59 9.29 

25 209.76 36.88 8.93 36.88 36.88 8.93 209.76 36.88 8.93 

Fig. 12. Grade profile comparison. 
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9. Conclusions

The proposed uncertainty-based MILGP model for oil sands long-term production planning involves 
the interactions of their three main subcomponents: the objective function, the goal functions and the 
constraints in an optimization framework to achieve the research objectives. The model generates a 
strategic production schedule for the ore, reclamation material and dyke materials using two different 
scenarios. In Scenario 1, using goal functions for mining and processing with uncertainty penalty 
cost set to zero, the MILGP model illustrates how production scheduling with limited duration 
stockpiling strategy for ore can be effectively integrated with waste disposal planning and 
reclamation material stockpiling in oil sands mining. Based on dyke construction requirements, 
schedules are generated to provide the required dyke materials to support engineered dyke 
construction that will help in reducing environmental impacts. This schedule gives the planner good 
control over dyke materials and provide a solid platform for effective dyke construction and waste 
management planning.  

The effect of grade uncertainty on the NPV of a mining project is investigated using the uncertainty-
based MILGP model (Scenarios 2A, 2B, and 2C). The research is based on the concept of mean-
variance analysis, which is a process of weighing risk (variance) against expected NPV. The main 
goal in Scenario 2 is to feed the plant with ore that has less potential grade variation especially in the 
early years of mine life. By deferring ore with highly uncertain grades to later years, the risk 
associated with generating the estimated mineral content will be reduced; as well as the potential 
uncertainty cost associated with the production schedule. The cost of uncertainty is a good indicator 
of the level of risk associated with generating the expected NPV from the mine plan. 

The future work for this research will focus on integrating the optimization of pushback size for 
waste management in long-term production planning and scheduling. 
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11. Appendix 

Indices 

, {1....., }a A A A   index and set for all possible processing destination in the model. 

 , 1,.....,d D D D   index and set for all possible destinations for materials in the model. 

, {1,...., }e E E E  index and set for all elements of interest in each mining-cut. 

 , 1,......,j J J J   index and set for all pushbacks in the model. 

 , 1,.....,k K K K   index and set for all mining-cuts in the model. 

 , 1,......,l L L L   index and set for all possible mining locations (pits) in the model. 

 , 1,......,p P P P   index and set for all mining-panels in the model. 

, {1,...., }sp SP SP SP   index and set for all possible stockpiles in the model. 

, {1,...., }t T T T   index and set for all the scheduling periods, years. 

, {1,...., }ts TS TS TS   index and set for all possible stockpiling durations, years. 

Sets 

( )pIH Z   For each mining-panel p, there is a set ( )pIH Z P   defining the immediate 
predecessor mining-panels in a specified horizontal mining direction that must be 
extracted prior to extraction of mining-panel p at the specified level, where Z' is 

the total number of mining-panels in the set ( )pIH Z  . 

( )pIP Z   For each mining-panel p, there is a set ( ")pIP Z P  defining the immediate 
predecessor mining-panels above mining-panel p that must be extracted prior to 
extraction of mining-panel p, where Z" is the total number of mining-panels in the 

set ( )pIP Z  . 

( )pMK H   For each mining-panel p, there is a set ( )pMK H K   defining the mining-cuts 
that belongs to the mining-panel p, where H' is the total number of mining-cuts in 

the set ( )pMK H  . 

( )jMP H   For each phase j, there is a set ( )jMP H P   defining the mining-panels within 
the immediate predecessor pit phases (pushbacks) that must be extracted prior to 
extracting phase j, where H" is an integer number representing the total number of 

mining-panels in the set ( )jMP H  . 
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Decision Variables 

 0,1t
pb   Binary integer variable controlling the precedence of extraction of mining-

panels.  t
pb  is equal to one if the extraction of mining-panel p has started by or in 

period t, otherwise it is zero. 

 , 0,1a t ts
kc    Continuous variable representing the ore portion of mining-cut k to be reclaimed 

and processed at destination a in period t+ts. 

, ,
1

l tdv  Negative deviation from the mining goal (tonnes) in period t at location l. 

, ,
2

a tdv  Negative deviation from the processing goal (tonnes) in period t at processing 
destination a (tonnes). 

, ,
3

d tdv  Negative deviation from the reclamation material goal (tonnes) in period t at 
destination d (tonnes). 

, ,
4

d tdv  Negative deviation from the overburden dyke material goal (tonnes) in period t 
at destination d (tonnes). 

, ,
5

d tdv  Negative deviation from the interburden dyke material goal (tonnes) in period t 
at destination d (tonnes). 

, ,
6

d tdv  Negative deviation from the tailings coarse sand dyke material goal in (tonnes) 
period t at destination d (tonnes). 

 , 0,1d t
kq   Continuous variable representing the tailings coarse sands dyke material portion 

of mining-cut k to be extracted and used for dyke construction at destination d in 
period t. 

 , 0,1sp t
ks   Continuous variable representing the ore portion of mining-cut k to be extracted 

and sent to the stockpile sp in period t. 

 , 0,1d t
ku   Continuous variable representing the interburden dyke material portion of 

mining-cut k to be extracted and used for dyke construction at destination d in 
period t. 

 , 0,1d t
kv   Continuous variable representing the muskeg reclamation material portion of 

mining-cut k to be extracted and stockpiled at destination d in period t. 

 , 0,1a t
kx   Continuous variable representing the ore portion of mining-cut k to be extracted 

and processed at destination d in period t. 

 , 0,1l t
py   Continuous variable representing the portion of mining-panel p to be mined in 

period t from location l, which includes ore, overburden and interburden dyke 
material, muskeg reclamation material and waste from the associated mining-
cuts. 

 , 0,1d t
kz   Continuous variable representing the overburden dyke material portion of 

mining-cut k to be extracted and used for dyke construction at destination d in 
period t. 
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Parameters 

,d tCSg  Tailings coarse sand dyke material goal in period t at destination d (tonnes). 

kcs  Tailings coarse sand dyke material tonnage in mining-cut k. 

,d t
kdib  Extra discounted cost of mining all the material in mining-cut k in period t as 

interburden dyke material for dyke construction at destination d. 

,d t
kdm  Discounted economic mining-cut value obtained by extracting mining-cut k and 

sending it to destination d in period t. 

,d t
kdmu  Extra discounted cost of mining all the material in mining-cut k in period t as 

muskeg reclamation material at destination d. 

,d t
kdob  Extra discounted cost of mining all the material in mining-cut k in period t as 

overburden dyke material for dyke construction at destination d. 

,
,

d t
sp kds  Discounted economic mining-cut value obtained by extracting mining-cut k and 

sending it to stockpile sp and reclaiming it to destination d in period t. 

,d t
kdt  Extra discounted cost of mining all the material in mining-cut k in period t as 

tailings coarse sand dyke material for dyke construction at destination d. 

,l t
kdw  Discounted cost of mining all the material in mining-cut k in period t as waste 

from location l. 

e
kfn   The average percent of fines in ore portion of mining-cut k. 

, ,a t e
fn  Upper bound on the required average fines percent of ore in period t at processing 

destination a. 

, ,a t efn  Lower bound on the required average fines percent of ore in period t at processing 
destination a. 

ib
kfn   The average percent of fines in interburden dyke material portion of mining-cut k. 

, ,d t ib
fn  Upper bound on the required average fines percent of interburden dyke material in 

period t at dyke construction destination d. 

, ,d t ibfn  Lower bound on the required average fines percent of interburden dyke material 
in period t at dyke construction destination d. 

e
kg  The required average head grade of element e in ore portion of mining-cut k. 

, ,a t eg  Lower bound on the required average head grade of element e in period t at 
processing destination a. 

, ,a t e
g  Upper bound on the required average head grade of element e in period t at 

processing destination a. 
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i  The discount rate. 

,d tIBg  Interburden dyke material goal in period t at destination d (tonnes). 

,d tibc  Cost in present value terms per tonne of interburden dyke material for dyke 
construction at destination d in period t. 

kib  Interburden dyke material tonnage in mining-cut k. 

pib  Interburden dyke material tonnage in mining-panel p. 

,l tMg  Mining goal (tonnes) in period t at location l. 

,l tmc  Cost in present value terms of mining a tonne of waste in period t from location l. 

,d tMUg  
Muskeg, reclamation material goal (tonnes) in period t at destination d. 

kmu  Reclamation material tonnage in mining-cut k. 

pmu  Reclamation material tonnage in mining-panel p. 

,d tmuc  Cost in present value terms per tonne of reclamation material at destination d. 

ko  Ore tonnage in mining-cut k. 

po  Ore tonnage in mining-panel p. 

,d tOBg  Overburden dyke material goal in period t at destination d (tonnes). 

,d tobc  Cost in present value terms per tonne of overburden dyke material for dyke 
construction at destination d in period t. 

kob  Overburden dyke material tonnage in mining-cut k. 

pob  Overburden dyke material tonnage in mining-panel p. 

,sp t
os  The upper bound of ore tonnage sent to stockpile sp  from mining-cut k in period 

t that exceeds the processing capacity.  

,sp tos  The lower bound of ore tonnage sent to stockpile sp  from mining-cut k in period 
t that exceeds the processing capacity.  

,e tp  The selling price of element e in present value terms per unit of product. 

1P  Priority level associated with minimizing the deviations from the mining goal. 
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2P  Priority level associated with minimizing the deviations from the processing goal. 

3P  Priority level associated with minimizing the deviations from the reclamation 
material goal. 

4P  Priority level associated with minimizing the deviations from the overburden 
dyke material goal. 

5P  Priority level associated with minimizing the deviations from the interburden 
dyke material goal. 

6P  Priority level associated with minimizing the deviations from the tailings coarse 
sand dyke material goal. 

, ,a e tpc  Extra cost in present value terms per tonne of ore for mining and processing at 
processing destination a in period t. 

, ,a e t
sppc  Extra cost in present value terms per tonne of ore for stockpiling at stockpile sp 

and processing at destination a in period t. 

,d tPg  Processing goal in period t at destination d (tonnes). 

1PN  Penalty paid per tonne in deviating from the mining goal. 

2PN  Penalty paid per tonne in deviating from the processing goal. 

3PN  Penalty paid per tonne in deviating from the reclamation material goal. 

4PN  Penalty paid per tonne in deviating from the overburden dyke material goal. 

5PN  Penalty paid per tonne in deviating from the interburden dyke material goal. 

6PN  Penalty paid per tonne in deviating from the tailings coarse sand dyke material 
goal. 

uPN   Grade uncertainty cost, a pseudo cost for each mining-panel calculated as a 
product of a penalty value and the mining-panel kriged variance  

,a e
avgrp  Proportion of element e recovered (processing recovery) if it is sent from the mine 

to processing destination a. 

,
,

a e
avg sprp  Proportion of element e recovered (processing recovery) if it is sent from the 

stockpile to processing destination a. 

, ,a e t
krm  Discounted revenue obtained by selling the final products within mining-cut k in 

period t if it is sent to processing destination a, minus the extra discounted cost of 
mining all the material in mining-cut k as ore from location l and processing at 
destination d.  
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, ,a e t
krs Discounted revenue obtained by selling the final products within mining-cut k 

from stockpile sp  in period t if it is sent to destination a in period t, minus the 
extra discounted cost of processing and re-handling 

,e tsc Selling cost of element e in present value terms per unit of product. 

,d ttc Cost in present value terms per tonne of tailings coarse sand dyke material for 
dyke construction at destination d in period t. 

kw Waste tonnage in mining-cut k. 

pw Waste tonnage in mining-panel p. 

65




