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ABSTRACT

Short term mine production scheduling is essential to attain the desired capacity utilization of 
equipment, meet blending targets and adhere to the strategic schedules. Although, several 
optimization models exist in the literature, size and complexity remains a problem which poses a 
limitation to solve and generate the schedules at smaller resolutions for larger time frames. This 
paper presents a short term production scheduling model which allocates shovels over continuous 
time frames, thus controlling the model size from growing with the resolution. This approach also 
models the mine operating environment in a more representative way to create practical and 
achievable schedules. A verification study of the model is presented in this paper using an iron ore 
mine case study. A comparison of solutions in the pareto optimal space also justifies the goal 
optimization as an efficient approach to attain best outcomes from among multiple conflicting 
objectives of the problem.  

1. Introduction

Mining is the backbone of world economy. The origin of most of the products that we use in our 
regular life can be traced to mining of its constituent ingredients. The market price and demand makes 
an operation profitable and hence viable, however, the dynamic price fluctuations in the market may 
pose a threat to the entire investment. A detailed planning is thus carried out before making the 
investment to realize a profitable operation. Through a long term production planning, it is desired to 
maximize the profit in the early years of the production so that breakeven can be achieved early and 
maximum NPV can be attained. Although, strategic planning process is significant, it is at the mine 
operation level that the actual profit can be realized. Efficient utilization of equipment and human 
resources coupled with the realization of long term planned schedules and adjusting to the existing 
market demand, bears a significant  potential  to realize or  even exceed projected returns. Short term 
production scheduling and planning should therefore be considered an important step in the mine 
planning process. Attaining even marginal improvements at the operation level using efficient short 
term plans can lead to major gains at the strategic level.  

Short term mine production scheduling has started to gain attention of the researchers in recent years 
and very few researchers have addressed the problem so far. Bjørndal et al. (2012) attributes the size 
and complexity of the problem for the lack of research in this area. These types of problems belong to 
NP-hard class as proved by Souza et al. (2010). A comprehensive review of the existing models and 
solution techniques is presented by Blom et al. (2018). The review (Blom, et al., 2018) presents a vast 
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difference in various existing models, in terms of mine operation features/activities considered, 
varying level of details and the objectives of the problem. Eivazy and Askari-Nasab (2012) propose a 
MILP model for multi-destination short term production scheduling model to  minimize mining, 
processing, haulage, re-handling and rehabilitation costs, incorporating ramps, horizontal directional 
mining and buffer and blending stockpiles. Gholamnejad (2008) proposes a binary integer 
programming model to solve the problem at the block resolution, emphasizing on the accessibility of 
blocks for mining. L’Heureux  et. al. (2013), Liu et. al.(2013), Kozan and Liu (2016; 2014) propose 
multi-stage MIP models to incorporate drilling, blasting and extraction operations. Topal and 
Ramazan (2010) provide a MIP model for scheduling a fixed fleet of mining trucks in a mine 
operation to minimize the maintenance costs. Due to the vastness of open pit mine operations, there 
exists numerous objectives and elements of the operations that need to be accounted for at the short 
term planning time resolution. For the short term production scheduling purposes, this paper assumes 
four major objectives as to maximize the production, meet tonnage and grade requirements of the 
processing operations and minimize the shovel movements (Upadhyay and Askari-Nasab, 2017, 
2018). 

Short term mine production scheduling problem requires to determine optimal sequence of faces to be 
drilled, blasted and mined by the available equipment resources for the strategically scheduled faces 
in the given time horizon and the amount of material to be transported from the faces to their 
respective destinations to achieve production and grade blend requirements of the processing plants 
over daily or weekly time frames. A detailed short term production scheduling model is required to 
account for equipment resources and corresponding drilling/charging/production and movement 
capabilities between faces; throughput rates of the processing operations; precedence among faces for 
drilling, blasting and excavation operation; production between faces and various dump destinations; 
and discrete haulage capacities based on the available haul truck resources and road network 
architecture of the mine. L’Heureux  et. al. (2013) also incorporates the selection of blocks for each 
blast in their model. Mousavi et. al.(2016a) incorporates drop cuts in the predetermined periods and 
maximum vertical distance between two blocks extracted in a period to consider bench access design 
(haul roads).  

Although, a detailed short term planning model is desired, it poses a limitation on solvability. Number 
of faces considered in the optimization time frame is one major reason for the size and complexity of 
the problem. The definition of faces is debatable in the existing literature where an excavator resource 
can be allocated. Block aggregation is a common technique to group similar blocks together and 
considered as a face. L’Heureux  et. al.(2013) defines a face as an aggregate of 1 to 4 adjacent blocks 
having similar characteristics and considers a single block as a face while solving the model. Kozan 
and Liu (2016) considers a set of several same-grade block units on the same bench in the same pit as 
a face. Mousavi et al. (2016a, 2016b) solves the problem at the block resolution.  

Uncertainty in mine operations is another problem that leads to deviations between planned and 
reality at this resolution. Dimitrakopoulos and Jewbali (2013) proposes a joint stochastic optimization 
approach to link the variability in short term with long term production schedules. Matamoros & 
Dimitrakopoulos (2016) proposes a stochastic integer programming formulation to simultaneously 
optimize fleet and production schedule accounting for uncertainty in grade and fleet parameteres and 
availability. Simulation and optimization approaches have also been used to capture the uncertainties 
of the mine operations to generate short term production schedules (Fioroni, et al., 2008; Upadhyay 
and Askari-Nasab, 2018).  

One important contribution of this paper is the use of continuous time variables to control shovel 
allocations and movements while capturing the production and quality of material produced in 
discrete periods. It serves two purposes. First, as shovel allocation and movement variables are 
independent of the periods, model size does not increase drastically with increasing resolution. We 
can solve a problem at larger or smaller resolutions without having big impacts on the size of the 
model. The second purpose is related to practicality. It is essential at this planning resolution that 
precedence are accurately modeled and that the production plans are practical. Allocating shovels 
within discrete periods (L’Heureux, et al., 2013; Mousavi, et al., 2016a, 2016b) does not model the 
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exact time production finished or started at a face. Thus a shovel, in such models, can be allocated to a 
face in the beginning of a period even if the precedence requirements are met towards the end of the 
period as shown in Fig. 1. Such a solution would not be practical and the planned production could 
not be achieved in reality, especially when the resolution of the model is larger. Kozan and Liu (2016) 
propose a framework strictly for equipment allocations at the various operational stages using 
continuous time variables, however, they do not capture production and quality at discrete time 
resolutions, rendering the model not usable for blending and other objectives which are measured over 
discrete time frames.  

Fig. 1. Comparison between allocations over discrete and continuous time frames for the mining start time at a 

face 2f  based on the finish time of its precedence face 1f . 

Another drawback observed with the models which allocate shovels within discrete time periods with 
single possible assignment in a period, is an induced, but not desired, characteristic to the model that 
tries not to assign a shovel to a face based on the remaining tonnage at the face. If the remaining 
tonnage is small compared to capacity or minimum production constraints at the model resolution, a 
different assignment will be preferred by the model and the optimality of the solution would be 
questionable. Shovel movements can be allowed within periods for such models (Upadhyay and 
Askari-Nasab, 2018), but it becomes hard to capture the movements across periods.  

A mixed integer programming (MIP) model is presented in this paper to formulate the short term 
production scheduling problem by providing shovel allocations over continuous time frames, and 
discrete production between faces and destinations to achieve production and grade blend objectives. 
Model verification and a comparison of solution times is presented with an iron ore mine case study. 
The model is solved following a goal optimization approach due to the conflicting nature of model 
objectives. A comparison of solution for each objective within the pareto optimal space is also 
presented to justify the goal programming approach and obtain best solution based on the decision 
makers (DMs) preference.  

2. Model characteristics and assumptions

In this paper a face is an aggregate of multiple blocks together based on their similarity (Tabesh and 
Askari-Nasab, 2013) to reduce the size of the problem and have practical solutions for an open pit 
mining framework. The characteristics of a face are the average values of the blocks constituting the 
face. Shovels are allocated to the faces to mine and send the material to various destinations based on 
their grade and tonnage requirements and capacity constraints in each period.  

The model presented in this paper assumes that a shovel will move to a new face only after the current 
face is completely mined out. The validity of this assumption is dictated mainly by the size of the 
faces. Using large faces poses a problem on the validity of using the average characteristics of the 
constituting blocks and neglecting possible and may be significant variations. A very small face, on 
the other hand, loses its purpose to reduce the problem size and practically minable dimension 
requirements. This assumption is different from some existing models where shovel may move from 
and to a face multiple times and that a face may be mined intermittently, and not continuously, over 
multiple periods. In the model presented, decreasing the size increases the number of faces and allows 
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for more possible shovel movements if desired. Thus possible movements can be controlled by the 
size of the faces in this model.  

3. Optimization model 

3.1. Goals 

Indices, variables and parameters used in the model are described in Table 2, 3 and 4 respectively in 
the Appendix section. This model considers four main operational objectives as goals of the short 
term production scheduling model: (1) maximize production by minimizing the negative deviation in 
production by shovels compared to their capacities, (2) minimize the deviation in ore tonnage 
received at processing plants compared to their capacities, (3) minimize the deviation in grades 
delivered to ore destinations compared to desired grades and (4) minimize the movement times of 
shovels (Upadhyay and Askari-Nasab, 2017).  
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3.2. Objective function 

The model optimizes these objectives as a goal programming function by carefully choosing priority 
weights for each objective as per the requirements of the decision maker (Romero, 2004). The 
objectives are first normalized in the pareto optimal space and then combined using weighted sum 
approach to form the objective function (Grodzevich and Romanko, 2006; Tamiz, et al., 1998) as 
given in Eq. (5).  
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The first set of constraints model the shovel allocations and corresponding movement between faces. 
These constraints are formulated similar to the modeling of a multiple travelling salesman problem or 
vehicle routing problem. Given a set of faces and a starting dummy face where all shovels are initially 
located, it is required to visit each face exactly ones by the shovels and return to the starting dummy 
face. The distance between all the faces and the dummy face is zero along with its tonnage. Constraint 
(7) restricts only one possible movement to a face, i.e. only one shovel can move to a face from only 
one of the available faces. Constraint (8) models the return of all shovels to the dummy face. 
Constraint (9) is the flow balancing equation which states that if a shovel has moved to a face, it must 
move out from that face. The sub-tour elimination constraint is modeled using a continuous time 
variable in equations (10) and (11), which captures the start time of the allocated shovel at each face. 
Constraint (10) dictates that start time of the face 2f  must be greater than or equal to the summation 

of start time and mining time of face 1f , and movement time of the corresponding shovel from face 1f  

to 2f . If there is no movement between the faces, the difference between the start times will always 

be lesser than the maximum time B. When there is a movement to the dummy face, Constraint (11) 
models the same equation (10) considering the start of the dummy face at the maximum time B, 
preserving its actual start time variable as zero. Constraint (12) ensures that finish time of a face is 
always greater than or equal to the start time plus the minimum mining time of the face. Coupled with 
constraint (12), constraint (13) restricts start time of a face to be greater than the finish time of its 
predecessor face plus the movement time of the corresponding shovel between them.  
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As shovel movement variable is not indexed over periods, constraints (14) to (25) are used to relate 
the continuous time variable with discrete periods from which production can start from a face. 
Constraint (14) and (15)  coupled with constraints (16) and (17) restricts the mining start and mining 
end variables to be true for the periods corresponding to mining start and end times respectively. 
Constraints (18) and (19) make sure mining start and end variables remains true after they first 
became true. Constraint (20) states that no production is possible from a face until mining start 
variable becomes true, i.e. until a shovel has reached to the face. Constraint (21) on the other hand 
restricts the mining end variable to become true until the face is completely mined. Constraint (22) 
simply states that mining end variable can be true only if mining start variable is true. Constraint (23) 
ensures zero production from a face until its predecessor, from where shovel has moved, is completely 
mined. Constraint (24) determines the maximum production possible from the face since the shovel 
arrived at the face in that period. It states that if mining start variable became true in a period, i.e. a 
shovel arrived to the face, the maximum production possible from the face in that period will be 
limited by the remaining time. Similarly constraint (25)ensures that mining end time of a face is 
accurately captured based on the amount of material mined in that period. Precedence requirements 
are modeled using constraint (26) which ensures that a shovel cannot start mining a face before its 
precedence faces are finished. 
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Constraint (27) allows no production by a shovel from a face, if there is no movement of the shovel to 
the face. Constraint (28) insures that production from a face by a period is always greater than 
previous period. Constraint (29) is the capacity constraint restricting total production in a period to the 
maximum production capacity of shovels. Negative deviation in production compared to the 
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maximum shovel capacities are modeled by constraint (30). Constraints (31) and (32) restrict ore 
production to be sent to crushers and waste production to the waste dumps. Negative or positive 
deviation in tonnage received at crushers compared to desired rate is modeled using constraint (33). 
Constraint (34) and (35) provides lower and upper limits on the deviation in tonnage received at 
crushers. Grade deviations are captured using constraint (36) as the negative or positive deviation in 
tonnage of received metal content as compared to desired metal content based on the received tonnage 
of ore at the crushers.  

4. Model Implementation 

The model is verified by implementing it over an iron ore open pit mine case study with 5 shovels (2 
ore and 3 waste mining shovels). There exists two crushers (C1 and C2) and a waste dump. The 
crushers are required to be fed at-least at half of its desired capacity with a MWT grade of 65% 
and75%. The model is implemented with IBM ILOG CPLEX solver version12.7.1 through Matlab, on 
a Windows 7 environment with Intel(R) Core(TM) i7-3770 processor of 3.40 GHz and 16 GB RAM.  

Table 1. Comparison of models, sizes, solution time and relative MIP gap 

Problem Faces Periods Variables Binary 
variables 

Constraints Solution time 
- Goal (s) 

Relative MIP 
gap (%) 

P1 24 4 4963 3325 7628 12 0 

P2 24 20 12099 4125 33980 185 0 

P3 43 8 15924 10384 33252 36000 0.31% 

P4 62 3 23251 20223 27189 - - 

Four set of problems (P1-P4) are formulated with increasing time frame and resolution to study the 
impact on model size and solution time which is presented in Table 1. It shows that number of binary 
variables does not grow drastically with increase in the resolution, which is not the case if shovel 
allocation variables are indexed over periods.  

To assist the model runtime, initial faces for shovel assignments are fixed in this implementation. 
Moreover, based on the prior knowledge that ore shovels should work only on ore faces and waste 
shovels on the waste faces, and no movement is possible from a face to any of its precedence faces, 
corresponding variables are fixed prior to solving the model. Also, based strictly on the precedence 
requirements and shovel capacities, a minimum possible start time of all the faces is determined to fix 
the mining start and mining end binary variables of the faces for the relevant periods to be zero.   

Table 1 shows the run time and MIP gap of the goal function obtained by running the model for each 
problem with a stopping criteria of 36000 s or 10 h. P1 and P2 could be easily solved to optimality 
within a reasonable time, however a parito optimal space could not be determined for P4 within the 
stopping criteria. For problem P3, all individual objectives could be solved to optimality within 45 
minutes combined, however goal function could not converge to optimality within the stopping 
criteria after achieving a 0.36% relative MIP gap within half an hour. 

Solutions for problems P1 and P2 are compared in Fig. 2 to 4 for the major objectives considered in 
the optimization. Fig. 2 and 3 show ore and waste productions sent to two crushers (C1 and C2) and 
the waste dump over four periods in P1 and 20 periods in P2 respectively. As P2 correspond to the 
same time frame as P1 with a smaller resolution, one period in P1 is equivalent to 5 periods in P2. The 
capacity utilization values are presented with respect to desired feed. It can be observed that the two 
solutions are not the same entirely. The reason for the difference is the grade blend objective function, 
which evaluates grade as an average over a larger time resolution in P1, but a smaller and practical 
resolution in P2.  
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Fig. 2. Production and capacity utilizations for problem P1 

 
Fig. 3. Production and capacity utilizations for problem P2 

Fig. 2 and 3 show that crusher 1 operates at its desired capacity in both the solutions for P1 and P2. 
However capacity utilization of crusher 2 drops to 63% of desired capacity in the last period for P1. In 
comparison, crusher utilization for P2 drops to the minimum limit at three occasions. The reason for 
this behavior can be attributed to the grade blend objective which sends less material to crusher 2 
whenever desired grade blend cannot be achieved as observed from Fig. 4. A comparison of grade 
blend delivered over both resolutions (P1 and P2) is shown in Fig. 4, which categorically suggests the 
practicality of solution for P2 in comparison to P1, by showing the variations in grade blend 
deliverable at a higher resolution.  
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Fig. 4. MWT Grade delivered to crushers for problems P1(4 periods) and P2 (20 periods) 

Similarly, solutions for problem P3 are presented in Fig. 5 and 6. The first four periods in this 
problem correspond to P1, however the results are observed to be different. The obvious reason is the 
inclusion of more available faces in the problem, which provides more options to achieve the 
objectives spread over more periods. The production and capacity utilizations of the crushers show 
promising results, however the grade blend objective for crusher 2 performed poorly.   

 
Fig. 5. Production and capacity utilizations for problem P3 

 
Fig. 6. MWT grade delivered to crushers for problem P3 

Although goal function provides the desired solution based on decision makers (DMs) preference to 
each objective, it is imperative to understand and analyze the best solution for individual objectives as 
well. Such an analysis supports the DMs judgment of preference weights used in the goal function. A 
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similar analysis is presented for problem P3 through Fig. 7, 8, 9 and 10. The solutions are recorded 
during the determination of parito optimal space which involved optimizing each objective separately.  

Best possible production scenario is presented in Fig. 7, which falls short by 3.5% of the maximum 
production capacity of the mine. The lesser material handling capacity of the crushers in comparison 
to production capacity of the ore shovels could be one major reason for the short fall, coupled with 
lost production in movement and idling due to precedence requirements. Moreover, goal function 
schedule's 0.8% less production in comparison to best production case scenario to compensate for 
other objectives.  It can be observed from Fig. 8 that by having a 0.8% production loss, a much better 
grade blend is achieved by the goal function (Fig. 6). Also, crushers are overfed in best production 
case scenario and made to operate at their peak capacities, more than desired, in comparison to 
schedule provided by goal function. Similarly, the best grade blend scenario can provide an 
improvement in the grade blend delivered to crushers (see Fig. 9), however, it cannot feed the plants 
at their desired capacity (see Fig. 10).  

 
Fig. 7. Production and capacity utilizations for problem P3 - best production case 

 
Fig. 8. MWT grade delivered to crushers for problem P3 - best production case 

 
Fig. 9. MWT grade delivered to crushers for problem P3 - best grade blend case 
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Fig. 10. Production and capacity utilizations for P3 - best grade blend case 

To summarize and justify the goal function, production values obtained by the optimization of each 
objective is compared against the best production scenario in Fig. 11. A similar comparison for 
crusher feed objective is presented in Fig. 12. Negative values in Fig. 12 correspond to overfeeding 
the crushers above desired feed. It can be seen that production deviation can be as large as 5.4% when 
only grade blend is optimized, whereas goal function could reduce it to 0.8% (Fig. 11) while 
maintaining a satisfactory grade blend as shown in Fig. 6. Crusher feed is also compromised by only 
0.7% in the optimal goal solution in comparison to best crusher scenario as shown in Fig. 12.  

 
Fig. 11. Production deviation from best production scenario for the optimal solution of each objective function 

 
Fig. 12. Crusher feed deviation from best crusher feed scenario for the optimal solution of each objective 

function 
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Due to the complexity of the mine operations and multiple objectives to be taken care of at the short 
term scheduling stage, it is imperative to optimize all the objectives simultaneously to have a 
reasonable solution. Optimizing the goal function in the pareto optimal space is also essential to 
obtain non-dominated solution for each objective based on DMs preferential weights as shown in Fig. 
11 and 12.  

5. Conclusions and recommendations 

This paper presented a model for short term production scheduling of open pit mines. Through a 
comparison in modeling approach and the selection of variables, the presented model can be observed 
to be superior in the context of modeling the problem correctly. The use of continuous time variables 
for shovel allocations and capturing productions and grades over discrete periods models the system 
precisely. The modeling approach also shows its capability to control the size of the problem at 
increasing resolutions which is necessary for practical solutions especially for grade blend 
deliverability. An implementation of the model on a verification case study shows its strength in 
solving the short term production scheduling model at the size of problem P3 in a reasonable time, 
and capturing the practical deliverance of the objectives of the model. 

A comparison of all objective function values in the pareto optimal space is also presented to compare 
the final solution against the best possible solution for each objective considered. The comparison 
presented can be used to justify the DMs preference weight of each objective and can be subsequently 
adjusted as desired. However, in the case presented, the solution obtained fairly justifies the weights 
used.  

Run time for larger problems still remains a major hurdle for this model. Selection of blast areas, 
drilling and blasting processes will also be included in the model as a future work for more practical 
production schedules.  

6. Reference  

[1]  Bjørndal, T., Herrero, I., Newman, A., Romero, C., and Weintraub, A. (2012) 'Operations 
research in the natural resource industry', International Transactions in Operational 
Research, Vol. 19 No. 1-2, pp.39-62. 

[2]  Blom, Michelle, Pearce, Adrian R., and Stuckey, Peter J. (2018) 'Short-term planning for 
open pit mines: a review', International Journal of Mining, Reclamation and Environment, 
pp.1-22. 

[3]  Dimitrakopoulos, R., and Jewbali, A. (2013) 'Joint stochastic optimisation of short and long 
term mine production planning: method and application in a large operating gold mine', 
Mining Technology, Vol. 122 No. 2, pp.110-123. 

[4]  Eivazy, H., and Askari-Nasab, H. (2012) 'A mixed integer linear programming model for 
short-term open pit mine production scheduling', Mining Technology, Vol. 121 No. 2, pp.97-
108. 

[5]  Fioroni, M. M., Franzese, L. A. G., Bianchi, T. J., Ezawa, L., Pinto, L. R., and de Miranda, G. 
(2008), 'Concurrent simulation and optimization models for mining planning' in WSC 2008, 
pp.759-767. 

[6]  Gholamnejad, J. (2008) 'A zero-one integer programming model for open pit mining 
sequences', Journal of the Southern African Institute of Mining and Metallurgy, Vol. 108, 
pp.759-762. 

[7]  Grodzevich, Oleg, and Romanko, Oleksandr. (2006), 'Normalization and Other Topics in 
Multi-Objective Optimization' in Fields-MITACS Industrial Problems Workshop, Toronto, 
pp.89-101. 

28



Upadhyay S. et. al.  MOL Report Nine © 2018 102-13 
   
 
 

 

[8]  Kozan, E., and Liu, S. Q. (2016) 'A new open-pit multi-stage mine production timetabling 
model for drilling, blasting and excavating operations', Mining Technology, Vol. 125 No. 1, 
pp.47-53. 

[9]  Kozan, Erhan, and Liu, Shi Qiang. (2014), 'An open pit multistage mine production 
scheduling model for drilling, blasting and excavating operations' in Orebody Modelling and 
Strategic Mine Planning Symposium, Perth, Western Australia, pp.329-334. 

[10] L’Heureux, G., Gamache, M., and Soumis, F. (2013) 'Mixed integer programming model for 
short term planning in open-pit mines', Mining Technology, Vol. 122 No. 2, pp.101-109. 

[11] Liu, Shi Qiang, Kozan, Erhan, and Wolff, Rodney. (2013), 'A short-term production 
scheduling methodology for open-pit mines' in International Symposium on the 36th 
Applications of Computers and Operations Research in the Mineral Industry (36th APCOM), 
Brazil, pp.465-469. 

[12] Matamoros, Martha E. Villalba, and Dimitrakopoulos, Roussos. (2016) 'Stochastic short-term 
mine production schedule accounting for fleet allocation, operational considerations and 
blending restrictions', European Journal of Operational Research, Vol. 255 No. 3, pp.911-
921. 

[13] Mousavi, Amin, Kozan, Erhan, and Liu, Shi Qiang. (2016a) 'Comparative analysis of three 
metaheuristics for short-term open pit block sequencing', Journal of Heuristics, Vol. 22 No. 3, 
pp.301-329. 

[14] Mousavi, Amin, Kozan, Erhan, and Liu, Shi Qiang. (2016b) 'Open-pit block sequencing 
optimization: A mathematical model and solution technique', Engineering Optimization, Vol. 
48 No. 11, pp.1932-1950. 

[15] Romero, Carlos. (2004) 'A general structure of achievement function for a goal programming 
model', European Journal of Operational Research, Vol. 153 No. 3, pp.675-686. 

[16] Souza, M. J. F., Coelho, I. M., Ribas, S., Santos, H. G., and Merschmann, L. H. C. (2010) 'A 
hybrid heuristic algorithm for the open-pit-mining operational planning problem', European 
Journal of Operational Research, Vol. 207 No. 2, pp.1041-1051. 

[17] Tabesh, M., and Askari-Nasab, H. (2013) 'Automatic creation of mining polygons using 
hierarchical clustering techniques', Journal of Mining Science, Vol. 49 No. 3, pp.426-440. 

[18] Tamiz, Mehrdad, Jones, Dylan, and Romero, Carlos. (1998) 'Goal programming for decision 
making: An overview of the current state-of-the-art', European Journal of Operational 
Research, Vol. 111 No. 3, pp.569-581. 

[19] Topal, Erkan, and Ramazan, Salih. (2010) 'A new MIP model for mine equipment scheduling 
by minimizing maintenance cost', European Journal of Operational Research, Vol. 207 No. 
2, pp.1065-1071. 

[20] Upadhyay, Shiv Prakash, and Askari-Nasab, Hooman. (2017) 'Dynamic shovel allocation 
approach to short-term production planning in open-pit mines', International Journal of 
Mining, Reclamation and Environment, pp.1-20. 

[21] Upadhyay, Shiv Prakash, and Askari-Nasab, Hooman. (2018) 'Simulation and optimization 
approach for uncertainty-based short-term planning in open pit mines', International Journal 
of Mining Science and Technology, Vol. 28 No. 2, pp.153-166. 

7. Appendix 

Table 2. Indices for variables, parameters and sets. 

Indices Description 

s Index for set of shovels (s = 1, … S  ) 

f Index for set of faces (f = 1, … F ) 
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k Index for set of material types (k = 1, … K ) 

d   Index for set of destinations (crushers, waste dumps) 

cd   Index for set of crushers/processing plants (
cd  = 1, … C ) 

wd  Index for waste dumps (
wd  = 1, … W  ) 

p Index for periods (p=1,… P ) 

 

Table 3. Variables considered in the model 

Variables Description 

1 2, ,s f fa   Movement variable if shovel s moved from face 1f  to face 2f (binary) 

,
s
f pm  Mining start variable if any shovel reached to face f  by period p (binary) 

,
e
f pm  Mining end variable if any shovel finished a face f by period p (binary) 

s
ft   Continuous time variable at which production start from face f 

e
ft   Continuous time variable at which production end at face f 

, , ,s f d px   Fraction of tonnage at face f sent by shovel s, to destination d by period p 

,s px   Fraction of maximum capacity of shovel to model negative deviation in production by 
shovel s compared to its capacity in period p 

, ,
,c cd p d p

     Negative and positive deviations in production received at crusher destinations 
cd  in 

period p, as a fraction of processing plant capacities 

, , , ,
,c ck d p k d p

g g 

 

Negative and positive deviations in tonnage equivalent of grade of material type k 

compared to desired grade at crusher destinations 
cd  in period p 

  

Table 4. Parameters of systems considered.  

Parameters Description 

T   Time horizon of a period (hr) 

B  Time horizon in which all faces can be mined out completely (hr)  

sX   Shovel hourly production capacity (tonne/hr) 

sX   Maximum possible shovel production in decision time frame ‘T’ (tonne) 

1 2, ,s f f   Movement time of shovel s from face 1f  to face 2f  (hr) 

,s f  Mining duration of face f by shovel s at maximum production capacity (hr) 

f   Minimum mining duration possible for face f (hr) 

sFi  Face where shovel is initially located (start of the optimization time frame) 

0f   Dummy face, which has zero tonnage and distance to all the faces 

fF   Set of precedence faces to be mined before starting face f  

cd
z  Maximum capacity of the crushers/processing plants (tonne/hr) 
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cd

 Maximum positive deviation in tonnage accepted at crushers/processing plants (tonne/hr) 

cd

 Maximum negative deviation in tonnage accepted at crushers/processing plants (tonne/hr) 

, ck d
G Desired grade of material types at the crushers 

,f kG Grade of material type k at face f 

fO Tonnage available at face f at the beginning of optimization (tonne) 

fQ 1 if material at face is ore, 0 if it is waste (binary parameter) 

ore
sM 0 if shovel s is locked to an ore face, 1 for waste face, 2 otherwise. 

iW Normalized weights of individual goals (i = 1, 2, 3) based on priority 
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