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ABSTRACT 

A major trend in mine production planning research is incorporating geological uncertainty in the 
processes of planning. Many mathematical models and heuristic approaches are proposed to deal 
with the uncertainty. However, incorporating geological uncertainty in planning, usually through 
Geostatistical realizations, significantly increases the problem sizes and forces researchers to use 
heuristics or aggregation techniques to be able to obtain solutions in reasonable times. In this 
paper, we present four variations of agglomerative hierarchical clustering algorithm, one based on 
deterministic estimates of properties and three based on possible worlds approach which use 
Geostatistical realizations to form aggregates with regard to the geological properties and the 
existing uncertainties. We show, through case studies, that uncertainty based algorithms can result 
in aggregates that are less susceptible to uncertainties, and at the same time, the proposed 
algorithm can produce aggregates that are within a controlled size and have minable shapes. 

1. Introduction

Open pit mine production scheduling problem (OPMPSP) is a complicated procedure which has 
attracted many researchers in the past decades. Many of the research is centred around formulating 
the problem using mixed integer linear programming and solving it through exact and heuristics 
methods. Bienstock and Zuckerberg (2010) proposed a technique (BZ) to solve the LP-relaxation 
of large instances of the OPMPSP in a few minutes. Similarly, Chicoisne, Espinoza, Goycoolea, 
Moreno, and Rubio (2012) proposed a topological sort algorithm to solve the LP-relaxation in a 
reasonable time. This encouraged many other researchers to use the algorithms to obtain the LP-
relaxation solution and use heuristics to obtain integer solutions. Samavati, Essam, Nehring, and 
Sarker (2017), Samavati, Essam, Nehring, and Sarker (2017), Liu and Kozan (2016), Lamghari, 
Dimitrakopoulos, and Ferland (2015) can be named among those who took advantage of these 
advancements and developed heuristic solution techniques. However, most of the work in the 
literature is limited to the production planning problem in the absence of grade blending and 
stockpiling constraints as they change the structure of the model. Kumral (2011) propose a two 
stage modelling approach to incorporate geological uncertainty in production. Their approach aims 
at maximizing the minimum NPV using multiple geological and price uncertainty scenarios. 
However, the authors implement the approach on a very small block model with only 3,115 blocks 
in the final pit and do not provide processing times. Solving such model on a real-size block 
containing hundreds of thousands of blocks will not be possible.  

On the other hand, when it comes to incorporating uncertainty in production planning, most of the 
researchers have to use heuristics to obtain good solutions. (e.g. Lamghari and Dimitrakopoulos 
(2016), Montiel and Dimitrakopoulos (2015)). Another approach that can help solve the production 
planning problem with presence of grade blending, stockpiling and uncertainty is to use 
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aggregation techniques to reduce the size of the problem and increase the practicality of the 
generated solutions. 

Boland, Dumitrescu, Froyland, and Gleixner (2009) propose a solution procedure based on 
aggregation and disaggregation. In their work, excavation decisions are made based on some given 
aggregates through an MIP. Afterwards, disaggregation techniques are proposed to enable the 
model make processing decisions in block level by introducing the concept of bins. Jélvez, 
Morales, Nancel-Penard, Peypouquet, and Reyes (2016) propose an aggregation-disaggregation 
technique to solve the OPMPSP. Their technique starts by aggregating (reblocking) the model into 
larger units. Then, they use a sliding time window heuristic to solve the OPMPSP for the 
aggregated block model and use the solution to categorize the aggregates into two groups. The first 
group consists of the blocks which all their direct predecessor and successor blocks are extracted in 
the same period. The rest are called border blocks. Afterwards, they fix the variables corresponding 
to non-border blocks, disaggregate the border blocks and solve the problem in disaggregated level. 
The authors implement their technique on MineLib (Espinoza et al., 2013) datasets and show that 
their technique can solve all the instances to near-optimality in a reasonable time period. 

Goodfellow and Dimitrakopoulos (2016) propose a stochastic formulation for OPMPSP with 
uncertainty. Their model aims at optimizing the production schedule and downstream processes 
simultaneously. The authors incorporate uncertainty by minimizing deviations from target while 
maximizing the NPV. First, they use k-means clustering to group blocks into clusters with similar 
grades. Next, they formulate a non-linear mathematical formulation to maximize the NPV of the 
operation with respect to various constraints on capacities, grade control and stockpiling. Since the 
model is non-linear they use three different meta-heuristic algorithms to solve it. They implement 
their technique on a gold-copper deposit with one stockpile and six processing streams. They first 
solve the deterministic case with the three algorithms and then apply the same strategy to the 
stochastic model. They conclude that incorporating uncertainty in decision making results in higher 
NPV and less risk. 

Although it is possible to cluster blocks using the expected attributes and use the clusters in 
production planning in presence of uncertainty, as done by Goodfellow and Dimitrakopoulos 
(2016), it is a major step forward to consider the uncertainty in attributes at the clustering stage. 
The literature in computing science shows good potential in treating object (block) attributes as 
uncertain variables and perform clustering with respect to this uncertainty. It has been shown that 
the outcome of such clustering technique is more reliable compared to the ones based solely on 
expected values or averages (Aggarwal, 2007). There are various methods for clustering uncertain 
objects proposed in the computing science literature. However, applying such techniques to blocks 
in a mining operation requires significant modifications and innovations. A clustering algorithm for 
mining blocks requires control over size, shape and number of created clusters, unlike general 
purpose clustering algorithms where the ultimate goal is to find the underlying similarities and 
dissimilarities between the data points. Moreover, techniques such as information-theoretic 
approach (Gullo et al., 2008), mixture model clustering (Hamdan and Govaert, 2005), FOPTICS 
(Kriegel and Pfeifle, 2005), FDBSCAN (Donghua and Lilei, 2011) and UK-means (Aggarwal et 
al., 2016) can be applied to blocks ignoring the strong dependency between attributes of one block 
and the adjacent one. However, the geographical dependency of  block attribute distribution 
prohibits us from using these algorithms as they share the independency assumption. Therefore, 
another approach called possible worlds (Volk et al., 2009) has been chosen in this paper. 
Combining this approach with the deterministic approach in Tabesh, Mieth, and Askari–Nasab 
(2014) resulted in a clustering algorithm that, using sequential Gaussian simulation realizations, 
provides aggregates that incorporate uncertainty of block attributes and can be used in future 
research on open pit and underground mining simulation and production planning in presence of 
uncertainty. 
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2. Theoretical framework

Clustering is the process of grouping similar objects together using measures of similarity and 
dissimilarity. The similarity of mining blocks is usually defined using the grade and rock type 
attributes of the blocks. However, these attributes are estimated based on the drillhole data 
collected and include uncertainty.  

The possible worlds approach as proposed by Volk, et al. (2009) starts by using a value generator 
function (VG-function) to generate the possible worlds. In a mining block model, due to the 
geographical dependencies between the rock type and grades of the of the blocks, the best 
generator function to use is the Sequential Gaussian Simulation (SGS) (Rossi and Deutsch, 2014). 
The next step is to apply any clustering algorithm on every possible world and obtain a clustering 
model for every world. The clustering processes are independent, and therefore, they can run on 
parallel processes. Finally, an aggregation technique is required to derive the final clustering model 
from the generated clustering models for every possible world. 

In this paper, we propose four variations of the agglomerative hierarchical clustering algorithm 
with shape and size control (AHCA) from Tabesh, et al. (2014). The first algorithm uses the 
expected values of parameters and runs the AHCA once to obtain the clustering model. The second 
algorithm runs the AHCA on every realization obtained from SGS and aggregates blocks into 
clusters if they happen to be grouped together in more than 50% of the single realization cluster 
models. The third algorithm runs the AHCA on every realization and uses the frequency of two 
blocks being grouped together as the similarity between the blocks and runs AHCA again to form 
the final clusters. The forth variation uses k-means to cluster every realization and aggregates the 
results using AHCA. 

First three variations run the AHCA using the similarity index calculated based on equation (1). 
The equation is a simplified version of the original similarity index defined in M. Tabesh and 
Askari-Nasab (2013) and is divided into two parts for computation economics. The first part is the 
distance measure which is independent of the realizations and does not vary by sampled values of 
grade and rock type. The second part, however, is calculated for every realization in the realization 
based variations of the algorithm. ijD  represents the normalized Euclidean distance between blocks 

i  and j  (equation (1)) and k
ijG  represents the normalized difference between the grade values of 

blocks i  and j  in realization k . Although, a block model may have multiple elements, the 
formulation here, without losing generality, is presented for one major element grade only. 
Moreover, we can assign weights to these parameters and include more parameters in the similarity 
index definition. The effects of weights and other parameters are studied in Tabesh, et al. (2014) 
and Tabesh and Askari-Nasab (2013) and they are removed from this paper for brevity. k

ijR  is 
calculated based on equation (5), which considers a penalty value of [0,1]r∈  if the two blocks 
have different rock types and 1, if the blocks are of the same rock type in realization k . Finally, we 
need to determine the adjacency between the block using an adjacency threshold as in equation (6) 
in order to avoid forming fragmented clusters. 
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2.1. Algorithm 1 - Expected value algorithm (EVA)  

This algorithm is very similar to the AHCA proposed in Tabesh, et al. (2014). Since the only 
uncertain parameters are rock type and grade we will determine the expected values of these 
attributes first and use them in forming the clustering model. The grade attributes are numerical, 
and therefore, we can use arithmetic average of all the realizations to determine the expected 
values. However, rock types are categorical attributes and arithmetic averages cannot be applied. 
Hence, we set the most frequent rock type from all the realizations as the expected rock type of 
each block. Since the realizations are preprocessed and we have assigned single values to grade and 
rock type, we only need to calculate the similarity index in equation (1) once and use it to run the 
AHCA. The resulted clustering model will be the final clustering scheme. Note that this algorithm 
is not based on possible worlds and is presented as a basis for comparison. The pseudo code of the 
algorithm is presented in Table 1. 

Table 1.Expected Value Clustering Pseudo Code 

FOR EACH i in Blocks 
FOR EACH j in Blocks 

1 ij
ij

ij ij

R
S

D G
= ×
 

 

( )ij ij AdjacencyTresh dA D ol<=  

NEXT 
NEXT 
FUNCTION Clusters = Clustering(S,A) 

NumClusters = NumBlocks 
WHILE NumClusters > DesiredNumofClusters 

 ( , ) ( )i j Max S=  
 IF length(Clusters(i)) + length(Clusters(j)) <= MaxClusterSize THEN 

: : :( , )i i jS Min S S=  

: 0jS =  

: : :( , )i i jA Max A A=  

: 0jA =  
Clusters(i) = Clusters(i) + Clusters(j) 
NumClusters = NumClusters – 1 

ELSE 
0ijA =  

 ENDIF 
ENDWHILE 
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Clusters = ShapeRefinementProcedure(Clusters) 
END FUNCTION 

2.2. Algorithm 2 - Simple realization aggregation (SRA) 

As explained earlier, possible world clustering works by sampling possible worlds from the 
uncertain data using a generator function, clustering every sampled set and aggregating the 
generated clustering models. Both following algorithms start by running the AHCA on every 
realization and obtain one clustering model per realization. The difference between the two 
algorithms is in the aggregation step. The aggregation step in the SRA algorithm is summarized in 
equations (7) and (8). First, we calculate the common cluster matrix ( k

ijC ) for every realization 
cluster model. Next, the common cluster values are summed up over all the realizations and we 
calculate the frequency of two blocks being in the same cluster ( ijF ). Finally, every pair of blocks 

with 0.5ijF ≥  are grouped together in the final clustering model. The pseudo code of the algorithm 
is presented in Table 2. 
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Table 2.Simple Realization Aggregation Pseudo Code 

FOR EACH k in Realizations 
FOR EACH i in Blocks 

FOR EACH j in Blocks 
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NEXT 
NEXT 

kClusters = Clustering ( , )kS A  
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FOR EACH i in Blocks 

FOR EACH j in Blocks 
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NEXT 
NEXT 
FOR EACH i in Blocks 

( )Clusters i = : 0.5iF ≥  

NEXT 

2.3. Algorithm 3 - Hierarchical realization aggregation (HRA) 

In this algorithm, we run the AHCA on every realization and calculate k
ijC  and ijF as explained 

earlier in (7) and (8). Afterwards, the ijF  values are used as similarity indices in the original 

AHCA instead of ijS  and the algorithm is run using the same settings as the original AHCA used 
on every realization. The pseudo code of the algorithm is presented in Table 3. 

Table 3.Hierachical Realization Aggregation Pseudo Code 

FOR EACH k in Realizations 
FOR EACH i in Blocks 

FOR EACH j in Blocks 
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NEXT 
NEXT 
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FOR EACH i in Blocks 
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NEXT 
NEXT 
Clusters = Clustering ( , )F A  
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2.4. Algorithm 4 - K-Means with Hierarchical realization aggregation (KHRA) 

K-means is a famous clustering algorithm which is known to be faster but less accurate than 
hierarchical clustering (Feng et al., 2010). Moreover, k-means, in its original form, is not designed 
to deal with categorical variables such as rock type (Mastrogiannis et al., 2009) and it does not 
provide control over shape and size of the generated clusters. Since block models have a mixture of 
numerical and categorical attributes we have modified the k-means algorithm to be able to apply it 
on block models.  

In order to apply k-means clustering we first need to create the feature matrix. We use the same set 
of attributes, weights and penalties as AHCA to be able to compare the results. The first two 
columns of the feature matrix are X and Y coordinates of the blocks on each bench. The 
coordinates are powered to the distance weight and normalized by dividing all the values by the 
maximum values of each column. Similarly, the major element grade values are powered to the 
grade weight, normalized and added as the third column. Next, in order to add rock types to the 
feature matrix, we add as many columns as the number of categories i.e. number of rock types. If a 
block is of rock type i, the ith column will get a value of 1-r (one minus rock type penalty). After 
preparing the feature matrix for every realization, k-means clustering is performed and k

ijC  and ijF  

are calculated as explained earlier in (7) and (8). Finally, the ijF  values are used as similarity 
indices in AHCA to aggregate the clustering results and form the final clustering scheme. The 
pseudo code of the algorithm is presented in Table 4. 

Table 4. K-Means with Hierachical Realization Aggregation Pseudo Code 

FOR EACH k in Realizations 
kS  = BuildFeatureMatrix() 

kClusters = KMeans ( )kS  
FOR EACH i in Blocks 

FOR EACH j in Blocks 
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NEXT 
NEXT 

NEXT 
FOR EACH i in Blocks 

FOR EACH j in Blocks 
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NEXT 
NEXT 
Clusters = Clustering ( , )F A  

2.5. Result evaluation 

Since the goal of block clustering is to create mining polygons which are homogenous in grade, 
rock type and destination, Tabesh and Askari-Nasab (2013) define three performance measures for 
a block clustering algorithm: rock unity (RU), destination dilution factor (DDF) and grade 
coefficient of variation (CV). Moreover, the generated clusters will be used as planning units, and 
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thus, need to be of controlled size and shape. In addition, since all the created Geostatistical 
realizations reproduce the spatial continuity of the variables and have equal probability of 
occurrence (Rossi and Deutsch, 2014), a good clustering scheme is the one that produces better 
results over more realizations. Therefore, we evaluate every clustering result by looking at the 
average and standard deviations of the three performance measures, introduced by Tabesh and 
Askari-Nasab (2013), over all the realizations. In other words, after obtaining a clustering scheme 
from every algorithm we apply the scheme to every realization and calculate the performance 
measures. Moreover, we look at the cluster size variations and cluster shapes resulted from every 
algorithm. 

3. Case studies 

In order to evaluate the proposed algorithms we implement them on two case studies provided by 
Malaki, Khodayari, Pourrahimian, and Liu (2017) and Cabral Pinto (2016). The first dataset is a 
copper deposit with three different rock types. The dataset block dimensions are 10 10 10× ×  
meters and there are a total of 189,000 blocks in the model. The dataset contains 20 realizations of 
rock types and element grade estimates created using SGS (Malaki et al., 2017). The second dataset 
is a multi element dataset where the element names and coordinates are distorted for 
confidentiality. The block model dimensions are  300 300 20× ×  feet and there are a total of 
570,770 blocks in 176 benches. The element grades and rock types are estimated from the drill hole 
data and 100 realizations of geological uncertainty are created through SGS. The case studies are 
tested on machine with Intel® Xeon® CPU with eight cores with 2.8 GHz speed and 24 GB of 
ram. 

3.1. Case study 1 

The first case study is a Copper deposit borrowed from Malaki, et al. (2017). Although the dataset 
is a block-caving block model, the results can be generalized to other open-pit and underground 
methods that follow the same procedure of creating block model realizations and grouping the 
blocks prior to planning. A 3D presentation of the ore body is shown in Fig. 1.  

Every bench of the block model contains 7,200 blocks which are clustered using the three 
algorithms. The first algorithm uses the expected values for rock type and grade while the other 
algorithms use every realization in the block model. Sample plan views of expected rock type (Fig. 
2), expected copper grade (Fig. 3), realization 1 rock type (Fig. 4) and realization 1 copper grade 
(Fig. 5) are presented here to provide a sense of attribute variations within the block model and 
between the realizations. 

In order to have simple and comparable results, the four algorithms are implemented using the 
same set of weights and control parameters as summarized in Table 5. The first group of runs are 
set to aggregate 30 blocks into one cluster and the second group are set to aggregate 60 blocks into 
one cluster with maximums set to 35 and 70 respectively. Minimum cluster size is not applied and 
the number of shape refinement iterations is set to 3 for all the runs. Afterwards, the three 
algorithms are run and the resulted clustering scheme is applied to every realization of the block 
model. Since all the realizations are equiprobable, we look at the average values of grade CV and 
rock unity among all the realizations. Destination dilution factor is omitted as blocks do not have a 
predetermined destination assigned to them. 
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Fig. 1 3D presentation of the ore body 

 
Fig. 2 Expected rock type at level 40 

 
Fig. 3 Expected grade at level 40 

 
Fig. 4 Realization 1 rock type at level 40 

 
Fig. 5 Realization 1 grade at level 40 
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Table 5.Case study 1 clustering runs settings 

ID Algorithm Avg. Block per 
cluster 

Max. Block per 
cluster 

Shape Refin. 
Iter. 

1-EVA-30-35 Expected 30 35 3 
1-SRA-30-35 SRA 30 35 3 
1-HRA-30-35 HRA 30 35 3 
1-KHRA-30-35 KHRA 30 35 3 
1-EVA-60-70 Expected 60 70 3 
1-SRA-60-70 SRA 60 70 3 
1-HRA-60-70 HRA 60 70 3 
1-KHRA-60-70 KHRA 60 70 3 

The clustering performance measures are presented in Table 6. The first column presents the 
average copper grade CV over the realizations. A lower grade CV means a better clustering scheme 
since it illustrates the variation of block grades within a cluster. In contrast, rock unity measures the 
homogeneity of block rock types within a cluster and a larger value means a better clustering 
scheme. We are testing the algorithms on two different size settings. The question of the proper 
size of clusters is thoroughly discussed in Tabesh and Askari-Nasab (2013) and the goal of this 
case study is to compare the proposed algorithms. According to Table 6, we can conclude that the 
SRA is performing best while EVA is performing worst. However, a major requirement in 
clustering blocks in a mining operation is to have clusters of the same size to able to use them as 
planning units. In this sense, SRA results are significantly poorer than the other algorithms when 
comparing the size variations. Moreover, comparing the shapes of the generated clusters show that 
clusters created using SRA are not minable and cannot be used as units of production planning. The 
sample plan views in Fig. 6 and Fig. 7 show the difference between the resulted clusters from SRA 
and HRA respectively. EVA and KHRA results have cluster shapes similar to HRA and are 
presented in Fig. 8 and Fig. 9 respectively. In addition to unacceptable size and shape properties of 
SRA results, looking at the realization by realization statistics shows that EVA, HRA and KHRA 
results are more consistent over different realizations while the SRA is varying significantly. Fig. 
10 shows the variations in average cluster grade CVs over different realizations and Fig. 11 shows 
the variations in average cluster rock unities. The two Fig.s show that EVA, HRA and KHRA 
follow the same patterns with KHRA performing better over all the realizations. In contrast, SRA 
performance, especially regarding grade variations, is highly sensitive to variations in realizations. 
In addition to better results, KHRA is significantly faster which can be an important algorithm 
selection criterion even on a small scale case study as presented here.  

Table 6.Case study 1 clustering Results 

ID Average Grade CV Average Rock Unity Cluster Size CV Time (min) 
1-EVA-30-35 41.3% 95.7% 20.8% 14 
1-SRA-30-35 24.1% 98.6% 357.7% 171 
1-HRA-30-35 34.9% 96.4% 32.3% 181 
1-KHRA-30-35 28.6% 97.0% 35.6% 13 
1-EVA-60-70 75.3% 95.1% 21.4% 13 
1-SRA-60-70 50.7% 97.9% 245.4% 167 
1-HRA-60-70 63.3% 95.9% 35.3% 176 
1-KHRA-60-70 54.2% 96.3% 38.5% 13 
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Fig. 6 1-SRA-60-70 results at level 40 

 
Fig. 7 1-HRA-60-70 results at level 40 

 
Fig. 8 1-EVA-60-70 results at level 40 

 
Fig. 9 1-KHRA-60-70 results at level 40 
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Fig. 10 Average grade CV over realizations 

 
Fig. 11 Average rock unity over realizations 

3.2. Case study 2 

The second case study is borrowed from Cabral Pinto (2016) with three elements and nine rock 
types. The element and rock type names are masked for confidentiality as well as the block 
coordinates and dimensions. However, the large number of blocks and realizations in the block 
model make it a good measure for evaluating the performance of the proposed algorithms. We 
applied the same clustering settings as the first case study except we did not perform the SRA 
settings as it was shown that the results would not be acceptable and they would take a long time to 
process. The clustering settings for the second case study are summarized in Table 7. 

Table 7.Case study 2 clustering runs settings 

ID Algorithm Avg. Block per 
cluster 

Max. Block per 
cluster 

Shape Refin. 
Iter. 

2-EVA-30-35 Expected 30 35 3 
2-HRA-30-35 HRA 30 35 3 
2-KHRA-30-35 KHRA 30 35 3 
2-EVA-60-70 Expected 60 70 3 
2-HRA-60-70 HRA 60 70 3 
2-KHRA-60-70 KHRA 60 70 3 

As can be seen in Fig. 12 this deposit is more variable in rock types. Fig. 13 and Fig. 14 are two 
sample plan views of expected grade and rock type distribution in the deposit. The clustering 
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results of HRA and KHRA for the same plan view are presented in Fig. 15 and Fig. 16 for 
comparison. The summary of running the clustering algorithms on the second case study is 
presented in Table 8. Similar to the previous case study, KHRA is performing better regarding 
grade variation and it performs slightly worse regarding rock unity compared to HRA. However, 
considering the processing time required for running HRA, KHRA is the more reasonable choice of 
algorithm. Finally, it can be seen that both uncertainty based algorithms outperform the 
deterministic algorithm over multiple realizations. 

 
Fig. 12 3D presentation of the ore body 

 
Fig. 13 Expected rock type at level 40 

 
Fig. 14 Expected grade at level 40 

 
Fig. 15 2-HRA-60-70 results at level 40 

 
Fig. 16 2-KHRA-60-70 results at level 40 

 
 

 

13



Tabesh M. et. al. MOL Report Nine © 2018 101-14 
 
 

 

Table 8.Case study 2 clustering Results 

ID Average Grade CV Average Rock Unity Cluster Size CV Time (min) 
2-EVA-30-35 34.8% 93.5% 24.0% 54 
2-HRA-30-35 35.5% 93.7% 23.6% 3,452 
2-KHRA-30-35 27.8% 95.8% 30.1% 70 
2-EVA-60-70 38.7% 92.8% 23.8% 53 
2-HRA-60-70 39.5% 93.1% 23.7% 3,363 
2-KHRA-60-70 29.6% 95.5% 33.4% 69 

4. Conclusion 

In this paper we presented a hierarchical agglomerative clustering technique based on possible 
worlds uncertainty approach to aggregate mining blocks into larger units in a mining operation. 
The clustering technique deals with geological uncertainties in rock type and grade estimates. The 
first step is to create the possible worlds using SGS realizations as the generator function. Next, we 
proposed four different algorithms that use these realizations and form one clustering scheme to 
apply to the block model. Afterwards, we defined quality measures to evaluate the result of each 
algorithm and choose the one that provides the best results. Finally, we implemented the algorithms 
on two case studies and showed how considering uncertainties in clustering can improve the results 
and provide clustering schemes that have higher quality measures over more possible realizations. 
Moreover, we showed that the hybrid algorithm using k-means and hierarchical aggregation can be 
implemented on real-size block models in a reasonable processing time to create reliable clustering 
schemes in presence of geological uncertainty. 
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