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ABSTRACT 

The current trend of deeper and lower-grade deposits makes open pit mining less profitable. Mass mining 
alternatives have to be developed if mining at a similar rate has to be continued. Block cave mining is 
becoming an increasingly popular mass mining method, especially for large copper deposits currently 
being mined by open pit methods. After finding the initial evaluation of a range of levels for starting the 
extraction of block cave mining, production scheduling plays a key role in the entire project’s profitability. 
The traditional long-term mine planning is based on deterministic orebody models, which can ignore the 
uncertainty in the geological resources. The purpose of this paper is to present a methodology to find the 
optimal extraction horizon and sequence of extraction for that horizon under grade uncertainty. The model 
does not explicitly take into account other potential project values drivers such as waste ingress into the 
draw column or the impact of primary or secondary fragmentation on either production or recovery. 
Maximum net present value (NPV) is determined using a mixed-integer linear programming (MILP) model 
after choosing the optimum horizon of extraction given some constraints such as mining capacity, 
production grade, extraction rate and precedence. Application of the method for block-cave production 
scheduling using a case study over 15 periods is presented. 

1. Introduction

Among the underground mining methods available, caving methods are favoured because of their low 
operational costs and high production rates. Production scheduling in block caving, because of its 
significant impact on the project’s value, has been considered a key issue to be improved. To that end, 
researchers have applied different methods such as mathematical programming to model production 
scheduling in block caving (Chanda 1990; Diering 2004, 2012; Epstein et al. 2012; Guest et al. 2000; 
Khodayari & Pourrahimian 2014, 2015a, 2016; Parkinson 2012; Pourrahimian 2013; Pourrahimian & 
Askari-Nasab 2014; Pourrahimian et al. 2013; Rahal et al. 2008; Rubio 2002; Rubio & Diering 2004; 
Smoljanovic et al. 2011; Song 1989; Weintraub et al. 2008). 

These models are built to help the decision-maker evaluate the consequences of various management 
alternatives. In order to be most useful, the decision support model should also include information about 
the uncertainties related to each of the decision options, as the certainty of the desired outcome may be the 
central criterion for the selection of the management policy. 

Ore grade is one of the crucial parameters subject to uncertainty in mining operations. Grade uncertainty 
can lead to significant differences between actual production outcomes and planning expectations and, as 

This paper, in its entirety, has been submitted for publication in the 1st International conference in Underground 
Mining Technology (UMT2017). 
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a result, the net present value (NPV) and internal rate of return (IRR) of the project (Koushavand & Askari-
Nasab 2009; Osanloo et al. 2008). Various researchers have considered the effects of grade uncertainty in 
open pit mines and introduced different methodologies to address those effects (Albor & Dimitrakopoulos 
2009; Asad & Dimitrakopoulos 2013; Dimitrakopoulos & Ramazan 2008; Dowd 1994; Koushavand & 
Askari-Nasab 2009; Lamghari & Dimitrakopoulos 2012; Lamghari et al. 2013; Leite & Dimitrakopoulos 
2007; Maleki & Emery 2015; Ramazan & Dimitrakopoulos 2004, 2013; Ravenscroft 1992; Sabour & 
Dimitrakopoulos 2011). 

Other than the aforementioned authors, few authors have examined geological uncertainty in underground 
mining. Grieco and Dimitrakopoulos (2007) implemented a new probabilistic mixed-integer programming 
model which optimizes the stope designs in sublevel caving. Vargas et al. (2014) developed a tool that 
considered geological uncertainty by using a set of conditional simulations of the mineral grades and 
defining the economic envelope in a massive underground mine. Montiel et al. (2015) incorporated 
geological uncertainty into their methodology that optimizes mining operation factors such as blending, 
processing, and transportation. They used a simulated annealing algorithm to deal with uncertainty. 
Carpentier et al. (2016) introduced an optimization formulation that looked at a group of underground mines 
under geological uncertainty. Their formulation evaluates the project’s influence on economic parameters 
including capital investments and operational costs. 

One of the main steps involved in optimizing underground mines is determining a cut-off grade and its 
associated mining outline and contained mineral inventory. The open pit corollary to this is open pit 
optimization, which is completed with algorithms such as those by Lerchs and Grossmann (1965). 

To optimize block caving scheduling, most researchers have used mathematical programming: linear 
programming (LP), mixed-integer linear programming (MILP), quadratic programming (QP), mixed-
integer quadratic programming (MIQP), and mixed-integer linear goal programming (MILGP) (Chanda 
1990; Diering 2004, 2012; Epstein et al. 2012; Guest et al. 2000; Khodayari & Pourrahimian 2014, 2015a, 
2016; Parkinson 2012; Pourrahimian 2013; Pourrahimian & Askari-Nasab 2014; Pourrahimian et al. 2013; 
Rahal et al. 2008; Rubio 2002; Rubio & Diering 2004; Smoljanovic et al. 2011; Song 1989; Weintraub et 
al. 2008). Khodayari and Pourrahimian (2015b) presented a comprehensive review of operations research 
in block caving. 

This paper will introduce a method designed to identify the optimal horizon for initializing extraction 
according to the maximum discounted ore profit under grade uncertainty. The model does not explicitly 
take into account other potential project values drivers such as waste ingress into the draw column or the 
impact of primary or secondary fragmentation on either production or recovery. Several realizations are 
modelled by using geostatistical studies to consider grade uncertainty. The production schedule is generated 
for the given advancement direction and in the presence of constraints such as mining capacity, grade of 
production, reserve, precedence, and number of active blocks at the chosen level. 

2. Methodology 

The orebody is represented by a geological block model. Numerical data are used to represent each block’s 
attributes, such as tonnage, density, grade, rock type, elevation, and economic value. 

The first step is to construct a block model based on the drillhole data and the grid definition. The next step 
is a geostatistical study to generate the realizations. Then, the optimal extraction horizon is identified for 
each realization. Finally, the optimal sequence of extraction is determined to maximize the NPV. 

2.1. Geological uncertainty 

The first step for a geostatistical study is to define different rock types based on the drillhole data. In this 
study, which assumes a stationary domain within each rock type, the geostatistical modelling is performed 
for each rock type separately. The following steps are common for generating a geological model: First, a 
de-clustering algorithm is used to get the representative distribution of each rock type to decrease the weight 
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of clustered samples. Then, the correlation of the multivariate data is determined. To determine the principle 
directions of continuity, global kriging is performed using arbitrary variograms with a high range. Indicator 
kriging is used for rock type modelling, and simple kriging is used for grade modelling. The data is 
transformed to Gaussian units to remove the correlation between the variables in each rock type.  

The experimental variograms are calculated by using the determined directions of continuity in the previous 
step and a model is fitted to these variograms in different directions. An indicator variogram is used for 
rock type modeling and a traditional variogram is used for grade modeling. A rock type model is generated 
for the chosen grid definition by using a sequential indicator simulation algorithm (SIS). A grade model for 
each rock type is generated based on a sequential Gaussian simulation algorithm (SGS). Then, the data is 
back-transformed to original units. Finally, grade modeling is done within each rock type. 

2.2. Placement of extraction level 

To find the optimum horizon of extraction, the ore tonnage and discounted profit are calculated for each 
level of the block model. The discounted profit of each ore block (Diering et al. 2008) and the total 
discounted profit of each level are calculated using Equations 1 and 2. Then the tonnage–profit curve is 
plotted and the level with the highest profit is selected for starting the extraction. 
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where: 

Dis PblL is the discounted profit of ore block bl in level L and the above blocks, Dis PL is the total discounted 
profit of level L, Pr is the profit of ore block bl and ore blocks above it, i is the discount rate, d is the 
distance between the centre points of ore block bl in level L and the ore blocks above it, ER is the extraction 
rate per period, and BL is the total number of ore blocks in level L. 

After determining the optimal elevation, the interior of the orebody outline is divided into rectangles based 
on the required minimum mining footprint. The minimum mining footprint represents the minimum sized 
shape that will induce and sustain caving in the overlying rock. This is equivalent to the hydraulic radius in 
a caving operation. Then all blocks inside of the rectangle and above that creates big-blocks. In the next 
step, the sequence of extraction of these big-blocks is optimized using an MILP model (Fig 1). 

 
Fig 1. Dividing the interior of orebody into rectangles based on the required minimum mining footprint  

The MILP model is developed in MATLAB , and solved in the IBM ILOG CPLEX environment (IBM 
2015). A branch-and-bound algorithm is used to solve the MILP model, assuring an optimal solution if the 
algorithm is run to completion. A gap tolerance (EPGAP) is used as an optimization termination criterion. 
This is an absolute tolerance between the gap of the best integer objective and the objective of the remained 
best node. 
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3. Mathematical formulation 

The notation of sets, indices and decision variables for the MILP model are as follows (Table 1): 

Table 1.  Decision variables, set, indices, and parameters of the MILP model 

Indices  

 1,....,t T
 Index for scheduling periods. 

 1,...,bl BL
 Index for small-blocks. 

 1,...,bbl BBL
 Index for big-blocks. 

Set  

bblS  
For each big-block, bbl , there is a set Sbbl, which define the predecessor big-blocks that must 
be started prior to extracting the big-block bbl. 

Decision variables 

 , 0,1bbl tB   
Binary variable controlling the precedence of the extraction of big-blocks. It is equal to one if the 
extraction of big-block bbl  has started by or in period t; otherwise, it is zero. 

 ,x 0,1bbl t   Continuous variable, representing the portion of big-block bbl to be extracted in period t. 

 , 0,1bbl ty 
 Binary variable used for activating either of two constraints. 

Parameters  

Pr bblofit  Profit of big-block bbl. 

bblTon  Tonnage of big-block bbl. 

( )MCL Mt  Lower bound of mining capacity. 

( )MCU Mt  Upper bound of mining capacity. 

bblg  Average grade of the element to be studied in big-block bbl. 

(%)GL  Lower bound of the acceptable average head grade of considered element. 

(%)GU  Upper bound of the acceptable average head grade of considered element. 

( )ExtU Mt  Maximum possible extraction rate from each big-block. 

( )ExtL M t  Minimum possible extraction rate from each big-block. 

L  Arbitrary big number. 

T  Maximum number of scheduling periods. 

BBL  Number of ore big-blocks in the model. 

n  Number of predecessor big-blocks of big-block bbl. 

,NBBL tN  Upper bound for the number of new big-blocks, the extraction from which can start in period t. 

,NBBL tN  Lower bound for the number of new big-blocks, the extraction from which can start in period 
t. 

218



Malaki, S., et al.                             MOL Report Eight © 2017  306-5 
 
 
 
3.1. Objective function and constraints 

3.1.1.  Objective function 

The objective function of the MILP formulation is to maximize the NPV of the mining operation, which 
depends on the value of the big-blocks. The objective function, Equation 3, is composed of the big-blocks’ 
profit value, discount rate, and a continuous decision variable that indicates the portion of a big-block, 
which is extracted in each period. The most profitable big-blocks will be chosen to be part of the production 
in order to maximize the NPV. 
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3.1.2. Constraints 

 Mining capacity 

These constraints ensure that the total tonnage of material extracted from each big-block in each period is 
within the acceptable range. The constraints are controlled by the continuous variables. 
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 Grade of production 

These constraints ensure that the production’s average grade is in the acceptable range. 
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 Block extraction rate and continuous extraction 

Equation 6 ensures that the extraction rate from each big-block per period does not exceed the maximum 
extraction rate. ybbl,t in Equation 7 and 8 is a binary variable which is used to activate either Equation 7 or 
8. Whenever Equation 7 is active, it ensures that minimum extraction rate from each big-block per period 
is extracted. If the remaining tonnage of a big-block is less than the minimum extraction rate, Equation 8 
will be activated and forces that big-block to be extracted as much as the remaining tonnage which results 
in continuous extraction from each big-block. 
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 Binary constraints 

Equation 9 ensures that if the extraction of one big-block is started its binary variable should be one. Also, 
Equation 10 controls the fact that if the extraction of one big-block in period t has been started (Bbbl,t = 1), 
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the related binary variable should be kept one till end of the mine life. Both Equation 8 and 10 contribute 
to the continuity of the extraction. The results of these constraints will be used for the precedence constraint 
for which the maximum number of active big-blocks is needed. 

, ,xbbl t bbl tB                                                                                                                                                                  (9) 

, , 1 0bbl t bbl tB B                                                                                                                                                         (10) 

 Number of new big-blocks 

Equation 11 and 12 ensure that the number of new big-blocks in each period should be in an acceptable 
range. It is obvious that the number of new drawpoints in period one is more than other periods; therefore 
Equation 11 is applied to period one and Equation 12 is applied from period two to the end of the mine’s 
life. 
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 Precedence 

Equation 13 ensures that all the predecessor big-blocks of a given big-block bbl have been started prior to 
extracting this big-block. 
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 Reserve 

In this formulation, all material inside of the big-blocks should be extracted. This is controlled by 
Equation 14. 
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4. Case study 

4.1. Grade uncertainty 

A geostatistical study based on the drillhole data of a copper deposit was performed and a block model 
constructed. Geostatistical software library (GSLIB) (Deutsch & Journel 1998) was used for geostatistical 
modelling in this paper. The initial inspection of the locations of the drillholes showed that the drillholes 
were equally spaced. As a result, the de-clustering algorithm was not implemented. There were two parts 
to the modelling: rock type modelling and grade modelling. The grade modelling was implemented for both 
rock types (ore and waste) separately. 

4.1.1. Rock type modeling 

The principal directions of continuity were found using indicator kriging. Afterwards, the indicator 
variograms were calculated and a theoretical variogram model was fitted with three structures. In Fig 2, the 
top left shows the plan view of the maximum direction of continuity for rock types at Elevation 40 and 
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experimental directional variograms (dots) and the fitted variogram models (solid lines) for rock type and 
distance units in meters. At the next step, 20 realizations for rock types were generated using a sequential 
indicator simulation algorithm (SIS) algorithm. A plan view of the rock type simulation for the first 
realization at Elevation 40 is shown in Fig 2 (top right). 

 
       Fig 2. Dividing rock type modelling and simulation 

4.1.2. Grade modeling 

For ore modelling, the principal directions of continuity were extracted by doing simple kriging with the 
help of arbitrary variograms. Then the copper grades were transformed to Gaussian space. In Fig 3, the top 
left shows a plan view of the maximum direction of continuity for the copper grade at Elevation 40. 
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Traditional variogram calculation and modelling with three structures and a nugget effect of 0.1 was done 
for the copper grade. Afterwards, 20 realizations for the copper grade were generated using SGS algorithms. 
The SGS needs a back-transformation to original units. The plan view of copper grade simulation for the 
first realization at Elevation 40 is shown in Fig 3 (top right). 

 

Fig 3. Grade modelling and simulation 

The next step was to match and merge the rock type model with the grade model for each realization. Fig 4 
shows the plan view of the final simulation for the first realization. Fig 5 shows the variogram reproduction 
of the rock property (ore) simulation (top) and rock type simulation (bottom) in three major, minor, and 
vertical directions. Since the variograms were reproduced quite reasonably, the generated realizations were 
considered representative of the grade uncertainty. 
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Fig 4. Final simulation of the first realization at Elevation 40 

 

Fig 5. Variogram reproduction at Gaussian units of copper grade (top) and rock type (bottom) realizations (grey 
lines), the reference variogram model (red line), and the average variogram from realizations (blue line) in three 

directions 

4.2. Placement of extraction level 

The discounted profit and tonnage of the ore blocks above each ore block in each level were calculated 
(Equation 1 and 2) and the profit–tonnage curve was plotted for the original model (single estimated 
orebody model) and all realizations. The discounted profit was calculated for the block height of 10 m and 
the vertical extraction rate of 15 (meters/period). This led to selecting the optimal horizon for starting 
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extraction based on maximum profit for each realization. Fig 6 shows an example of the tonnage–profit 
curve for one of the realizations and the histogram of the obtained extraction levels for realizations. 

The extraction horizon varies between level 34 and 40. In 40% of the realizations, level 39 is the optimum 
level of extraction from a NPV perspective. In addition to the realizations, a single block model was also 
considered. In this block model (original model), the grade estimation was done using kriging technique. It 
should be noted that the optimum level of extraction for the original model was level 38 which was 
identified in 20% of the realizations. 

 

Fig 6. Selection of optimal extraction horizon based on tonnage–profit curve (left, one realization) and histogram 
of the optimum level of extraction for realizations 

After determining the optimal extraction horizon an optimal advancement direction was selected using the 
method presented by Khodayari and Pourrahimian (2015a). Then, because of the distances between 
drawpoints and the assumed footprint size (30 × 30 m), the blocks were placed into bigger blocks along the 
advancement direction. Additionally, as the big-blocks close to the boundaries did not constitute a complete 
set (with nine small blocks), only sets with seven or more blocks were considered. Fig 7 shows the steps 
from finding the extraction level to creating the big-blocks.  

4.3. Production scheduling 

In order to evaluate the risks due to the presence of grade uncertainty, the changes in NPV and tonnage 
should be investigated. Considering the deterministic values for the grade, original block model results in 
one NPV or tonnage at the end. Optimization of the production schedule based on kriging will not assess 
uncertainty and will thus be suboptimal. To maximize the calculated NPV, the proposed mathematical 
model was applied to generate the production schedule for the original block model and realizations. Table 
2 shows the scheduling parameters for the MILP model. 

Results of the original model are presented here to show that all the constraints have been satisfied. The 
original model had 90 big-block columns. Fig 8 shows the production grade and tonnage in each period for 
the optimum level of extraction in the original model. The amount of extracted ore was 37.5 Mt with an 
NPV of USD 1,010 M. Fig 8 shows that the maximum mining capacity is reached from period one to 
period 10, then production decreases gradually until the end of the life of mine.  It should be noted that 
in the solved example, ramp-up period has not been defined in the scheduling parameters. The grade 
of production increases gradually during the first nine periods and the material with higher grades is 
extracted at first and then it decreases slowly. 
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Fig 7. (a) block model of the orebody, (b) outline of the orebody at level 39, (c) optimum advancement direction 
based on the profit at the considered level (Khodayari & Pourrahimian 2015a); and, (d) schematic view of 

considering big-blocks with more than seven small blocks 
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Table 2. Scheduling parameters for MILP model (original and realizations) 

Parameter Value Parameter Value 

T (Period) 15 i (%) 10 

MCL (tonne) 1,200,000 Recovery (%) 85 

MCU (tonne) 3,000,000 ഥܰே஻஻௅,ଵ 28 

GL (%) 1.3 ேܰ஻஻௅,ଵ 0 

GU (%) 1.6 ܰே஻஻௅,௧ 5 

ExtL (tonne) 90,000 ேܰ஻஻௅,௧ 2 

ExtU (tonne) 350,000 L 100,000,000 

 

 

Fig 8. Ore production tonnage and average grade over the life of mine (original model) 

Fig 9 shows the number of active and new big-blocks should be opened in each period. The formulation 
tries to open more big-blocks at period one in order to maximize the NPV and because of that, 27 big-
blocks were opened at period one. 

 
Fig 9. Number of active and new big-blocks for each period over the life of the mine (original model) 
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Fig 10 shows the frequency of NPV and production tonnage for all the realizations at their own optimum 
extraction horizon. As it can be seen, the NPV varies between USD 965 M and USD 1,086 M and the mean 
was USD 1,026 M. The minimum and maximum ore tonnages that can be extracted were 33.2 and 39.6 Mt, 
respectively. The original block model’s tonnage and NPV values were within the lower and upper quartile. 

 
Fig 10. Histogram of NPV and extracted ore tonnage for realizations and the original model 

5. Conclusion 

Grade uncertainty has been used in open pit mining but is less studied in underground mining, especially 
in block caving. Typically, once a block cave is initiated it is difficult modify the NPV and IRR as geometric 
alterations to the production horizon are difficult to implement. 

This paper considers grade uncertainty and presents a methodology to identify the first pass optimal 
extraction horizon for block cave mining. Ignoring the grade uncertainty during the production scheduling 
can cause an optimistic schedule. The majority of block caving mines use kriging as the main technique to 
estimate resources. Therefore, the block model generated in kriging is used to identify the optimum horizon 
of extraction. There are a number of drawbacks, including (i) only a single response can be calculated (i.e. 
a single NPV), (ii) it is difficult to assess uncertainty in the response (i.e. NPV, tonnes per year, dilution, 
production rate, etc.), and (iii) the impact of the smoothing effect of kriging is difficult to quantify. 
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