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ABSTRACT  

Over the past five decades several models have been developed to make the decision of assigning active 
trucks to the right shovels. Most of the algorithms try to make decisions that optimize a specific objective 
and ignore others. This paper introduces a new multi objective truck-dispatching model that assigns trucks 
based on optimizing multiple objectives at the same time, including the targets and production requirements 
from the upper stages. Moreover, we have developed a detailed simulation model to test the proposed model 
against the well-known White and Olson model. We have developed the simulation model in Rockwell Arena 
and incorporated CPLEX to solve the dispatching models while running the simulation model. However, 
incorporating complicated decision making tools in the simulation model causes a drastic increase in the 
simulation run time. Therefore, to deal with the high time consumption, we developed a heuristic 
dispatching subsystem mimicking the White and Olson model’s decisions and compared the key 
performance indicators and run times for the three techniques.  

1. Introduction 

Mining projects, and more especially surface mines, are high cost operations that need millions of dollars 
or in the large mines billions of dollars of capital and operating costs. Material handling procedures, as a 
main contributor to the operating costs, play a critical role in the mining projects decision making procedure. 
A large portion of total mining costs in an open pit mine is related to excavating and transporting the 
material from the mining faces to different destinations outside or within the pit rim. Many researchers 
believe 50% of operating costs in open pit mines (Alarie and Gamache, 2002) and even in some cases in 
large open pit mines up to 60% of the operation costs is to be spent on material handling (Alarie and 
Gamache, 2002; Akbari et al., 2009; Ahangaran et al., 2012; Upadhyay and Askari-Nasab, 2015). 
Therefore, improving the transportation operation and subsequently decreasing expenses of this subset of 
the operation by a small percentage will result in significant savings. Two major approaches are usually 
taken towards decreasing the transportation costs. The first way is to use larger trucks in the truck fleet to 
transport more material in each cycle. The second way is to reduce the cost of material transportation by 
implementing operations research techniques to improve productivity of the operation.  

In the literature of mining fleet management systems, different efforts have been done since (1964) 
suggested the use of radio communications between equipment operators and the mine control center. After 
that, one of the first algorithms to solve truck allocation and dispatching problem in open pit mines was 
introduced by (1973). In the late 1970s, (1977) introduced dispatching boards installed in the control center 
using a simplified dispatching technique to manage the operation. Although research continued over 1960s 
and 1970s, main efforts in the field started from the second half of the 1980s. Since late 1980s researchers 
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focused on developing algorithms based on variety of approaches to optimize fleet management in mines. 
(Najor and Hagan, 2006; Ercelebi and Bascetin, 2009) developed algorithms based on queuing theory and 
(White and Olson, 1986; Bonates and Lizotte, 1988; Temeng et al., 1997) developed models based on linear 
programming. 

Developing fleet management systems and evaluating their impacts on the mining operations requires 
running different operational scenarios in the mines. However, as mentioned above, mining operations and 
more specifically open pit mining operations are very high cost projects. Therefore, running a single 
scenario in the real operation for even a short period of time requires spending millions of dollars. Thus, 
(Sturgul, 1987; Bonates and Lizotte, 1988; Forsman et al., 1993; Kolonja and Mutmansky, 1993; Ataeepour 
and Baafi, 1999; 2008) implemented simulation modeling to evaluate various dispatching techniques and 
prove positive impacts of implementing dispatching techniques in mining operations. Most of the 
simulation studies, from 2010 to 2015, in the field of truck-shovel mining system including (Jaoua et al., 
2012; Ta et al., 2013; Dindarloo et al., 2015; Upadhyay and Askari-Nasab, 2015; Chaowasakoo et al., 2017) 
implemented simulation as a tool to evaluate results of the developed optimization algorithms in their 
studies without incorporating a new component into their system. 

In this paper, the interactions between trucks and shovels in an open pit mining operation is simulated. In 
the simulated mining operation the model developed in (White and Olson, 1986) has been used for the 
purpose of optimizing the operation fleet activities. It is worthnoting that the rationale behind using the 
model developed in (White and Olson, 1986) is its popularity among the mining companies as a proper 
fleet management system. The model developed in (White and Olson, 1986) is a separate optimizer system 
that needs to be run in an external optimmization software. Linking this external software to the simulation 
model increases the simulation model run time. To avoid this increase in simulation run time a simulation 
based algorithm had been developed to mimic the backbone algorithm of the model developed in (White 
and Olson, 1986). Then, a multiobjective alogrithm was developed for the so called lower stage (truck 
assignment) that tries to optimize task of truck dispatching considering three most important objectives of 
this stage. Afterwards , the simulation model was run for a case study using all three aformentioned 
optimization algorithms and the results of the simulation were compared. 

2. Backbone of Dispatch Optimizer 

The model developed in (White and Olson, 1986) takes two steps to dispatch available trucks in an open 
pit mine. In its first step it tries to optimize production of the operation using two weakly coupled linear 
programing (LP) models in a predefined time intervals. Afterwards, whenever a truck asks for a new 
assignment, implementing a dynamic programming (DP) approach, it tries to assign closest truck to the 
neediest shovel. Solving these three mathematical models, it optimizes mining operations. Vast usage of 
the the model developed in (White and Olson, 1986) across the world and more specifically over North 
America for more than 30 years convinced us to implement it in our simulation studies as a benchmark fleet 
management system. Therefore, we developed a fleet management system based on the backbone algorithm 
of the model developed in (White and Olson, 1986) in an external optimization software. The optimization 
model was linked to the simulation model and whenever the simulation reaches the point that requires an 
operational decision to be made, it calls the optimization model and implements the results of the 
optimization in the operation. The readers are referred to (White and Olson, 1986) for more information 
regarding the LP and DP algorithms of the model developed in (White and Olson, 1986) and the way it 
works to assign trucks to the right shovel. 

3. Simulation Based Heuristic 

We chose the model developed in (White and Olson, 1986) as a benchmark fleet management system to 
evaluate goodness of our model. However, calling external optimization software into a running simulation 
and asking for solutions to the LP models take a lot of time. Thus, runtime problem for the simulation model 
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have forced us to develop a simulation based logic to mimic the model developed in (White and Olson, 
1986). This simulation based logic will help the simulation model to not require any linkage to external 
optimization software. The algorithm follows n-truck-m-shovel approach addressed by (Alarie and 
Gamache, 2002). In this approach, the shovel’s need is updated when it moves to a new polygon and when 
a truck requests for a new assignment the algorithm runs and allocates the truck to a shovel based on a 
balance between shortest distance between the shovels and the truck location and the neediest shovel. The 
simulation based heuristic developed here in this research follows five general steps: 

Step 1: Calculating required haulage capacity of shovel i. 

Step 2: Determining allocated capacity to shovel i so far.  

Step 3: Finding the shortest paths to the shovels from the current truck position. 

Step 4: Calculating the normalized distances of the determined shortest paths. 

Step 5: Sending the truck to the shovel with a minimum balance between its need and distance. 

4. Multi Objective Model for Truck Dispatching 

To deal with the decision making process regarding truck assignment in fleet management system (FMS) 
a preliminary multi-objective model has been developed in this research which is being presented in this 
section. The model obtains its required inputs from the current status of the mining operation and using an 
MILGP approach tries to assign trucks to the shovels. 

To introduce the model, the following subsections stand to define indexes, decision variables, parameters, 
and the calculation procedure to achieve the cost coefficients of the objective function, the MILGP 
formulation of the model, the governing constraints, and normalization of the goals, respectively. 

Index for variables and parameters 

i Index for set of Trucks: i = {1,...,N}; 

j Index for set of Shovels: j = {1,...,M}; 

k Index for set of Dumps: k = {1,...,D}; 

t Index for set of weights for individual goals: t = {1, 2, 3}; 

q Index for trucks waiting in queue at shovel: q = {1, ..., NTinQS}; 

Decision variables 

 ;௜௝௞ Incoming flow to shovel j by assignment of truck i to the path of shovel j to dump kݔ

௜௝௞ݔ
ᇱ  Outgoing flow from shovel j by assignment of truck i to the path of shovel j to dump k; 

௝ܿ௞
ି  Negative deviation of the met path flow rate for path between shovel j and dump k compared 

to desired path flow rate; 

௝ܿ௞
ା  Positive deviation of the met path flow rate for path between shovel j and dump k compared to 

desired path flow rate. 

Parameters 

௜ܵ௝௞ Idle time for shovel j if truck i is assigned to transport material from shovel j to dump k; 

௜ܶ௝௞ Wait time for truck i if it is assigned to transport material from shovel j to dump k; 

௧ܲ Normalized weights of individual goals based on priority; 
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௜ܶ Capacity of truck i; 

 Match factor of the current truck portion of truck fleet available for the assignment and required ܨܯ
amount of haulage to meet the production requirements of the operation (it is not well-known 
match factor introduced by (Burt and Caccetta, 2007)); 

  ;௞ Capacity of the plant k: k = {1, ..., O}ܥܲ

 ;௝ Production capacity of shovel jܥܵ

ܯ ௝ܲ௞ Path flow rate for the path from source j to the destination k that the production operation has 
met so far; 

ܲ ௝ܶ௞							 Path flow rate for the path from source j to the destination k; 

ܴܶ௜௝ Next time truck i reaches shovel j; 

 ;௜௝ Next time shovel j is available to serve truck iܣܵ

ܶܰ Current time of the operation; 

 ;௜௞ The distance truck i must pass to reach the destination k to dump its loadܦܮ

 ;'௜௞௝ᇲ The distance truck i must pass from the destination k to the next expected shovel jܦܧ

 ;௜௝௞ି௟௢௔ௗ௘ௗ    Average loaded velocity of truck i traveling from shovel j to destination kݒ

 ;'௜௝ᇱ௞ି௘௠௣௧௬   Average empty velocity of truck i traveling from dump k to the next expected shovel jݒ

 ;௜௞        Queue time for truck i in the queue of the dump kܦ@ܳ

 ;௜௞        Dump time for truck i to dump its material in dump kܦ

ܰܶ݅݊ܳܵ௝      Number of trucks in queue at shovel j; 

ݐ݋݌ܵܶ ௤ܶ       Spotting time for the truck q in the queue; 

݀ܽ݋ܮܶ ௤ܶ      Loading time for the truck q in the queue; 

Calculations 

௜ܵ௝௞ ൌ ܴܶ௜௝ 	െ  ௜௝          (1)ܣܵ

௜ܶ௝௞ ൌ ௜௝ܣܵ െ	ܴܶ௜௝          (2) 

ܴܶ௜௝ ൌ ܱܹܶܰ ൅	
௅஽೔ೖ

௩೔ೕೖష೗೚ೌ೏೐೏
൅ ௜௞ܦ@ܳ ൅ ௜௞ܦ ൅

ா஽೔ೖೕᇲ

௩೔ೕᇲೖష೐೘೛೟೤
      (3) 

௜௝ܣܵ ൌ ܱܹܶܰ ൅	∑ ൫ܶܵݐ݋݌ ௤ܶ ൅ ݀ܽ݋ܮܶ ௤ܶ൯
ே்௜௡ொௌೕ
௤ୀଵ        (4) 

Model formulation 

The model is formulated considering three operational goals of the operation: 1) minimize the summation 
of shovel idle times; 2) minimize the summation of truck wait times; and 3) minimize the deviation in the 
path flow rate compared to the desired flow rate. 

The MILGP objectives formulated to optimize the goals are presented in Eq. (5), (6), and (7): 

ଵܩ ൌ ∑ ∑ ∑ ௜ܵ௝௞ݔ௜௝௞
஽
௞ୀଵ

ெ
௝ୀଵ

ே
௜ୀଵ          (5) 

ଶܩ ൌ ∑ ∑ ∑ ௜ܶ௝௞ݔ௜௝௞
஽
௞ୀଵ

ெ
௝ୀଵ

ே
௜ୀଵ          (6) 

ଷܩ ൌ ∑ ∑ ൫ ௝ܿ௞
ି ൅ ௝ܿ௞

ା ൯஽
௞ୀଵ

ெ
௝ୀଵ          (7) 
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Eq. (5) represents total idle time for all the shovels working in the operation. Eq. (6) represents total truck 
waiting times for all the trucks available for assignment. Eq. (7) represents the difference between flow rate 
of the paths and the desired flow rates. Applying a non-preemptive goal programming approach the 
objective function is given by Eq. (8). A challenge here is that the goals are in different dimensions. To 
have a dimensionless objective function combining all the above mentioned goals it is necessary to 
normalize the goals. The normalization is done by determining Utopia and Nadir values for each and every 
goal. The normalized goals are multiplied by the weights to achieve desired priority and the final objective 
function obtained as Eq. (8). 

minܼ ൌ ଵܲܩଵ ൅ ଶܲܩଶ ൅ ଷܲܩଷ         (8) 

Constraints 

∑ ∑ ௜௝௞′ݔ
஽
௞ୀଵ ൌ ∑ ∑ ௜௝௞ݔ

஽
௞ୀଵ

ே
௜ୀଵ

ே
௜ୀଵ 								∀	݆	 ∊ 	 ሼ1	 … 	ܰሽ      (9) 

∑ ∑ ௜௝௞ݔ
ெ
௝ୀଵ ൌ ∑ ∑ ௜௝௞′ݔ

ெ
௝ୀଵ

ே
௜ୀଵ

ே
௜ୀଵ 								∀	݇	 ∊ 	 ሼ1	 …  ሽ      (10)ܦ	

∑ ∑ ௜௝௞ݔ
஽
௞ୀଵ ൑ ௜ܶ

ே
௜ୀଵ 								∀	݅	 ∊ 	 ሼ1	… 	ܰሽ       (11) 

∑ ∑ ௜௝௞ݔ
ெ
௝ୀଵ ൒ ܨܯ ൈ ௞ܥܲ

ே
௜ୀଵ 								∀	݇	 ∊ 	 ሼ1	 … 	ܱሽ      (12) 

∑ ∑ ௜௝௞ݔ
஽
௝ୀଵ ൑ ௝ܥܵ

ே
௜ୀଵ 								∀	݆	 ∊ 	 ሼ1	 …  ሽ       (13)ܯ	

	∑ ௜௝௞ݔ
ே
௜ୀଵ ൅ ܯ ௝ܲ௞ ൅ ௝ܿ௞

ି െ ௝ܿ௞
ା ൌ ܲ ௝ܶ௞						∀	݆	 ∈ 	 ሼ1	… 	݇	∀	&	ሽܯ	 ∈ 	 ሼ1	 …  ሽ   (14)ܦ	

 

Constraint (9) assures that incoming trucks to the shovels are equal to the outgoing trucks from the same 
shovel meaning that whatever truck capacity arrived into a shovel queue will leave that shovel. Constraint 
(10) makes sure that total incoming haulage capacity into a dump area is equal to the empty trucks' capacity 
for the trucks leaving that specific dump location. Constraint (11) limits the maximum capability of a truck 
to incorporate in a transportation task to its capacity. Constraint (12) ensures that material hauled to the 
processing plants using all the trucks meet the required processing target of each plant. Constraint (13) 
limits the total haulage capacity sent to a shovel to the shovel's digging rate. Constraint (14) ensures that 
the path flow rate for each path connecting a source to a destination point is of the desired path flow rate. 
Moreover, all the variables have a non-negativity constraint. 

Normalization of goals 

As mentioned before, the goals in the objective function of this study do not match with each other in term 
of the dimension. Besides, a non-preemptive goal programming approach has been chosen for the 
optimization of the model. Thus, normalization of the goals before the optimization process is required. In 
this study, normalizing will be done by the difference of the optimal function values for two so called Utopia 
and Nadir points. Utopia point sets a lower bound on individual goals in a minimization problem. Nadir 
point on the other hand, sets an upper bound on the goals in the same types of problems. The results will 
provide us with the lower and upper bounds of the interval that the objective functions will vary in the 
Pareto optimal set. Optimizing the system (minimizing) considering only one goal will result in the Utopia 
point which provides the lower bound of values for individual goals. The upper bounds are derived using 
the components of a Nadir point presented in (Grodzevich and Romanko, 2006). After normalizing the 
goals we can solve our multi objective model using an optimization tool. 

5. Case study 

An iron ore mine located in Iran was chosen as a case study to be used for evaluating the models developed 
in this research. Mining operation in the case study is being handled by a truck and shovel system. There 
are three main dumping points for the loaded trucks including two processing plants and one waste dump.  
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We built a simulation model of the case study. Input parameters are required to run the simulation model. 
However, these required input parameters are uncertain due to their nature. To account for the uncertainty 
of the parameters different distributions were fitted on the historical data. Using Kolmogorov-Smirnov and 
Chi Square tests, the best function was selected for each parameter. 

6. Results and Discussions 

In order to compare the performance of the dispatching algorithms, we developed a simulation model that 
incorporates one of the following as the FMS: the model developed in (White and Olson, 1986), the 
multiobjetive model proposed in this paper, and the heuristic dispatcing technique. The model uses a short-
term production schedule obtained from (Upadhyay and Askari-Nasab, 2016) other distribuitions, road 
network and parameters from the Iron ore mine. Our goal is to compare our model against (White and 
Olson, 1986) but we developed a simple heuristic mimicing decisions made by (White and Olson, 1986) to 
avoid run time increases caused by calling the optimization engine in every step of the simulation. The 
heuristic mimics the model developed in (White and Olson, 1986) to a very good extend with a difference 
in production of less than 0.9%. At the same time, it runs approximately 650% and 850% faster than a 
simulation model of the same operation with implementing externally linked FMS in a simple and a 
complex case, respectively. However, in this paper we only compare our multi-objective model against the 
original model from (White and Olson, 1986). The simulation model was built in Rockwell Arena and 
connected to an external optimization software (CPLEX) to solve the models. 

After proving that the distributions representing the uncertain input parameters match with the database, 
the simulation models were set up for 5 replications (decided based on required halfwidths). Then, the 
model was run for 91 days of operation. Finally, the results of both the simulation models are being 
presented in Fig. 1 to Fig. 3. Fig. 1 is showing the weekly production of the operation implementing the 
model developed in (White and Olson, 1986) as the operation FMS. Fig. 2 provides weekly production 
requirement of the operation implementing the multi-objective model developed here in this reserch. Fig. 
3 depicts the histograms of how the queue time at shovels vary implementing each optimization models as 
the operation’s FMS.  

Acording to Fig. 1, the operation moved an average of 950 thousand tonnes of material from the pit per 
week with a minimum of 903 thousand tonnes and a maximum of 999 thousand tonnes. Beside that, 
although the total amount of ore produced is following an average of around 250 thousand tonnes, the 
amount of material sent to each processing plant is varying wildly. In the first four weeks of the operation 
the FMS tries to send more material to the processing plant 1. This pattern changes by starting the week 5 
of the operation by sending more material to the processing plant 2 than processing plant 1 which ends by 
the end of the week 10 of the operation. This fluctuation is due to the rationle behind the optimization model 
developed in (White and Olson, 1986).  

Fig. 2 represents weekly production of the operation over 12 weeks of the simulation run time implementing 
the multi-objective model developed here in this research as the FMS. The figure shows that the simulation-
optimization model of the operation is removing an average of 1.11 million tonnes of material from the pit 
on a weekly basis. 

It also shows that the amount of ore produced per each week of the operation time is consistent over the 
run time period. Another major depiction of the graph is that both of the processing plants are fed with the 
same amount of material with an average difference of only 2.2%. 
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Fig. 1: Total material mined including ore and waste over 12 weeks of the operation implementing 
the model developed in (White and Olson, 1986). 

 

 

Fig. 2: Total material mined including ore and waste over 12 weeks of the operation implementing 
the multi objective model developed in this study. 

As another important key performance indicator (KPI), queue time at shovel for both FMSs had been 
investigated and the results are presented in Fig. 3. As it is represented by the graph, using the model 
developed in (White and Olson, 1986) trucks wait in queue of shovels with a mean of 1.7 minutes which is 
deviated for about 1 minute. The results are showing slight difference when we implement the multi 
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objective model. Average truck waiting time at shovels while implementing multi objective model is 2.2 
minutes with an standard deviation of 1.4 minute. 

 

Fig. 3: Histogram of the truck queue time over 12 weeks of the operation (graph in right side 
represents queue time while implementing optimization model developed in (White and Olson, 
1986) while graph in the left side is showing queue time implementing multi objective model 

developed in this research). 

7. Conclusions 

In this paper, authors developed two truck dispatching algorithms. The first one is a simulation based 
heuristic algorithm. This algorithm tries to follow the backbone algorithm of the model developed in (White 
and Olson, 1986). The second one is a multi-objective mathematical model. This model tries to make 
decisions of truck assignments in open pit mines based on three major objective of minimizing shovels’ 
idle time, minimizing trucks’ wait time, and minimizing deviation from the paths’ flow rates. The three 
aforementioned models were attached to a simulation model of an open pit mining operation. The 
simulation model was run with the models and some of the results have been presented in this paper. 

Comparing the two optimization based FMS, total material removed increases for an average of 8.4% when 
implementing the multi objective model. The second worth noting conclusion is that, although total weekly 
ore production of the operation using both fleet management systems are consistent, the plant feed rate for 
each plant in an operation with multiple processing plants is fluctuating over the production period when 
implementing the model developed in (White and Olson, 1986). However, this study shows that the multi 
objective model developed here does not have the feed rate fluctuation problem in a multiple processing 
operation. The last but not the least conclusion is that truck waiting time at shovels are falling within almost 
the same range for both of the models with a 30 seconds difference in the average waiting time.  
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