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Abstract 

The initial evaluation of a range of levels for starting the extraction of block-cave mining is an important 
issue. To do this, it is necessary to consider a variety of parameters including extraction rate, block 
height, discount rate, block profit, cost of mining and processing and revenue factors. Afterwards, 
production scheduling plays a key role in the entire project’s profitability, determining the amount, grade 
and sequence of the extraction during the mine life by optimizing particular objectives in the presence of 
operational and technical constraints. To consider grade uncertainty, a set of simulated realizations of 
the mineral grade is modeled based on stochastic sequential simulation. 

 The purpose of this paper is to present a methodology to find the best extraction level and the optimum 
sequence of extraction for that level under grade uncertainty. Maximum net present value (NPV) is 
determined using a mixed-integer linear programming (MILP) model after choosing the best level of 
extraction given some constraints such as mining capacity, production grade, extraction rate and 
precedence. Application of the method for block-cave production scheduling using a case study over 15 
Periods is presented. 

1. Introduction 

Among the underground mining methods available, caving methods are favored because of their low-cost 
and high-production rates. Production scheduling in block caving, because of its significant impact on the 
project’s value, has been considered a key issue to be improved. To that end, researchers have applied 
different methods such as mathematical programming to model production scheduling in block caving.  
These models are built to help the decision-maker evaluate the consequences of various management 
alternatives. In order to be most useful, the decision support model should also include information about 
the uncertainties related to each of the decision options, as the certainty of the desired outcome may be 
central criterion on the selection of the management policy.  

Ore-grade is one of the crucial parameters subject to uncertainty in mining operations. Grade uncertainty 
can lead to significant differences between actual production and planning expectations and, as a result, 
the net present value (NPV) of the project (Koushavand and Askari-Nasab, 2009,Osanloo et al., 2008). 
Various researchers have considered the effects of grade uncertainty in open-pit mines and introduced 
different methodologies to address those effects. Dowd (1994) presented a risk-based algorithm for 
surface mine planning. In the algorithm, for different variables such as commodity price, processing cost, 
mining cost, investment required, grade and tonnages, a predefined distribution function was 
implemented. Several types of schedules were generated for a number of realizations of the grades. This 
methodology produces various schedules that account for grade uncertainty. Ravenscroft (1992) and 
Koushavand and Askari-Nasab (2009) used simulated ore-bodies to show the influence of the grade 
uncertainty on production scheduling. Ramazan and Dimitrakopoulos (2004) used a mixed-integer linear 



Malaki S. et al.                       MOL Report Seven © 2016     303- 2 
 

 
 

programming (MILP) model to maximize the NPV for each realization. Then they calculated the 
probability of extraction of a block at each period. These probabilities are the input of a second stage of 
the optimization, which is necessary in order to generate one schedule at the end. Dimitrakopoulos and 
Ramazan (2008) presented a stochastic integer programming (SIP) model to generate optimal production 
schedules. This model considers multiple realizations of the block model and defines a penalty function 
that is the cost of deviation from the target production. This cost is calculated based on the geological risk 
discount rate which is the discounted unit cost of deviation from the target production. The objective 
function is to maximize the NPV under a managed risk profile. Leite and Dimitrakopoulos (2007) 
implemented an approach that incorporates the geological uncertainty in the open-pit mine scheduling 
process. This new scheduling approach is based on a simulated annealing (SA) technique and 
stochastically simulated representations of the ore-body. Albor and Dimitrakopoulos (2009) developed a 
method which is based on scheduling with an SA algorithm and equally probable realizations of a mineral 
deposit. To generate production schedules, the equally probable realizations are utilized to minimize the 
possibility of deviations from production targets. Sabour and Dimitrakopoulos (2011) presented a 
procedure that combines geological uncertainty and operational flexibility in the design of open-pits. 
When designing an optimal production schedule and ultimate pit limit, Asad and Dimitrakopoulos (2013) 
considered both geological uncertainty and commodity prices with respect to the production capacity 
restrictions. Two-stage stochastic integer programming (SIP) is used in an optimization model to consider 
uncertainty (Ramazan and Dimitrakopoulos, 2013). Lamghari and Dimitrakopoulos (2012) also 
considered metal uncertainty in the open-pit production scheduling problem using a metaheuristic 
solution approach based on a Tabu search. Lamghari et al. (2013) proposed two variants of a variable 
neighborhood decent algorithm to solve the open-pit mine production scheduling problem under 
geological uncertainty.  Maleki and Emery (2015) have worked on the joint simulation of copper grade 
and rock type in a given deposit. To conduct the joint simulation, they implemented multi-Gaussian and 
pluri-Gaussian models in a combined form. They studied three main rock types with various grade 
distributions in which three auxiliary Gaussian random fields were considered. One of the rock types was 
used for copper grade simulation and the other two for rock-type simulation. Moreover, they looked at 
cross correlations between these Gaussian random fields before reproducing the dependence between 
copper grade and rock types. 

Other than the aforementioned authors, few authors have examined geological uncertainty in underground 
mining. Grieco and Dimitrakopoulos (2007) implemented a new probabilistic mixed-integer 
programming model which optimizes the stope designs in sublevel caving. Vargas et al. (2014) developed 
a tool that considered geological uncertainty by using a set of conditional simulations of the mineral 
grades and defining the economic envelope in a massive underground mine. Montiel et al. (2015) 
incorporated geological uncertainty into their methodology that optimizes mining operation factors such 
as blending, processing, and transportation. They used a simulated annealing algorithm to deal with 
uncertainty. Carpentier et al. (2016) introduced an optimization formulation that looked at a group of 
underground mines under geological uncertainty. Their formulation evaluates the project’s influence on 
economic parameters including capital investments and operational costs.       

One of the main steps involved in optimizing underground mines is determining a mining outline and 
inventory. The open-pit corollary to this is open-pit optimization, which is completed with algorithms 
such as those by Lerchs and Grossmann (1965). To optimize block-caving scheduling, most researchers 
have used mathematical programming: linear programming (LP), MILP, and quadratic programming 
(QP). LP is the simplest program for modelling and solving. Table 1 shows some of the applied 
mathematical methodologies in block-caving production scheduling. 

This paper will introduce a method designed to find the best level for initializing extraction according to 
the maximum discounted ore profit under grade uncertainty. Several realizations are modeled by using 
geostatistical studies to consider grade uncertainty. The production schedule is generated for the given 
advancement direction and in the presence of some constraints at the chosen level.  
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2. Methodology, assumption, and notations 

The ore-body is represented by a geological block model. Numerical data are used to represent each 
block’s attributes, such as tonnage, density, grade, rock type, elevation, and profit data.  

The first step is to construct a block model based on the drillhole data and the grid definition. The next 
step is a geostatistical study to generate the realizations. Then, the best level of extraction is found. 
Finally, the optimal sequence of extraction is determined to maximize the NPV for each realization.  Fig 1 
shows the summary of the methodology.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Steps of the implemented methodology 

Drillhole Data Stochastic Sequential Simulation  

………. 
Realization 1 Realization 2 Realization 3 Realization n 

Simulated Block Models 

Scheduling 
Parameters 

Best level determination                Ouline determination in the best level             Finding the best advancement direction  
                                                                                                                                                                   and creating big 

NPV

Fr
eq

ue
nc

y 
 



Malaki S. et al.                                                                                       MOL Report Seven © 2016                                                                                       305- 4 
 
 

 
 

Table 1. Summary of applied mathematical methodologies in block-caving production scheduling (Khodayari and Pourrahimian, 2014)

Author Methodology Model’s objective(s) Features 

Song (1989) MILP Minimization of total mining cost LP 
 
This method has been used most extensively and it 
can provide a mathematically provable optimum 
schedule. But straight LP lacks the flexibility to 
directly model complex underground operations 
which require integer decision variables. 
 
MILP 
 
MILP could be used to provide a series of 
schedules which are marginally inferior to a 
provable optimum. Computational ease in solving 
an integer-programming problem depends on the 
formulation structure. It can provide a 
mathematically provable optimum schedule. The 
advantage that MILP has over simulation when 
used to generate sub-optimal schedules is that the 
gap between the MILP feasible solution and the 
relaxed LP solution provides a measure of solution 
quality. The drawback in using MILP is that it is 
often difficult to optimize large production systems 
by the branch-and-bound search method. 
 
QP 
 
The block caving process is non-linear, so it would 
not be appropriate to use linear programming for 
production scheduling. But solving this kind of 
problem could be a challenge because we must 
change the formulation to LP and then solve the 
problem. Changing creates conversion errors. 

Chanda (1990) 
Simulation 
and  MIP 

Minimization of the deviation in the average 
production grade between operating shifts 

Guest et al. (2000) LP Maximization of NPV 

Rubio (2002) MIP 
Two models: (a) maximization of NPV and (b) 
optimization of the mine life 

Diering (2004) NLP 
Maximizing NPV for M periods and 
minimization of the deviation between a current 
draw profile and a defined target 

Rubio and Diering (2004) LP, IP, QP 
Maximization of NPV, optimization of draw 
profile, and minimization of the gap between 
long- and short-term planning 

Rahal et al. (2008) MILGP 
Minimizing deviation from the ideal draw profile 
while achieving a production target 

Weintraub et al. (2008) MIP Maximization of profit 

Smoljanovic et al. (2011) MILP 
Optimization of NPV and mining material 
handling system 

Parkinson (2012) IP 
Finding an optimal opening sequence in an 
automated manner 

Epstein et al. (2012) LP, IP Maximization of NPV 

Diering (2012) QP 
Objective tonnage (to optimize the shape of the 
cave) 

Pourrahimian et al. (2013) MILP Maximization of NPV 

Alonso-Ayuso et al. (2014) MILP 
Maximization of NPV taking into consideration 
the uncertainty in copper price 

Pourrahimian and Askari-
Nasab (2014) 

MILP 
Maximization of NPV, determining the BHOD 
based on the optimization 
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2.1. Geological uncertainty 

The first step for a geostatistical study is to define different rock types based on the drillhole data. 
In this study, which assumes a stationary domain within each rock type, the geostatistical modeling 
is performed for each rock type separately. The following steps are common for generating a 
geological model:  

First, a declustering algorithm is used to get the representative distribution of each rock type to 
decrease the weight of clustered samples. Then, the correlation of the multivariate data is 
determined. To determine the principle directions of continuity, global kriging is performed using 
arbitrary variograms with a high range. Indicator kriging is used for rock type modeling, and 
simple kriging is used for grade modeling. The data is transformed to Gaussian units to remove the 
correlation between the variables in each rock type.  

The experimental variograms are calculated by using the determined directions of continuity in the 
previous step and a model is fitted to these variograms in different directions. An indicator 
variogram is used for rock type modeling and a traditional variogram is used for grade modeling. A 
rock type model is generated for the chosen grid definition by using a sequential indicator 
simulation algorithm (SIS). A grade model for each rock type is generated based on a Sequential 
Gaussian Simulation algorithm (SGS). Then, the data is back-transformed to original units. Finally, 
grade modeling is done within each rock type.  

2.2. Placement of extraction level 

To find the best level of extraction, the ore tonnage and discounted profit are calculated for each 
level of the block model. The discounted profit of each ore block (Diering et al., 2008)  and the 
total discounted profit of each level are calculated using equations. (1) and (2). 

1 Pr
P ,     

(1 )

bll
blL d

ERl L

Dis bl
i

 


    (1) 

1

P P
BL

L blL
bl

Dis Dis


    (2)  

Where PblLDis is the discounted profit of ore block bl at level L ; PLDis  is the total discounted 

profit of level L , which is the summation of discounted profit of all the blocks in that level; Prbll  is 

the profit (undiscounted) of ore block bl at level l ; i  is the discount rate; d  is the distance 
between the center points of ore block bl at level L and the ore blocks above it; ER is the 
extraction rate per period; BL is the total number of ore blocks in level L . The profit of each ore 
block is calculated using the following equations: 

 ( )R CT g Ton R P S       (3) 

( )C C CT Ton M P     (4) 

R CP T T    (5)         

Where RT  is the total revenue; R  is the processing plant recovery; P is the price per ton of the 

product; CS is the selling cost per ton of material; g is the element grade; CT  is the total cost; CP  is 

the processing plant cost and CM is the cost of mining per ton of material.  Fig 2 clearly shows how 
to calculate the discounted profit of a block at a given level. In Fig 2, two blocks are assumed to be 
in each level. Afterwards, the tonnage-profit curve is plotted and the level with the highest profit is 
selected for starting the extraction (Fig 3). 
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Fig 2. Schematic example of calculating discounted profit of ore block at a given level 

 

 
Fig 3. Schematic view of finding best level of extraction methodology 
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2.3. Production scheduling 

After determining the best elevation, the interior of the ore-body outline in the level is divided into 
rectangles based on the minimum required mining footprint (see Fig 4).  The minimum mining 
footprint (plan view) represents the minimum sized shape that will induce and sustain caving. This 
is similar to the hydraulic radius in a caving operation. Then all block inside of the rectangle and 
above that creates big-blocks. In the next step, the sequence of extraction of these big-blocks is 
optimized. 

 

Fig 4. Schematic view of production scheduling methodology 

3. Mathematical formulation 

3.1. Notation 

The notation of sets, indices and decision variables for the MILP model are as follows: 

Indices  

 1,....,t T  Index for scheduling periods. 

 1,...,bl BL  Index for small blocks. 

 1,...,bbl BBL
 

Index for big-blocks. 

Set  
bblS  For each big-block,bbl , there is a set bblS , which define the predecessor 

big-blocks that must be started prior to extracting the big-block bbl . 

Decision variables 

 , 0,1bbl tB   Binary variable controlling the precedence of the extraction of big-blocks. It 
is equal to one if the extraction of big-block bbl  has started by or in period
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t ; otherwise it is zero. 

 ,x 0,1bbl t   Continuous variable, representing the portion of big-block bbl  to be 
extracted in period t . 

 , 0,1bbl ty   Binary variable used for activating either of two constraints. 

Parameters  

Pr bblofit  Profit of each big-block. 

bblTon  Tonnage of each big-block. 

( )MCL Mt  Lower bound of mining capacity. 

( )MCU Mt  Upper bound of mining capacity. 

bblg  Average grade of the element to be studied in big-block bbl  

(%)GL  Lower bound of acceptable average head grade of considered element. 

(%)GU  Upper bound of acceptable average head grade of considered element. 

( )ExtU Mt  Maximum possible extraction rate from each big-block. 

( )ExtL Mt  Minimum possible extraction rate from each big-block. 

L  Arbitrary big number. 

T  Maximum number of scheduling periods. 

BBL  Number of ore big-blocks in the model. 

n  Number of predecessor big-blocks of big-block bbl  

,NBBL tN  
Upper bound for the number of new big-blocks, the extraction from which 
can start in period t  

,NBBL tN  Lower bound for the number of new big-blocks, the extraction from which 
can start in period t  

3.2. Objective function and constraints 

The objective function of the MILP formulation is to maximize the NPV of the mining operation, 
which depends on the value of the big-blocks. (Based on distances between drawpoints and 
footprint size, the ore blocks are placed into bigger blocks). The objective function, equation (6), is 
composed of the big-blocks’ profit value, discount rate, and a continuous decision variable that 
indicates the portion of a big-block, which is extracted in each period. The most profitable big-
blocks will be chosen to be part of the production in order to maximize the NPV. 

,

1 1

Pr

(1 )

T BBL
bbl bbl t

t
t bbl

ofit x
Max

i 


                                                                                                            (6)            

Where Pr bblofit is the profit value of the big-block bbl which is equal to the summation of the 
small ore blocks’ profit within that big-block. The objective function is subject to the following 
constraints: 
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Mining capacity 

 ,
1

,    1,....,   
BBL

t bbl bbl t t
bbl

MCL Ton x MCU t T


       (7) 

These constraints ensure that the total tonnage of material extracted from each big-block in each 
period is within the acceptable range. The constraints are controlled by the continuous variables. 

Grade blending 

 
,

1

,
1

,   1,...,                       

BBL

bbl bbl bbl t
bbl

t tBBL

bbl bbl t
bbl

g Ton x
GL GU t T

Ton x





 
   






 (8) 

These constraints ensure that the production’s average grade is in the acceptable range.  

Block extraction rate and continuous extraction constraints 

   , , ,     1,..., , 1,...,                                        bbl bbl t bbl tTon x ExtU bbl BBL t T      (9) 

   , , , ,( ) ( ) ,     1,..., , 1,...,                                         bbl t bbl t bbl bbl t bbl tExtL B Ton x L y bbl BBL t T           (10)

   '

'
,,

1

,     1,..., , 1,...,                                        
t

bbl tbbl t
t

x y bbl BBL t T


                (11) 

Equation (9) ensures that the extraction rate from each big-block per period does not exceed the 
maximum extraction rate. ,bbl ty in equations (10) and (11) is a binary variable which is used to 

activate either equation (10) or (11).  Whenever equation (10) is active, it ensures that minimum 
extraction rate from each big-block per period is extracted. If the remaining tonnage of a big-block 
is less than the minimum extraction rate, equation (11) will be activated and forces that big-block 
to be extracted as much as the remaining tonnage which results in continuous extraction from each 
big-block.    

Binary constraints   

   , ,x ,    1,..., ,  1,...,bbl t bbl tB bbl BBL t T      (12) 

   , , 1 0,    1,..., ,  1,...,bbl t bbl tB B bbl BBL t T      (13) 

Equation (12) ensures that if the extraction of one big-block is started its binary variable should be 
one. Also equation (13) controls the fact that if the extraction of one big-block in period t has been 
started ( , 1bbl tB  ), the related binary variable should be kept one till end of the mine life. Both 

equations (11) and (13) contribute to the continuity of the extraction. The results of these 
constraints will be used for the precedence constraint for which the maximum number of active 
big-blocks is needed.  

Number of new big-blocks constraints 
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 ,   1
BBL

NBBLNBBL bbl
bbl

N B N t


                                                       (14) 

 ,, , , 1
1 1

 ,  2,...,    
BBL BBL

NBBL tNBBL t bbl t bbl t
bbl bbl

N B B N t T
 

                                                       (15) 

These two constraints ensure that the number of new big-blocks in each period should be in an 
acceptable range. It is obvious that the number of new drawpoints in period one is more than other 
periods; therefore equation (14) is applied to period one and equation (15) is applied from period 
two to the end of the mine life. 

Precedence constraints 

   , ( ),
0

  ,   1,..., ,  1,...,   bbl

n

bbl t S k t
k

n B B bbl BBL t T


      (16) 

These constraints ensure that all the predecessor big-blocks of a given big-block bbl have been 
started prior to extracting this big-block. 

To apply this constraint, first the adjacent big-blocks of each big-block are determined and then an 
advancement direction is defined. Afterwards, a perpendicular line to the advancement direction is 
imagined at the center point of the considered big-block. Then we have to find a point on the 
perpendicular line using equation (17). The coordinate of this point is ( newX , newY ). 

1
( )new bbl new bblY y X x

m
      (17) 

Where m is the slope of the advancement direction; bbly and bblx are the coordinates of the 

considered big-block in the extraction level; newX is an arbitrary coordinate and as a result, newY is 
calculated by equation (17). Then, using equation (18), the value of D  is calculated for each 
adjacent big-block. 

( )( ) ( )( )adj bbl new bbl adj bbl new bblD x x Y y y y X x       (18)                                

Where adjx  and adjy are the coordinates of the adjacent big-blocks of each big-block. By calculating

D , if the mining direction points to the direction that y increases, big-blocks with 0D  are below 
the perpendicular line and considered as the predecessors of a given big-block and if not, big-
blocks with 0D  are considered as predecessors of the specified big-block. The following 
example contributes significantly to a clear understanding of the methodology used for precedence 
constraint.  

 

Fig 5 shows how to select the predecessors for different advancement directions. A big-block (red 
block) is considered and its adjacent big-blocks are BL1-BL8. In Fig 5, the blue arrow shows the 
advancement direction and the orange line is the imaginary perpendicular line at the center of the 
considered big-block. The related calculation has been summarized in Table 2. According to Fig 
5a, the advancement direction is from SW to NE which means y is increasing; therefore the 
extraction of the big-blocks with the negative value of D should be started before the considered 
block. Fig 5b and Fig 5c are examples of positive values with similar directions. Big-blocks 4, 6, 7, 
and 8 and 6, 7, and 8 are predecessor big-blocks for red block in Fig 5b and Fig 5c respectively, as 
they have positive D . Also, in Fig 5d, as the advancement direction is from E to W and D should 
be negative, big-blocks 3, 5, and 8 that have negative D are chosen as the predecessors. 
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Fig 5. Schematic examples of methodology used in precedence constraint 
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Table 2. Example of calculation to find the predecessors of a big-block in the considered advancement 
direction (Fig 5a) 

Direction: SW → NE  
Slope of advancement direction: m = 1.8 

Considered block’s coordinates: (395,215)  

200newX   

Adjacent 
blocks 

1 2 3 4 5 6 7 8 

Coordinates (365,185) (395,185) (425,185) (365,215) (425,215) (365,245) (395,245) (425,245) 

D 
(Eq. (18)) 

< 0 < 0 < 0 < 0 > 0 > 0 > 0 > 0 

predecessor Yes Yes Yes Yes No No No No 

 

Reserve constraints 

 ,
1

1,    1,...,
T

bbl t
t

x bbl BBL


    (19) 

In this formulation, all material inside of the big-blocks should be extracted. This is controlled by 
equation (19).  

4. Solving the optimization problem 

The proposed MILP model has been developed in MATLAB (Math Works Inc., 2015), and solved 
in the IBM ILOG CPLEX environment (IBM, 2015). A branch-and-bound algorithm is used to 
solve the MILP model, assuring an optimal solution if the algorithm is run to completion. Authors 
have used the gap tolerance (EPGAP) of 1% as an optimization termination criterion. This is an 
absolute tolerance between the gap of the best integer objective and the objective of the remained 
best node. 

5. Case study 

5.1. Grade uncertainty 

A geostatistical study based on the drillhole data of a copper deposit and according to what is 
mentioned in section 2.1 was performed. Geostatistical software library (GSLIB) (Deutsch and 
Journel, 1998) was used for geostatistical modeling in this paper. The data belongs to the copper 
grade, so it is univariate data; this means there is no need for multivariate statistical analysis and 
transferring data to multivariate Gaussian framework to find the correlation between the variables. 
The initial inspection of the locations of the drillholes showed that the drillholes were equally 
spaced. As a result, the declustering algorithm was not implemented. 

There were two parts to the modeling: rock type modeling and grade modeling. The grade 
modeling was implemented for both rock types (ore and waste) separately. 

5.1.1. Rock type modeling 

The principal directions of continuity were found using indicator kriging. Afterwards, the indicator 
variograms were calculated and a theoretical variogram model was fitted with three structures. In 
Fig 6  top left shows the plan view of maximum direction of continuity for rock types at Elevation 
40 and experimental directional variograms (dots) and the fitted variogram models (solid lines) for 
rock type and distance units in meters. At the next step, 20 realizations for rock types were 
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generated using an SIS algorithm. Plan view of rock type simulation for first realization at 
Elevation 40 is shown in Fig 6 (top right). 

 

Fig 6. Rock type modeling and simulation 

 

5.1.2. Grade Modeling 

For ore modeling, the principal directions of continuity were extracted by doing simple kriging 
with the help of arbitrary variograms. Then the copper grades were transformed to Gaussian space. 
In Fig 7 top left shows plan view of maximum direction of continuity for copper grade at Elevation 
40. Traditional variogram calculation and modeling with three structures and a nugget effect of 0.1 
were done for the copper grade. Afterwards, 20 realizations for the copper grade were generated 
using SGS algorithms. The SGS needs a back-transformation to original units. The plan view of 
copper grade simulation for first realization at Elevation 40 is shown in Fig 7 top right. 

5.1.3. Merging grade models into rock type models  

The next step was to match and merge the rock type model with the grade model for each 
realization. Fig 8 shows the plan view of the final simulation for the first realization. Fig 9 shows 
the variogram reproduction of the rock-property (ore) simulation (top) and rock-type simulation 
(bottom) in three major, minor, and vertical directions. Since the variograms were reproduced quite 
reasonably, the generated realizations were considered representative of the grade uncertainty. 
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Fig 7. Grade modeling and simulation 

 

 

Fig 8. Final simulation of first realization at Elevation 40  
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Fig 9. Variogram reproduction at Gaussian units of copper grade (top) and rock-type (bottom) realizations 
(gray lines), the reference variogram model (red line), and the average variogram from realizations (blue line) 

in three directions. 

5.2. Placement of extraction level 

The discounted profit and tonnage of the ore blocks above each ore block in each level were 
calculated and the profit-tonnage curve was plotted. The input parameters for calculating 
discounted profit as mentioned in section 2.2 are block height and extraction rate which were 
assumed to be 10 meters and 15 (meter/period) respectively. This led to selecting the best level for 
starting extraction based on maximum profit for each realization.  

Fig 10a and 10b illustrate the best level of extraction for average simulated and original block 
models, respectively. Fig 10c shows the histogram of the obtained extraction levels for realizations, 
in 40 % of the realizations, level 39 is the best level of extraction.  

To investigate the effect of the grade uncertainty, the presented MILP model should be applied on 
all the simulated block models. Then the NPVs of all simulated- , average simulated-, and original 
block model are compared. To create the average-simulated block model, the average grade of all 
the block models for each cell was calculated to consider one block model instead of all the block 
models and then the best level of extraction was found for the created average block model. 

5.3. Production Scheduling 

To maximize the NPV, the proposed mathematical model was applied to generate the production 
schedule for the level 39 of the all block models.  

The ore blocks layout for level 39 was determined (e.g.Fig 11b). Then based on the method 
presented by Khodayari and Pourrahimian (2015) the best advancement direction for level 39 was 
determined (see Fig 12a) . Afterwards, because of the distances between drawpoints and the 
assumed footprint size (30m × 30m), the blocks were placed into bigger blocks along the 
advancement direction. Additionally, as the big-blocks close to the boundaries did not constitute a 
complete set (with nine small blocks), only sets with seven or more blocks were considered (see Fig 
12b).  
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Fig 10. (a) Best level selection based on tonnage-profit curve of average-simulated block model, (b) best 

level selection based on tonnage-profit curve of original block model, (c) histogram of best level of 
extraction for simulations 
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Fig 11. (a) Block model of ore-body, (b) outline of ore-body at level 39 

 

 
Fig 12. (a) Best advancement Direction based on the profit at the best level, (b) Schematic view of 

considering big-blocks with more than seven small blocks  

A big-block contains seven, eight, or nine small ore blocks and all the small ore blocks above the 
big-block in the extraction level. Afterwards, the average grade of new big-blocks column was 
calculated using a weighted average method. Also, the total ore tonnage and profit values of each 
big-block column were calculated. After the big-block columns were created, the optimal 
production schedule was generated for the columns. The objective was to maximize the NPV. 
Table 3 shows the scheduling parameters to generate the production schedule. The coefficient 
matrices were created in MATLAB (Math Works Inc., 2015). CPLEX (IBM, 2015) was used to 
solve the problem. The model was run for level 39 on original block model with 91 big-block 
columns over 15 periods. 
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Table 3. Scheduling parameters 

Parameter Value  Parameter Value 

T  15  ($ )P tonne 6,000 

( )MCL Mt  1.2  ($ )SC tonne 0.5 

( )MCU Mt  3  ($ )MC tonne 10 

(%)GL  1.3  ($ )PC tonne 16.1 

(%)GU  1.6  
,1NBBLN  27 

( )ExtL Mt  0.09  
,1NBBLN  0 

( )ExtU Mt  0.35  
,NBBL tN  5 

i (%)  10  
,NBBL tN  2 

(%)R  85    

 

The amount of extracted ore was 39 Mt with the NPV of $1.036 B. Fig 13 shows the production 
average grade and production tonnage in each period for this level. As it can be seen from the 
production graph, the maximum amount of material has been extracted in early periods and for the 
rest of the mine life it has been decreased gradually. Also in the grade graph, it has been increased 
slowly in early periods and the material with higher grades were extracted at first, then it starts 
decreasing near the end of the mine life. Fig 14 shows the number of active and new big-blocks in 
which the number of new big-blocks are within the defined range. The formulation tries to open 
more big-blocks at the first period in order to maximize the NPV and because of that 25 big-blocks 
were opened at period one. Moreover, the precedence of extraction is shown in Fig 15. 

The tonnage and NPV changes for all the realizations and original block model at level 39 were 
examined. Fig 16 illustrates the frequency of NPV at level 39 for all the realizations. As it can be 
seen, the NPV varies between $0.96 B and $1.08 B. Fig 17 shows the tonnage analysis, the ore 
tonnage changes between 33.1 Mt and 39.6 Mt and for the original block model it stands above the 
average. 

 
Fig 13. Production tonnage and average grade of production at level 39 
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Fig 14. Number of active and new big-blocks for each period at level 39 

 

 
Fig 15. Starting extraction period of big-blocks at level 39 (numbers represent the starting period) 
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Fig 16. The NPV frequency for all the realizations at level 39 

 
Fig 17. The tonnage frequency for all the realizations at level 39 

 

6. Conclusion 

Geological uncertainty has been used in open-pit mining, but is less studied in underground 
mining, especially in block caving, where it is not so easy to revise production plans after caving 
has begun. The methodology used in this paper is able to find the best extraction horizon placement 
under grade uncertainty. Also, it is able to define an optimal production scheduling using 
mathematical programming and MILP formulation in MATLAB and solving it using CPLEX.  
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Optimizing one block model (original or average-simulated) will result in a single number. But 
when a number of block models are optimized, the obtained results show a range associated with 
the risk of project. 

The results from the NPV analysis showed that the difference between the NPV of original block 
model and the minimum value was 7.15% and the difference from the maximum value was 4.41%. 
Following the same manner for tonnage, those differences from minimum and maximum values 
were 17.63% and 1.6%, respectively.  
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