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Abstract 

Simulation has proven to be a powerful tool for assessing the performance of complicated 
uncertain systems with numerous interconnected parts with time-varying parameters. 
Simulation is especially useful where optimization methods fail to capture the complexity 
of real-world dynamic systems. A general reusable discrete-event simulation tool is 
developed and verified to analyze the behavior of open pit mining operations. The 
simulation tool imitates the truck-shovel operation and its interaction with the mining fleet 
management systems. The simulation model is linked to the mine production schedule. The 
developed simulation tool accurately monitors the system’s major KPIs. The simulation 
model is run for predetermined number of replications over the desired planning time 
horizon to generate tight half-widths around the monthly and shift-based KPIs with high 
confidence level. The tool includes a thorough implementation of a dispatching logic which 
mimics real-world dispatching systems in allocating trucks to the neediest shovels on the 
shortest travel path. Moreover, a new algorithm is developed for truck allocation by MOL 
and was implemented in the system. Comparing the new algorithm with the common real-
world dispatching systems on a case-study provides a 10% improvement in the production 
of the operation.  

1. Introduction 

Mining projects, and more specifically surface mines, are capital intensive ventures with high 
operating costs. Approximately 50% of the operating costs in open pit mines (Alarie & Gamache, 
2002) and even 60% in large open pit mines are allocated to haulage and materials handling 
(Ahangaran, Yasrebi, Wetherelt, & Foster, 2012; Akbari, Osanloo, & Shirazi, 2009; Alarie & 
Gamache, 2002; Oraee & Goodarzi, 2007). Therefore, optimization of the operational mine plans 
and the fleet management has a significant impact on operation efficiency. 

Our research endeavors are focused on simulation and optimization of mine operational plans and 
its interaction with the extraction plants. The preliminary research (Tabesh, Azimi, & Askari-
nasab, 2012) is geared towards integration of mine discrete event simulation and fleet management 
system to optimize the mining operation in one framework. The simulation and optimization tools 
work together towards generating a near-optimal and practical mine fleet management system 
working in presence of uncertainty. Correct implementation of the fleet management systems’ logic 
in the integrated simulation and optimization framework is key to the success of this research. The 
dispatching logic integrated into the mine simulation needs to closely mimic the algorithms and 
logic implemented in today’s industrial mine fleet management systems, such as DISPATCH® 
(Modular Mining Systems, 2016), Wencomine (Wenco Mining Systems, 2013), Jmineops (Leica 
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Geosystems, 2016), and CAT® MINESTAR™ FLEET (Caterpillar, 2016). As of majority of 
mines around the world and almost all of the active mines in north America are using 
DISPATCH® (Modular Mining Systems, 2016) we simulated a mine operation with embedded 
DISPATCH® in this paper as a benchmark model to verify reliability of MOL dispatching 
algorithm. 

In the following sections, we first briefly go over the previous mining operation simulation studies. 
Then in the next section, we introduce some of the currently in use mining fleet management 
systems where subsections are providing mathematical background of the DISPATCH®. In section 
four, the system to be modeled, objectives to be achieved in this study, key performance indicators 
(KPIs), and flow diagram of the simulation model are presented followed by modeling approach in 
section five. Section six introduces an open pit mine as a case study. Before presenting conclusions 
in section eight, results of the simulation are presented and discussed in section seven. 

2. Literature Review 

The fleet management system mainly works based on two different setups: 1) fixed truck allocation 
and 2) flexible truck allocation. Transition of fleet management systems from fixed to flexible 
truck assignments has been investigated for more than 40 years. The first dispatching system 
applied in a limestone quarry operation in Germany showed a great improvement in the efficiency 
of the equipment (Bonates & Lizotte, 1988).  Results of that implementation ended up introducing 
different dispatching packages with different optimization criteria to mining industry. 

In fixed truck allocation setup, at the beginning of each shift a group of trucks is locked to each 
transportation route. The trucks allocated to the paths are to work on the same path over the shift 
based on several criteria, such as production requirement, availability of the trucks in the fleet, etc 
(Y. Lizotte, Bonates, & Leclerc, 1987; Yves Lizotte & Bonates, 1987). The paths to which trucks 
have been allocated will not change until a shovel breaks down or a critical event happens. Some 
efforts to modify this method have been seen in the literature. In flexible truck allocation, a number 
of available trucks in the fleet are assigned to a specific working shovel at the beginning of the 
shift. But these trucks, instead of being in the service of a single shovel or a single route during the 
shift, will receive a new assignment from the dispatch system every time after loading at the 
shovels and tipping at the dumping destinations. It has been shown that flexible truck allocation 
improves productivity of the operation by a high percentage. 

First, Bogert (1964) suggested the use of radio communication between equipment operators and 
the mine control centre. In the late 1970s, Mueller (1977) introduced implementation of the 
dispatching boards installed in the control centre. This method of operation scheduling is the least 
productive method and from Kolonja and Mutmansky (1993) to Hashemi and Sattarvand (2015), it 
has been consistently used as a base method to study the performance of other algorithms and 
approaches. Kolonja and Mutmansky (1993) documented differences in production comparing 
fixed truck allocation and flexible truck allocation strategies.  Furthermore, Hashemi and 
Sattarvand (2015) in a simulation study of the Sungun Copper mine operation showed that by 
implementing a flexible allocation strategy the productivity of the mine increased by 8% in 
comparison with the fixed allocation. Olson et al. (1993) reported a 13% increase in the production 
of the Bougainville Copper Mine using the flexible truck allocation. Also, a 10 to 15% 
improvement in the productivity of the Barrick Goldstrike Gold mine, a 10% growth in iron ore 
production at the LTV steel mining, and a 10% increase in the production of the Quintette Coal 
mine were reported by Olson et al. (1993). Therefore, we will review the literature on flexible truck 
allocation for the rest of this section. 

In Bonates and Lizotte (1988) the authors evaluated application of a dispatching system using a 
computer simulation model. In the model, fleet management systems were categorized in 3 main 
groups including: Manual Dispatching, Semi-Automated Dispatching and Automated Dispatching. 
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The resulted model which was developed in FORTRAN, attempts to take into account the real 
features of the mine and optimize the utilization of the trucks and shovels as a Linear Programming 
(LP) objective function. Li (1990) introduced a methodology for optimum control of shovel and 
truck operation by defining an LP optimization model. 

Soumis, Ethier, and Elbrond (1989) developed a nonlinear procedure to solve the mining truck 
dispatching problems. The algorithm proposed by them, was based on a nonlinear objective 
function with 3 main components including: deviation of shovels’ operational excavation from the 
objective rate, deviation of trucks’ real working hours from their scheduled operating hours, and 
penalties assigned to deviation from desired quality of input to the plant (Soumis, et al., 1989). 
Forsman, Rönnkvist, and Vagenas (1993) developed a computer simulation model for Aitik open 
pit mine operation. In their simulation model graphical model of the mine was built implementing a 
discrete event modeling microcomputer called METAFORA. Optimum number of trucks required 
to achieve the production target is obtained from the simulation (Forsman, et al., 1993). Gove and 
Morgan (1994) worked on truck-shovel matching and the influential parameters using CAT’s fleet 
production and cost (FPC) software (Gove & Morgan, 1994).  Ataeepour and Baafi (1999) worked 
on a simulation model for truck-shovel operation using Arena (Rockwell Automation, 2016) to 
assess both dispatching and non-dispatching mining operations. Their study can be divided into 
two major sections: The first step is to monitor the effect of number of trucks in system utilization, 
and the second step is to develop a dispatching rule based on minimizing truck waiting times. In 
the same year Basu (1999) proposed a dispatching strategy on the same logic base as developed by 
Ataeepour and Baafi (1999).  

 At the beginning of the 21st century, Alarie and Gamache (2002) conducted a research on solution 
strategies used in truck dispatching systems for open pit mines. Based on their research, 
dispatching problem can be solved using two major approaches: single stage and multistage. The 
algorithms developed in a single stage approach send trucks to the needy shovels by solving one 
order of optimization problem while in a multistage approach an optimum production target is set 
for the operation using LP or heuristic methods. In the lower stages the assignments are handled in 
a way that the deviation of operational excavation from the targets, suggested by upper stage, are 
minimized. Wang, Zhang, Chen, and Xu (2006) studied truck real-time dispatching from a 
macroscopic point of view. They first defined internal nodes on each path and then evaluated the 
flow rates of the trucks on each route. Results illustrated that the proposed model shows better 
results in comparison with the conventional dynamic programming (DP) methods. Burt and 
Caccetta (2007) proposed another approach for the calculation of a match factor for heterogeneous 
fleets. Based on their method, if different cycle times are calculated for different truck types and 
shovel types, a match factor for the fleet is achievable. The proposed method is also capable of 
considering different haul road features. Krause and Musingwini (2007) used a machine repair 
analogy to analyze and determine truck fleet size for an open pit mine. They chose Arena 
(Rockwell Automation, 2016) for the simulation part “because it can be programmed with any 
number of probability distribution fitted to an unlimited number of cycle variables and is therefore 
a very flexible model for use in analyzing several variables in shovel-truck analysis”. 

Jaoua, Riopel, and Gamache (2009) developed a framework for realistic microscopic modeling of 
surface mining transportation systems. Advantages of the framework were highlighted as a library 
for the real-time allocation, an updater for the truck allocation, and a fuel controller. 

He et al. (2010) implement a genetic algorithm to optimize truck dispatching problems in open pit 
mines. They tried to find a route and assign an upcoming truck to it based on minimized 
transportation and maintenance costs. In their model, it has been assumed that truck velocity in 
both loaded and empty conditions are the same, which is a drawback of their model. Although their 
major focus was on minimizing the costs, by assuming the same velocity for both loaded and 
unloaded trucks, they underestimated costs. Another major drawback, similar to almost all other 
models, is the assignment of trucks to routes rather than to shovel-destinations. Furthermore, they 
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assumed that truck maintenance costs become higher with the age of the truck by a constant 
coefficient, whereas Topal and Ramazan (2012) showed that maintenance cost behaves in a 
fluctuated manner during its life and it will decrease considerably after every overhaul. 

Another model provided by Subtil et al. (2011) is used in the commercial package SmartMine® 
marketed by Devex SA (Devex, 2016). It uses LP, in the upper stage, to determine the maximum 
production capacity of the mine and the optimal size of the truck fleet required to meet the target 
production. The allocation planning stage completely remains to the planner. Moreover, the model 
does not take into consideration other desired characteristics such as grade blending and constant 
desired feed to plants. The dynamic allocation or the truck dispatching is achieved by adopting M 
trucks for N shovels strategy. Using M trucks, the best possible solutions based on undisclosed 
criteria are generated and each solution is simulated 50 times to achieve a desired confidence 
interval. The best solution is found using a multi-criteria optimization, which maximizes 
productivity of the transport fleet and minimizes queue time at shovels and idle time of shovels. A 
fuzzy logic expert system is then used to evaluate the solution and, if passed, dispatch the truck to 
the allocated shovel. The major drawback of the approach can be the cumbersome time consuming 
methodology adopted at the dynamic allocation stage, which requires real- time decisions. The 
authors of this study mention situations where fuzzy logic rejects the best solution and requires re-
running of the entire model to obtain another solution. The alternate solution generated after 
rejecting the first one will be the second best solution, which may again get rejected, leading the 
method in a time-consuming loop. 

Ahangaran et al. (2012) use a two stage model for truck dispatching, where the first stage uses a 
network analysis technique to determine the best routes between departure and destination points 
and second stage provides dynamic truck assignments. The second stage adopts a binary integer 
programming model to minimize the function of the total cost of loading and transportation. This 
dispatching model is significantly different compared to previous models in terms of the objective 
function and the mixed fleet considerations in the modeling equations. One of the major drawbacks 
of this model is that it does not consider traffic over the routes during the procedure to find the 
shortest path. Another drawback is that, although their objective function is to minimize total truck 
cycle time, they do not take into account truck spot time and truck waiting time at both shovels and 
crusher. They did not show the practicality of their model in at least one open-pit mine. As one of 
the latest studies in the field of open pit mining operation simulation, Que, Anani, and Awuah-
Offei (2016) investigated the effects of implementing real-time correlated variables as non-
correlated single input distribution on the final results of the simulation modeling. The results show 
the correlation exist in truck-shovel operations, although it depends on sensitivity of the results to 
the input variables as well as strength of the correlation. 

3. Fleet Management Systems 

There are many companies across the world providing mine fleet management systems. Some of 
the more popular ones are as follows: Modular Mining Systems, which is used in over 200 mines 
around the world (Modular Mining Systems, 2016), Jigsaw Software, which is installed in 130 
mines (Leica Geosystems, 2016), and Wenco, which currently has 65 mine sites across the world 
(Wenco Mining Systems, 2013). TATA consultancy services has introduced Dynamine with a 
range of productivity improvement of 10% to 15% (TATA consultancy services, 2016). However, 
Micromine with Pitram system (Micromine, 2009) and Caterpillar with CAT® MINESTAR™ 
FLEET (Caterpillar, 2016) are the next leaders of mine fleet management systems.  

The algorithms behind commercial mine fleet management systems are proprietary information, 
and therefore the companies do not disclose the logics. Consequently, a comparison of the 
optimality of the fleet management solutions is not feasible. However, in the 1980s and early 
1990s, the Modular Mining System (Olson, et al., 1993; White & Olson, 1986) published their 



Moradi A. et al.  MOL Report Seven © 2016 202- 5 
 
 
models and algorithms, and based on these, the DISPATCH® (Modular Mining Systems, 2016) 
mine fleet management system has been developed. Thus, in this section we review the algorithms 
behind DISPATCH® (Modular Mining Systems, 2016) that were publically available. 

Figure 1 and Figure 2 illustrate the procedure DISPATCH® (Modular Mining Systems, 2016) 
follows to find the solution and the algorithms implemented to complete the tasks, respectively. 
First, the data from the pit and manual assignment are input to DISPATCH® using forms. Then, 
the shortest paths to send material from loaders to the destinations are found using the Dijkstra 
algorithm. As the next step, an LP model is run to find the optimum material flow rate of each 
route. Finally, using DP, trucks in the available trucks list are assigned and all information is 
updated. 

 
Figure 1: Schematic representation of DISPATCH® block diagram 

 
Figure 2: Procedure through with DISPATCH® assigns trucks 

4. DISPATCH® 

4.1. Finding the shortest path - DISPATCH® 

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or 
nodes) in a graph such that the sum of the weights of its constituent edges is minimized.  To find 
the shortest path, DISPATCH® uses Dijkstra’s algorithm with the objective of minimizing travel 
time between each pair of starting and ending points. After solving the shortest path problem in 
DISPATCH®, the following information is presented to the operation optimization model: 1) total 
minimum distance and travel time for each specific transport and 2) the nodes trucks must pass 
through to reach the destination. 
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4.2. Production optimization - DISPATCH® 

DISPATCH® uses linear programming approach to optimize the production target within a 
specific time horizon by dividing it into two separate but weakly coupled models. The first one, Eq. 
(1), optimizes the total production of the operation, including mining, processing, and stockpiling, 
and the second part, Eq. (5), maximizes the fleet production by minimizing the total required 
volume to be handled. The second part generates a theoretical haulage master plan that considers 
production and operational constraints and is later used as a reference to generate real-time truck 
assignments. White and Olson (1986) and Olson et al. (1993) describe the model as follows: 
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Where: 

mN , sN , and qN  are the number of shovels at mining faces, the number of shovels 
working at stockpile, and the number of quality constraints 

mC , sC , qC , and pC  are the material transportation pseudo cost (hr/m3), the stockpile 
material handling pseudo cost (hr/m3), the quality pseudo cost 
(hr/m3), and the pseudo cost of low feed to plant (hr/m3) 

iQ  is the material being transported per hour (m3/hr) that should be 
determined in the procedure 

jL  is the quality director: 1 for low crit and -1 for high crit 

ijX , jX L , jX A , and jX U  are the thj  quality factor at thi  shovel, the lower limit for quality 
factor j, the running average value of quality factor j, and the 
upper limit for quality factor j 

tP  is the target rate of plant feed 

iR  is the digging rate at thi  shovel 

cM  is the 1st in/1st out average control mass, kg 

SG  is the specific gravity 

cT  is the base control interval (hr) 

All pseudo costs are chosen arbitrarily with respect to ( mC < qC  < sC  < pC ). 

As the second segment of the LP model, DISPATCH® tries to minimize total haulage capacity 
needed to meet shovel production coverage: 
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Where: 

V  is the total mine haulage (m3) 

pN  is the number of feasible haul routes 

iP  is the haulage on path i which should be determined (m3/hr) 

iT  is the path i travel time (hr) 

dN  is the number of dumps for mine haulage 

jP  is the net haulage input to dump j (m3/hr) 

jD  is the average dump time at dump j (hr) 

eN  is the number of operating shovels 

sT  is the fleet average truck size (m3) 

piN  is the number of feasible input paths at node j 

poN  is the number of feasible output paths at node j 

kP  is the input path haulage (m3/hr) 

kP   is the output path haulage (m3/hr) 

jR  is the limiting rate at node j (m3/hr) 

The model, Eq. (1), introduces the first segment of the operation optimization as a pseudo cost-
based LP, which is established on the summation of costs in all four operational sectors of the 
mine. The solution of the first segment presents the shovels’ production rates with respect to the 
maximum digging rate for a shovel, Eq. (2), the maximum capacity of the plant, Eq. (3), and the 
lower and upper bounds of the blending grade, Eq. (4). The second segment’s LP maximizes the 
production of the operation by allocating a minimum number of trucks to each active route, Eq. (5) 
to meet the routes production rate. Eq. (6) makes sure that the input and output flow at each shovel 
and each dumping point are equal. Eq. (7) and (8) guarantee that the amount of material handled 
meets the grade requirements at the plant cannot exceed the amount produced by the mine and 
stockpile. Coupling segments of the operation plan is attained by constraining total production of 
all routes servicing a shovel to be greater or equal to the shovel production, Eq. (9). It should be 
mentioned here that both P and Q in Eq. (9) are vectors. Finally, Eq. (10) ensures that all haul rates 
in the mine are nonnegative. One benefit of the model is that it follows the current status of the 
mine by using real-time data. Another advantage of the model is that the optimum production rate 
of each route is based on the volume of material, not based on the number of trucks. That helps the 
dispatching step to send the proper truck to cover the shortage. A major drawback of the model is 
that it does not consider stripping ratio limitation in the operation. By limiting the lower bound of 
digging rates at each shovel to zero, they allowed the model to ignore a shovel operating at waste 
mining face. Another disadvantage of the model is that the plant head-grade requirement is 
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constrained to a range of grade between predefined upper and lower limits. It will cause an 
undeniable short-term influence on both plant output (final product) quantity and its input 
(utilization of some specific shovels which must be met up to the minute) (Temeng, Otuonye, & 
Frendewey, 1998). However, most of the drawbacks of DISPATCH® will arise in the real-time 
dispatching model that will be explained in more detail in the next section. 

4.3. Real-time Dispatching - DISPATCH® 

After solving the upper stage – operation optimization – LP problem by implementing the Simplex  
method (Dantzig, 1951), resulting in the optimum material flow rate on routes, White and Olson 
(1986) employ the dynamic programming (DP) (Bellman, 1954) approach to send trucks to the 
proper destination. To do so, two lists and three parameters are defined. A list of needy shovels or 
LP-selected paths and a list of trucks dumping material at discharge points or en-route from a 
loading point to a destination are provided. In addition, need-time, Eq.(11), which is defined as the 
expected time for each path’s next truck requirement, is formulated as follows: 

  /i j ij j j ineed time L F A R P        (11) 

Where: 

jL  is the time the last truck was allocated to the shovel j 

ijF  is flow rate of path i over the total flow rate into shovel j 

jA  is total haulage allocated by time jL  to shovel j 

jR  is haulage requirement of shovel j 

iP  is path flow rate (ton/hr or m3/hr) 

So, the neediest path, which is on the top of the neediest shovels list, will be the one with the 
shortest need-time. Then lost-ton is defined and formulated as a criterion to find the best truck for 
the neediest path from the truck list with Eq.(12): 

 truck size total rate
lost ton truck idle excess travel shovel rate shovel idle

required trucks


        (12) 

Where: 

Truck size is the size of truck being assigned; Total rate is total digging rate of all shovels in the 
mine; Required trucks is total required trucks in the LP solution; Truck idle is expected truck idle 
time for this assignment; Excess travel is extra empty travel time to neediest shovel; Shovel rate is 
sum of all path rates into neediest shovel; And shovel idle is expected shovel idle time for this 
assignment. 

Considering the lost-ton definition, the truck covering lost-ton of neediest shovel the most is the 
best truck. After the best truck is assigned to the neediest shovel, it is moved to the last position on 
the needy paths’ list and the procedure is repeated for the second neediest until all trucks on the list 
are assigned. 

Defining a rolling time horizon when a sequence of assignment is needed is a benefit of the model. 
The information of the mine status used in the model is always up to the minute. However, the 
model does not consider the effect of current truck assignment on the forthcoming truck matching, 
though all trucks previously sent to the shovels are considered. Another drawback of the model is 
that despite the authors’ claim, the solution method is not a DP. It is a heuristic rule solving each 
sub-problem based on the best solution of previous sub problems.  According to Alarie and 
Gamache (2002),  the solution method’s misnaming as a DP is perhaps because of the authors’ 
misunderstanding of Bellman’s principal of optimality. However, the DISPATCH® system has 
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been  implemented in about 200 mines all around the world (Modular Mining Systems, 2016). 
Table 1 summarizes the procedure with which DISPATCH® solves a mine production problem. 

Table 1: Summary of the models DISPATCH® uses in the fleet management systems 

Category Shortest Path Allocation Dispatch 

Objective Minimize travel time Minimize total trucks required 
Minimize lost-tons caused 

by the assignment 

Constraints 
Intermediate call points a 

truck should pass 

Shovels’ digging rate 
Dump area capacity 

Continuity at each loading and 
discharge point 

Total number of trucks available 
in the fleet 

Blending limits of grades 
Targets of material category 

blending 

Proximity of  truck that  
asks for an  assignment  to 

the destination 

Solution 
Method 

Dijkstra  Simplex Dynamic Programming 

Advantages  

  Algorithm often does not 
have to investigate all edges 
Dijkstra's algorithm has an 
order of n2 so it is efficient 
enough to use for relatively 

large problems 

 Model is up to the minute 
Flowrate of each route is based on 
the volume of the material rather 

than number of trucks 

   Progressing time horizon 
when order of assignment 

is required 
  Under-/Over-truck 

conditions considered 

Disadvantages  

Model is time consuming 
Failure in cases of negative 

edges 
Global information of the 

road network required  

 Appropriate when a few variables 
are at play 

Non-negative constraints for all 
variables 

Definition of a progressing 
time horizon for an order 

of assignment  
Consideration of under-
/over-truck conditions 

 

5. MOL heuristic 

The algorithm follows 1-truck-n-shovel approach addressed by Alarie and Gamache (2002). In this 
approach, the shovel need is updated when it moves to a new polygon and when a truck requests 
for a new assignment the algorithm runs and allocates the truck to a shovel based on a balance 
between shortest distance between the shovels and the truck location and the neediest shovel. 

Step 1: Calculating required haulage capacity of shovel i. 

Step 2: Determining allocated capacity to shovel i so far.  

Step 3: Finding the shortest paths to the shovels from the current truck position. 

Step 4: Calculating the normalized distances of the determined shortest paths. 

Step 5: Sending the truck to the shovel with a minimum balance between its need and distance. 

6. System Definition 

6.1. System 

In this paper, a whole mining operation is studied. The system includes one open-pit mine, haul 
network, two processing plants and one waste dump. At the beginning of the operation, trucks are 
assigned and travel to a shovel from the bay. Then the loading process is done by the shovel. 
Afterwards, loaded material is transported to one of the destinations. As the next step in the system, 
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the truck reaches the destination and backs up to the exact dumping location to dump the material. 
Here is the time dynamic programming part of DISPATCH finds the best truck among those just 
dumped their material into a dump and the trucks en route to a dumping point. At the same time, it 
finds the neediest shovel and matches the best truck with the neediest shovel. Then the truck travel 
to the shovel where dispatching system assigned it to. In the system with MOL heuristic, 
simulation model runs the MOL algorithm instead of DISPATCH when a truck dumps its load. 
Another major optimization component of the system is the linear programming segment of 
DISPATCH that runs every 30 minutes and whenever the system experiences a major change. 
Figure 3 illustrates the flow diagram of the operation. 

6.2. Objective of the simulation 

The main goal here is to analyze and verify the reliability of the MOL dispatching algorithm with 
respect to DISPATCH® in simulation modeling of mining operation. To achieve this goal, we use 
the Gol-E-Gohar open pit mining system as a case study.  

6.3. Key Performance Indicators 

We have to define major Key Performance Indicators (KPIs) in order to compare the two systems 
and asses the reliability of our algorithm. Here in this specific project what we are considering as 
KPIs are: total material input to each processing plant, tonnage of ore and waste material 
transported, stripping ratio, total amount of material transported, Loading time, Spot time, Dump 
time, Backing time, Empty and Loaded velocity of the trucks, and the utilization of the shovels. 
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Figure 3: Flow Diagram of the Mining Operation Simulation Model 
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7. Case Study – Gol-E-Gohar Iron Ore Mine 

7.1. Mine Location and Its Operation Fleet 

Gol-E-Gohar iron ore mine is located in Kerman Province of Iran. The project lies in southwest of 
the province, approximately 50 km southeast of the city of Sirjan (Figure 4). Mining operation in 
Gol-E-Gohar is being handled by a truck shovel system. The operating fleet consists of Hitachi 
EX2500 and Hitachi EX5500 excavators and rigid frame rear dump Cat 785C and 793C trucks. 
There are three main dumping points for the loaded trucks including two processing plants and one 
waste dump each of which has two hoppers (or dumping point in the case of waste dump). Figure 5 
shows the location of loading and dumping points as well as the road network for the year 11 of the 
operation. Furthermore, Table 2 presents general specifications of the operating system. It is also 
worthnoting that the mine operates for a single 12-hour shift a day for 340 days a year. 

 

 

Figure 4: Location of the Gol-E-Gohar Project in Kerman Province of Iran 

 

Figure 5: Gol-E-Gohar Iron Ore Mine Year 11 Road Network and loading and dumping locations 
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Table 2: General specifications of the operation fleet 

No. Loading Point Destination 
Starting 

Distance (m) 
Loader Hauler 

1 Shovel 1 
Plant 1 4129 

Hitachi EX2500 Cat 785C & Cat 793C 
Plant 2 3626 

2 Shovel 2 
Plant 1 4196 

Hitachi EX2500 Cat 785C & Cat 793C 
Plant 2 3693 

3 Shovel 3 Waste Dump 1930 Hitachi EX5500 Cat 785C & Cat 793C 

4 Shovel 4 Waste Dump 1850 Hitachi EX5500 Cat 785C & Cat 793C 

5 Shovel 5 Waste Dump 4295 Hitachi EX2500 Cat 785C & Cat 793C 

 

7.2. Input parameters into the simulation model 

Input parameters are required to run the simulation model. However, these required input 
parameters are uncertain due to their nature. To account for the uncertainty of the parameters 
different distributions were fitted. Using Kolmogorov-Smirnov and Chi Square tests, the best 
function with the least square error from the empirical data was selected for each parameter. Figure 
6 represents the best fitted distributions on the dump time for both types of truck in the fleet tested 
by aforementioned tests. The main input parameter to be used in simulation model are: trucks spot 
time at each shovel, varies based on truck type and shovel type combination and mainly following 
Lognormal probability density function (PDF); number of passes required to load each truck type 
with a specific shovel type; loading cycle time for each shovel type loading a truck type, which 
changes based on types of equipment as well as change in season; amount of material each shovel 
type loads to a specific truck type in a single loading cycle; velocity of trucks in the mine road 
network when they are carrying material varying based on truck type; velocity of empty trucks, 
which varies based on truck type as well; duration of each truck type backing up at dumping points; 
and the time it takes for the trucks to dump their material into a dumping point varying based on 
truck type. Table 3 introduces the best fitted models on some of the aforementioned parameters to 
be used in the simulation. 

 

 

Figure 6: Best fitted distributions on dump time to be used as input parameter in simulation: a) time 
(seconds) it takes Cat 785C to dump its loaded material; b) Cat 793C dump time (seconds) 
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Table 3: Summary of some of the input parameters best fitted distribution 

Data set Truck & Shovel combination Best fitted distribution 

Spot time(s) 

Hitachi EX2500 & Cat 785C LOGN(32.7, 26.5) 

Hitachi EX2500 & Cat 793C LOGN(42.4, 41.4) 

Hitachi EX5500 & Cat 785C LOGN(69.7, 94.6) 

Hitachi EX5500 & Cat 793C LOGN(79, 114) 

Winter loading cycle time(s) 

Hitachi EX2500 & Cat 785C NORM(17.1, 0.526) 

Hitachi EX2500 & Cat 793C TRIA(16.6, 18, 18) 

Hitachi EX5500 & Cat 785C NORM(16.5, 0.99) 

Hitachi EX5500 & Cat 793C 16.6 + ERLA(0.254, 3) 

Loaded velocity (km/hr) 
Cat 785C 3.6 + GAMM(10.04, 22.79) 

Cat 793C 1.06 + LOGN(18.64, 7.56) 

Dumping time(s) 
Cat 785C NORM(60.1, 27.9) 

Cat 793C NORM(62.7, 28.7) 

8. Results 

In this paper, we have built two simulation models to investigate the DISPATCH optimization 
algorithms (i.e. upper stage LP algorithm and lower stage DP algorithm) and compare it against a 
heuristic algorithm developed in MOL based on some modifications on DISPATCH.  We have 
used historical mining data to create random distributions for various input parameters and built the 
models in Arena simulation package. The two models and the verification process are explained in 
the following sections. 

8.1. Input parameters’ distribution 

As the first section of the reliability analysis, we look at the random distribution functions fitted on 
historical data and compare them against the historical. We ran the simulation model with the fitted 
distributions and compared the sampled values against historical values by plotting histograms of 
the two sets of data, a quantile-quantile plot and a box-plot of the simulated values. As examples, 
we present empty velocity of Cat 793C trucks, loaded velocity of Cat 793C trucks, backing time of 
the same truck types, loader bucket tonnage when a Hitachi EX2500 shovel loads a Cat 785C 
truck, time it takes Cat 793C trucks to dump their load into a dumping point, loading cycle time for 
Hitachi EX2500 loading Cat 785C trucks, and spotting time when a Hitachi EX2500 loads a Cat 
793C are illustrated in Figure 7 to Figure 13, respectively. Looking at these figures we can 
conclude that the random distributions fitted on historical data are verified to a good extent and we 
can move forward to running the models and obtaining simulation results for the two models.  
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Figure 7: Truck type Cat 793C empty velocity: quantile-quantile plot, box plot of the simulated values, and 

histograms of collected data from the simulation results and database, respectively. 

 

 

 

 
Figure 8: Truck type Cat 793C loaded velocity: quantile-quantile plot, box plot of the simulated values, and 

histograms of collected data from the simulation results and database, respectively. 
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Figure 9: Truck type Cat 793C backing time: quantile-quantile plot, box plot of the simulated values, and 

histograms of collected data from the simulation results and database, respectively. 

 

 

 

 
Figure 10: Shovel type Hitachi EX2500 loads truck type Cat 785C bucket tonnage: quantile-quantile plot, 

box plot of the simulated values, and histograms of collected data from the simulation results and database, 
respectively. 
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Figure 11: Truck type Cat 793C dump time: quantile-quantile plot, box plot of the simulated values, and 

histograms of collected data from the simulation results and database, respectively. 

 

 

 

 
Figure 12: Hitachi EX2500 loading Cat 785C loading cycle time: quantile-quantile plot, box plot of the 

simulated values, and histograms of collected data from the simulation results and database, respectively. 
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Figure 13: Hitachi EX5500 loading Cat 793C spotting time: quantile-quantile plot, box plot of the simulated 

values, and histograms of collected data from the simulation results and database, respectively. 

 

8.2. Production 

After proving that the distributions representing the uncertain input parameters match with the 
database, the simulation model was set up for 5 replications (decided based on required halfwidth 
shown in Figure 14 and Figure 15). Then, the model was run two times each time for 91 days of 
operation. At the first step, the model was run with the embedded DISPATCH. Afterwards, MOL 
dispatching heuristic was used to handle the truck assignments. Finally, the results of the two 
models were compared. The comparison considering weekly production of ore, removing the 
waste, and input material into each plant are represented in Figure 14 to Figure 21. Both models 
work using a short-term production schedule obtaiend from (Upadhyay & Askari-Nasab, 2016). 

Results of the Gol-E-Gohar mining operation simulation model show that total weekly production 
of the mine with embedded DISPATCH starts with 1.08 million tonnes per week in the first week 
of the study. After having a smooth fluctuation between week five and week eight the production 
reaches a steady weekly rate of 92.5% of its initial production and 88.4% of the maximum 
acheivable production of the system (Figure 14). On the other hand, the operation does not feed 
both of the plants with the same rate. Figure 14 shows that plant 2 is always being fed by 20 to 
35% more than plant 1 since it is closer to pit. 

The same simulation model for the case study was run with the embedded MOL heuristic to 
dispatch trucks. The result of the 91 days of the operation is presented in Figure 15. At the first 
week, the operation starts with removing 1.09 million tonnes of ore and waste meeting its highest 
production on week five with a 4% increase and its lowest production on week six with 3% short 
comparing with the first week of the operation. The operation reaches a steady state from week 
seven. Morover, the processing plants are fed almost balanced with a gap of less than 5% 
difference between the amounts of material sent to each of the plants. 
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Figure 14: Weekly production of the operation using DISPATCH as the fleet management system over 12 

weeks of the operation. 

 

 
Figure 15: Weekly production of the operation using MOL fleet management system over 12 weeks of the 

operation. 

8.3. Queue at shovels 

Number of trucks in queue at each loader is one of the important KPIs to evaluate the performance 
of a dispatching technique. To have a more representative graph, box plots of queue length at 
shovels are presented in Figure 16for over the first 20 shifts of the operations. The upper graph 
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illustrates how trucks line up in queue of shovels in the simulation model with embedded MOL 
heuristic. The second graph in Figure 16 shows the number of trucks in queue at shovels in each 
shift when the simulation model uses DISPATCH as its fleet management system. 

Although the first graph in Figure 16 represents that 35% of the time there are less than or equal to 
two trucks in line of the shovels when MOL heuristic is being used, investigation over the period of 
20 days as shown on the same figure prove that both dispatching systems have almost the same line 
up in queue of shovels over the shifts. 

 
Figure 16: Queue length at shovel 1 per shift: upper plot stands for MOL logic and lower plot presents 

simulation with embedded DISPATCH 

8.4. Shovel utilizations 

As one of the most expensive mining equipment in open pit mining operation, utilization of the 
shovels is one of the important KPIs to measure in the open pit mining simulation modeling. As it 
was mentioned in the case study section of the paper, there are five active shovels working in Gol-
E-Gohar open pit mining operation: three Hitachi EX2500 and two Hitachi EX5500. Utilizations of 
these five active shovels were tracked over the simulation time of 91 days of the operation. Figure 
17 provides overall instantaneous utilization for the shovels. Orange bars stand for shovels’ 
utilization in the operation with embedded DISPATCH and the blue bars represent utilization of 
the shovels in the operation using MOL heuristic to dispatch trucks to the shovels. 

Figure 17 shows that in the operation with embedded DISPATCH send more trucks to shovel 5 
than shovel 1. The reason is that DISPATCH is considering minimum distance to send truck to the 
shovels. Here in this case shovel 5 is working in a closer distance to the dumping points than 
shovel 1 which is working in the bottom of the pit. As a result, DISPATCH sends more trucks to 
the shovel 5 than shovel 1. However, in the mining operation with the same priority shovels 
preference is to produce as much ore material as possible. As shown in Figure 17 the rule is 
followed by MOL logic. It is sending more trucks to the ore shovel (shovel 1) than the waste shovel 
(shovel 5) increasing the ore production.  
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Figure 17: comparing shovels’ utilization (MOL logic vs. DISPATCH) 

9. Discussions 

First of all, as presented in the first section of the results, Figure 7 to Figure 13 illustrate accuracy 
of the distributions used in the simulation modeling for the six main uncertain input parameters 
consisting of trucks’ speed when they travel empty (Figure 7), loaded velocity of the trucks (Figure 
8), time it takes a truck to back up at a dump location (Figure 9), shovels bucket tonnage when 
loading an specific truck type (Figure 10), dumping time of trucks at dumping points (Figure 11), 
loading cycle time (Figure 12), and spotting time of the trucks (Figure 13). The quantile-quantile 
plots of the samples obtained from the simulation results versus the data collected from the 
database for fitting the random distributions and the histograms of the simulation results and 
collected data verify that all of the random distributions are fitted properly on the collected data. 

After running the simulation for 3 months of the mining operation as the case study, production 
KPIs of the models were extracted. Figure 18 shows the total amount of material removed from the 
mine on a weekly base. According to Figure 18 operation implementing MOL heuristic produces 
higher tonnage of material over the research period except for week one and week five. Results 
show that in the first week simulation model with embedded DISPATCH produces 0.8% in the first 
week and 0.2% in the fifth week more than the second model. However, the MOL heuristic helps 
the operation to remove almost 4% more material over 3 months of the operation. Figure 19 and 
Figure 20 represent comparison between total ore production as well as weekly feed to each of the 
active plants, respectively. Considering the average total ore produced over each week of the 
operation, the model implementing MOL heuristic sends about 9.8% more material to the plants 
than the benchmark model with embedded DISPATCH (bars in Figure 19 and blue line graphs in 
Figure 20). Comparison between material sent to each plant (green graphs showing ore sent by 
MOL heuristic and red graphs showing ore sent by DISPATCH in Figure 20) an average of 30% 
difference between feeds of plant 1 and plant 2 in DISPATCH is corrected to a gap of less than 5%. 
The reason behind 30% difference in total plant feeds in DISPATCH is that plant 2 is closer to the 
pit rim than plant 1. However, this closeness does not have any effect on the material sent to the 
plant in the model using MOL heuristic. Another aspect of the result of the study to be discussed is 
that the operation has higher stripping ratio when implementing MOL logic in comparison with the 
operation using DISPATCH by 5% (Figure 21). 
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Figure 18: Total material mined including ore and waste over 12 weeks of the operation (a comparison of 

MOL with DISPATCH) 

 

 

 
Figure 19: Total ore tonnage sent to the plants over 12 weeks of the operation (a comparison of MOL with 

DISPATCH) 
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Figure 20: Ore sent to each processing plant and total ore produced over 12 weeks of the operation (MOL 

logic vs. DISPATCH) 

 

 
Figure 21: Stripping Ratio for the material removed in the period of 91 days. 

To sum up, results of the study show three major improvements in the production of the case study 
(Gol-E-Gohar Iron Mine) where DISPATCH was substituted with the heuristic developed by MOL 
to handle truck dispatching. First of all, the study shows about 10% improvement in total tonnage 
extracted from the mine over the operation period of three months. Previous studies in the literature 
proved that implementing DISPATCH in a mining operation improves the production by 
somewhere between 10 to 15 % in different case studies (Kolonja & Mutmansky, 1993; White & 
Olson, 1986) in comparison with the fixed truck allocation. As a result, having 10% improvement 
in production of an operation using DISPATCH means having total improvement of 20 to 25% 
comparing with the operation with trucks locked to each shovel that has been used as a benchmark 
model for almost all of the studies addressed in the literature of truck dispatching (Ataeepour & 
Baafi, 1999; Bonates & Lizotte, 1988; Hashemi & Sattarvand, 2015; Kolonja & Mutmansky, 1993; 
Y. Lizotte, et al., 1987; Olson, et al., 1993; Soumis, et al., 1989; Temeng, Otuonye, & Frendewey, 
1997; White & Olson, 1986). Second advantage of the MOL heuristic over DISPATCH shown in 
the results of this study is more reliable feed balance in a multi plant mining operation. Using MOL 
heuristic instead of DISPATCH in a multiple ore destination operation dramatically improve 
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balance in feeds delivered to each of the processing plants. As it was shown in this paper, in an 
operation with two processing plants with a distance of around 350 meters between plants, 30% 
difference in plant feed rates reduced to less than 5% by replacing DISPATCH with MOL 
heuristic. This improvement happens due to DISPATCH logical drawback of being a single plant 
algorithm. The third major resulted from this study is 5% improvement in the operation stripping 
ratio by substituting DISPATCH with MOL heuristic. The reason behind this improvement is 
preference of ore to waste to be produced when all the shovels are in demand with the same 
priority. 

10. Conclusions and future work 

A heuristic dispatching algorithm was developed in MOL to be used in open pit mining as a part of 
the operation fleet management system to handle truck dispatching. To verify the goodness of the 
algorithm, first a case study of an Iron ore mining operation was selected. Then, well-known and 
widely used Modular mining fleet management system (DISPATCH) was embedded into the 
system to be used as the benchmark model. Afterwards, simulation model was run with both of the 
truck dispatching systems for a time horizon of three months. Comparing the results show 
improvement in the key performance indicators of the system when DISPATCH is substituted by 
MOL heuristic. Higher tonnage of material removed, less variation in plant feed rates, higher 
stripping ratio, balance in plant feed rates in a multi plant mining operation were obtained by 
replacing DISPATCH with MOL heuristic. Moreover, the developed algorithm feeds the plants 
with a difference in feed rate of less than 5% between two plants which shows an improvement of 
25 to 30%. Stripping ratio of the operation was also improved by 5%. However, there is a 
limitation to deal with: although capacity of the plants is not the bottle neck of this model, they 
need to be taken into account in future works. 
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