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Abstract 

As the mineral resources near the surface are being exploited, the mining operation goes deeper 
into the ground, waste removal rates increase, capital and operation costs become higher, and 
environmental impacts are more evident. In such a situation, underground mining with lower waste 
removal and less environmental impact are becoming more attractive. Among underground 
methods, block-cave mining with its high rate of production, low operational cost, and automated 
systems can be one of the best choices instead of surface mining or block-cave mining can be 
considered as part of production after surface mining during the life of mine. Production 
scheduling is one of the critical steps in the block-caving design process so that an optimum 
production scheduling could add significant value to a mining project. Block-cave mining 
operations can be complicated and behave as a non-linear phenomenon. So, production scheduling 
for this kind of operations with lots of involving dynamic parameters could be a big size problem in 
non-linear environment. This research uses mining background and its parameters, with the help of 
mathematical programming and computer science, to model the production scheduling in block-
cave mining to maximize the net present value of the project using MILP and also implement MIQP 
as non-linear tool to minimize the difference between the objective and the target tonnage of the 
mining project considering the related constraints of the operations. 

1. Introduction 

In block cave mining, the gravity of the material is simply used for extraction. It means that 
compare to other underground methods, extraction is easier and cheaper. Theoretically it is simple 
but practically it is complicated because many constraints are involved. Omitting any of them can 
result in inefficiency or even failure in operations. For each drawpoint, its draw rate can affect the 
draw rate and even grade of other drawpoints which are located in its neighborhood. This nonlinear 
relationship makes the production scheduling complicated. An ununiformed shape of extraction 
from drawpoints can result in a high amount of mixing between the draw columns which are 
located in its neighborhood. This research proposes a methodology to model a block cave operation 
using mathematical programming. The aim is to minimize the gap between certain amount of 
production (as an initial expectation) and the results from the optimization. Quadratic programming 
as a strong tool is used to model this non-linear relationship in the block-cave mining. In this 
research, two methodologies with different objective functions are proposed to model the block 
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cave operations: mixed integer linear programming (MILP) and mixed integer quadratic 
programming (MIQP). The proposed models are tested for a real case block cave mine. 

2. Summary of literature review 

Production scheduling in caving means determining how much of material should be extracted 
from each drawpoint in each period during the life of the mine. Having an optimum extraction of 
drawpoints can add a significant value to the mining project. There are many constraints limiting 
the production: geotechnical, economic, environmental, and operational. Mathematical 
programming is a useful tool to model such a problem in order to find the best solutions for 
catching the goals while considering the related constraints. Like open pit mining, many 
researchers have already worked on production scheduling for block cave mining. They have 
mostly used LP (Guest, Van Hout, & Von Johannides, 2000; Hannweg & Van Hout, 2001; 
Winkler, 1996), MILP (Alonso-Ayuso, et al., 2014; Chanda, 1990; Epstein, et al., 2012; Guest, et 
al., 2000; Parkinson, 2012; Pourrahimian, 2013; Rahal, 2008; Rahal, Dudley, & Hout, 2008; Rahal, 
Smith, Van Hout, & Von Johannides, 2003; Rubio, 2002; Rubio & Diering, 2004; Smoljanovic, 
Rubio, & Morales, 2011; Song, 1989; Weintraub, Pereira, & Schultz, 2008; Winkler, 1996), and 
QP (Diering, 2012; Rubio & Diering, 2004). A detailed literature review can be find in (Khodayari 
& Pourrahimian, 2015b). 

3. Methodology 

We model the production scheduling of a block-cave mining operations using two different types 
of mathematical programming: mixed-integer linear programming (MILP) and mixed-integer 
quadratic programming (MIQP). The models carry same constraints with different objective 
functions. Models, the related indices, variables, and parameters are discussed in this section. 

3.1. Notation 

Indices 

{1,..., }t T∈  Index for scheduling periods 

{1,..., }n N∈  Index for drawpoints  

gn Average grade of draw column associated with drawpoint n 
tonnagen Ore tonnage of draw column associated with drawpoint n 

Variables 

tarton t
n  Target tonnage of extraction for the drawpoint n at period t based on the solution of 

the production scheduling problem (the optimum tonnages that we are looking for, 
considering the problem’s constraints) 

ton t
nobj  Objective tonnage of extraction for the drawpoint n at period t based on the 

production goals 

[0,1]t
nX ∈  Continues decision variable that represents the portion of draw column n which is 

extracted in period t 

( 1) [0,1]t
nY ∈  Binary variable which determines whether drawpoint “n” in period “t” is active [

( 1) 1t
nY = ] or not [ ( 1) 0t

nY = ] 

( 2) [0,1]t
nY ∈  Binary variable which determines whether drawpoint “n” till period “t” (periods 1, 

2,..,t) has started extraction [ ( 2) 1t
nY = ] or not [ ( 2) 0t

nY = ] 
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( 3) [0,1]t

nY ∈  Binary variable which determines whether the Depletion Percentage (DP) of 
drawpoint “n” in period “t” is less than Draw Control Factor (DCF) or not (based 
on the draw rate curve): 

   ( 3) 0t
nif DP DCF Y≤ → =   

   ( 3) 1t
nif DP DCF Y≥ → =  

( 4) [0,1]t
nY ∈  Binary variable which determines whether the material which has remained from 

drawpoint “n” in period “t” is greater than maximum draw rate (DRMax) based on 
the draw rate curve [ ( 4) 1t

nY = ] or not [ ( 4) 0t
nY = ] 

Parameters 

price Metal price 
ir Interest rate of return 
rec Metal recovery in the processing plant 
cost Operating cost per ton of ore (including mining and processing) 
DRMin Minimum production rate based on the draw rate curve 
DRMax Maximum production rate based on the draw rate curve 
Mmin Minimum mining capacity base on the capacity of mining equipment 
Mmax Maximum mining capacity base on the capacity of mining equipment 
Gmin Minimum production grade 
Gmax Maximum production grade 
ActMin Minimum number of active drawpoints in each period 
ActMax Maximum number of active drawpoints in each period 

[0,1]t
nDP ∈  Depletion Percentage which is the portion of draw column “n” which has been 

extracted till period “t” 

( 4)t
nDP  Depletion Percentage which is the portion of draw column “n” which has been 

extracted till period “t-1” 
[0,1]DCF ∈  Draw Control Factor which is the turning point at the draw rate curve 

M An arbitrary big number 

3.2. MILP objective function 

The MILP objective function is going to maximize the net present value (NPV) of the 
mining project during the life of mine: 
 

1 1 1 1

[( ) cos ]    
(1 ) (1 )

t tT N T N
t tn n
n nt t

t n t n

DEV price g ton rec tMaximize NPV X X
i ir= = = =

× × × −
= × = ×

+ +∑∑ ∑∑   (1) 

3.3. MIQP objective function 

Production goals determine the required tonnage of extraction in a mining project. But there are 
always some constraints that control the goals. In this research, the optimization problem is looking 
for the best solution to reduce the gap between the expected production and the practical 
production considering the related constraints. The objective function is going to minimize the 
difference between the objective and the target tonnage: 
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2

1 1
  (tarton )

T N
t t
n n

t n
Minimize objton

= =

−∑∑    (2) 

2

1 1
(tarton ) (2*objton )* tarton

T N
t t t
n n n

t n= =

= −∑∑  

                                              2

1 1
( * ) (2*objton * )*

T N
t t t

n n n n n
t n

tonnage X tonnage X
= =

= −∑∑   

Extraction from drawpoints while having a uniform extraction surface is one of the most important 
concerns in block cave mining, to minimize the dilution, which can be improved by solving this 
optimization problem. 

3.4. Constraints 

There are lots of geotechnical, operational, and economical constraints related to mining projects 
which limit the whole system in achieving the operational and strategic plans. This research will try 
to make sure that related constraints are considered so that the model’s results can be applicable in 
real case block-cave mining.  

3.4.1. Binary variables 

These sets of constrains define the required binary variables. Totally 4 sets of binary variables are 
defined in order to be able to apply the related constraints for the: 

 Set 1    ( ( 1) [0,1],t
n

n N
Y

t T
∈ 

∈  ∈ 
):  

This set contains N*T variables, it means for each drawpoint there is one variable per each period. 
Variables (N*T)+1 to (2*N*T) in the model are allocated to this set. This set determines whether 
drawpoint “n” is active in period “t” or not; if any extraction from drawpoint “n” at period “t” 
occurs it means the drawpoint is active (x>0) then Y1=1 and if there is no any extraction (x=0) it 
means it is not active then Y1=0. The mathematical formulation of this set of constraint includes 
two parts of equations: 

1 0Y Mx− ≤    (3) 

1 0x Y− ≤    (4) 

Set 2    ( ( 2) [0,1],t
n

n N
Y

t T
∈ 

∈  ∈ 
): 

This set contains variables N*T variables, it means for each drawpoint there is one variable per 
each period. Variables (2*N*T)+1 to 3*N*T in the model are allocated to this set. This set 
determines whether the depletion percentage of drawpoint “n” in period “t” is 0 or not. Depletion 
percentage (DP) is the summation of the x values for drawpoint “n” from period “1” till period “t” 
based on the draw rate curve. 

1

t
t
n

t
DP x

=

=∑    (5) 

 If the depletion percentage is 0 (DP=0) then Y2=0 and if depletion percentage is greater than 0 
(DP>0) then Y2=1. Two equations are defined for this set: 

2 0DP Y− ≤    (6) 
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2 * 0Y M DP− ≤    (7) 

Set 3    ( ( 3) [0,1],t
n

n N
Y

t T
∈ 

∈  ∈ 
): 

This set contains variables N*T variables, it means for each drawpoint there is one variable per 
each period. Variables (3*N*T)+1 to 4*N*T in the model are allocated to this set. This set 
determines whether the depletion percentage (DP) is in the second area of the depletion curve or it 
is in the third area of the depletion curve. If the depletion percentage (DP) is in the second area of 
the depletion curve (DP < DCF) then Y3=0 and if it is in the third area of the depletion curve (DP > 
DCF) then Y3=1. DCF is Draw Control Factor in the draw rate curve (DCFϵ[0,1]). This set 
contains 2 equations: 

3DP Y DCF− ≤    (8) 

3 1Y DP DCF− ≤ −    (9) 

Set 4    ( ( 4) [0,1],t
n

n N
Y

t T
∈ 

∈  ∈ 
): 

This set contains variables N*T variables, it means for each drawpoint there is one variable per 
each period. Variables (4*N*T)+1 to 5*N*T in the model are allocated to this set. This set 
determines whether the remained material in draw column “n” at period “t”  is less than maximum 
allowable draw rate (DRMax) or not. If the remained material in draw column “n” at period “t” is 
less than DRMax then Y4=0 if it is greater than DRMax then Y4=1. Two equations in the 
constraints define this set: 

 
( 4* ) * 4 ( 4* ) * 4ton DP ton DRMax M Y DP ton M Y DRMax ton− − ≤ → − − ≤ −   (10) 

 
( 4* ) * 4 ( 4* ) * 4DRMax ton DP ton M Y DP ton M Y M ton DRMax− − ≤ → + ≤ + −   (11) 

3.4.2. Mining capacity 

This constraint defines the whole production from all drawpoints for each period of time. It can be 
determined based on the whole operations system capacity. It helps to make sure that the system is 
working optimally. 

maxmin
1

N
t

n n
n

t T M ton X M
=

×∀ ∈ → ≤ ≤∑    (12) 

3.4.3. Average grade of production 

The average grade of the extracted material should be in an acceptable range. This constraint helps 
to have a uniform extraction of the ore during the mine life and can be determined based on 
processing plant requirements. 

 

min
1 1

( )
N N

t t
n n n n n

n n
Gt T ton X g ton X

= =
×∀ ∈ → × ≤ × ×∑ ∑   (13) 

max
1 1

( )
N N

t t
n n n n n

n n
Gt T g ton X ton X

= =
×∀ ∈ → × × ≤ ×∑ ∑   (14) 
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3.4.4. Reserve 

The BHOD is calculated before applying the mathematical model. This constraint controls the 
amount of resource that is going to be extracted during the life of mine (based on the BHOD). 

1

1

1 

or 1 

T
t
n

t
T

t
n

t

n N X

X

=

=

∀ ∈ → ≤

=

∑

∑
   (15) 

3.4.5. Number of allowable active drawpoints at each period of time 

This constraint controls maximum and minimum number of active drawpoints at each period of 
time.  

1
(Y1)

N
t
n

n
t T ActMax

=

∀ ∈ → ≤∑    (16) 

1
(Y1)

N
t
n

n
t T ActMin

=

∀ ∈ → ≥∑    (17) 

3.4.6. Development direction and mining precedence 

Extraction of each drawpoint can be started if the previous drawpoints (based on the defined 
precedence) have been started before. Two of the key steps in block-caving operation scheduling 
are development direction and drawpoints’ precedence determination. More details about this 
constraint can be found in (Khodayari & Pourrahimian, 2015a). The priorities for development 
direction and precedence of extraction of the case study of this research is shown layout in Fig. 1. 

 

 
Fig. 1. Mining direction determination for block-cave layout 
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The precedent constraint is defined by the following function: 

1& ( 2) ( 2)t t
n nn N t T Y Y −∀ ∈ ∈ → ≤    (18) 

Y2 is the second set of binary variables (section 3.4.1). It means that ith drawpoint can start its 
production if only if drawpoint i-1 has already started its production in previous periods or they can 
be started at the same period. i represents the precedence of that specific drawpoint. 

3.4.7. Continuous mining 

This constraint makes sure that if extraction from a drawpoint starts in a period, then the extraction 
will continue till end of its life. It means that there is no gap between extractions for drawpoints in 
their lives of production.  

1& ( 1) ( 4) ( 1)
n

t t t
n nn N t T Y DP Y −∀ ∈ ∈ → + ≥    (19) 

Y1 is the first set of binary variable (section 3.4.1). DP4 represents the total of draw percentage for 
periods 1,…,t-1 which doesn’t include the current period (t). 

3.4.8. Draw rate 

This constraint controls the production rate for each drawpoint based on the draw rate curve. Draw 
rate curve is a function of the material that has been already extracted during the previous periods 
of production in a drawpoint. It makes sure that the neighboring ratio is considered to have an 
uniform extraction profile during the production which results in low mixing and dilution. The 
draw rate curve is divided to different area based on the amount of extraction (depletion 
percentage). Fig. 2 Presents draw rate curve and its different area. 

 
Fig. 2. Dividing draw rate curve to model it using binary variables 

For each area (1, 2, 3, 4) in the draw rate curve, some formulations will be added to the model to 
have the production based on the draw rate curve. The current model doesn’t include this constraint 
and we are still working on that. 
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4. Implementation of the models 

A real case data for a block-cave mining operation is implemented for testing both the MILP and 
MIQP models. The resource estimation shows that the main element of the ore body is Copper. 
Mine development has been finished and the life of mine is 5 years. The mine has been designed 
and the production is going to be based on 102 drawpoints. Fig. 3 shows the designed lay out. 

 
Fig. 3. The layout of drawpoints (the numbers inside drawpoints are just initial record numbers) 

Based on the reserve estimation, total tonnage is 13.4 million tonne with the average weighted 
grade of %1.33 of Cu (the grade range is %0.5 to %1.61). The constraints are the same for both 
models. The scheduling parameters are presented in table 1. 

 
Table 1. The scheduling parameters 

Parameter Value unit 
Gmin 0.9 % 
Gmax 1.6 % 
Mmin 2.5 Mt 
Mmax 3 Mt 
ActMin 50 - 
ActMax 90 - 
Price 4,318 USD/tonne 
Cost 18 USD/tonne 
Recovery 85 % 
Interest rate 10 % 
EGap 5 % 
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4.1.  MILP model 

We tested the MILP model for the case study, the model contains 5*N*T decision variables in 
which the first N*T variables are continuous and the rest are binary variables. As it was mentioned, 
the objective function is going to maximize net present value of the project considering the related 
constraints. The resulted production during the life of mine is shown in Fig. 4. 

 
Fig. 4. Total production during the life of mine (the green and red lines are the minimum and maximum 

mining capacity respectively) (MILP results) 

It can be seen that the MILP model tries to produce more during the first years of production to 
maximize the NPV while satisfying the mining capacity constraint. The average production grade 
is presented in Fig. 5. 

 
Fig. 5. Average production grade (%Cu)–the green and red lines show the acceptable range of grade for 

production (MILP results) 
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The MILP model tries to extract higher grades first while satisfying the grade constraint. The 
precedence of the drawpoints is determined based on the direction on Fig. 1. The considered 
precedence is presented in Fig. 6. 

 
Fig. 6. Precedence of the drawpoints based on the defined direction 

Considering the precedence, the extraction of drawpoints starts from number 1 to 102. Fig. 7 shows 
the starting period for drawpoints during the life of mine. 

 
Fig. 7. Starting period for drawpoints during the life of mine (MILP results) 
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It can be seen that the results follow the defined precedence. Draw rates of the drawpoints during 
their production life doesn’t follow a specific order or trend (Fig. 8). It needs more research to add 
the draw rate constraint to the optimization model. 

 
Fig. 8. Draw rate for drawpoint number 22 during the life of mine (MILP results) 

The cave surface or the profile of extraction resulted from MILP model shows high fluctuations 
between drawpoints and their neighbors (Fig. 9). This extraction increases the probability of 
dilution in the production.  

 
Fig. 9. Extraction profile (MILP results) 
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For better visualization, the 3-D plot of the extraction surface is presented in Fig. 10. It can be seen 
that the sharp edges are so common in the MILP model. 

 
Fig. 10. Extraction profile surface (MILP results) 

4.2. MIQP model 

We used the same case study for testing the MIQP model. The model contains 5*N*T variables in 
which the first N*T variables are continuous and the rest are binary variables. The objective 
function is going to minimize the difference between an initial tonnage of extraction and the 
tonnage of extraction which is based on the production scheduling. The resulted production during 
the life of mine is shown in Fig. 11. 

 
Fig. 11. Total production during the life of mine (the green and red lines are the minimum and maximum 

mining capacity respectively) (MIQP results) 
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It can be seen that the MIQP model tries to produce an even amount during the life of the mine 
while satisfying the mining capacity constraint. The average production grade is presented in Fig. 
12. 

 
Fig. 12. Average production grade (%Cu)–the green and red lines show the acceptable range of grade for 

production (MIQP results) 

The MIQP model produce an almost fix grade for production. Considering the precedence, the 
extraction of drawpoints starts from number 1 to 102. Fig. 13 shows the starting period for 
drawpoints during the life of mine. 

 
Fig. 13. Starting period for drawpoints during the life of mine (MIQP results) 
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It can be seen that the results follow the defined precedence. Draw rates of the drawpoints during 
their production life resulted from MIQP model is reasonable even without adding the draw rate 
constraint (Fig. 14). 

 
Fig. 14. Draw rate for drawpoint number 22 during the life of mine (MIQP results) 

   The profile of extraction resulted from MIQP model is more uniformed compare to the MILP 
model, as we expected (Fig. 15). 

 
Fig. 15. Extraction profile (MIQP results) 

For better visualization, the 3-D plot for extraction profile resulted from MIQP model is presented 
in Fig. 16. It shows that the MIQP model can generate a more practical profile compare to MILP 
model. 
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Fig. 16. Extraction profile surface (MIQP results) 

5. Conclusion 

In this research, we tested both MILP and MIQP models for production scheduling in block-cave 
mining operation. The MILP model aims to maximize NPV of the project while the MIQP model 
tries to minimize the tonnage deviation for achieving a uniform extraction profile. We implemented 
both models with same constraints for one case study. Results show that the MILP model tries to 
produce more in first years with higher grades. This will result in ununiformed extraction profile 
with high probability of dilution. The MIQP model extracts from the drawpoints smoothly with a 
very low fluctuation of tonnage and grade during the life of mine. This will generate uniform 
extraction profile with low probability of dilution. 
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