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Abstract: 

Plan and schedule based on which material of an open pit mine are being handled includes two main 
steps: static scheduling and real-time dispatching. Earlier is done statically at the beginning of the 
shift and by the time status of mine changes significantly. Along with, the later one is a dynamic 
decision making procedure running all over the shift. Open pit mines operation costs highly depends 
on material handling. 50 to 60 percent of operating costs in an open pit mine is spent on digging and 
transporting the material. So, reducing a small portion of it will save billions of dollars in a large 
open pit mine. Generally there are two ways to reduce this cost: transferring higher amount of 
material in each payload and optimizing both static and dynamic operation schedules. To achieve 
the later goal different algorithms have been developed since late 1960s. This paper shows that from 
applicability point of view there are two major groups of algorithms: a) the group are being widely 
used in the mining projects, and b) the group of algorithms developed in academy. The paper first 
discusses main industrial algorithm, then after reviews well-known academically developed 
algorithms. Strengths and weaknesses of the algorithms are discussed and suggestions for the future 
researches are presented. 

1. Introduction 

Mining projects and more especially surface mines are known as high cost expenditures that need 
millions of dollars or in the large ones billions of dollars to be expend on them in both capital and 
operating parts. Material handling procedure as the main consumer of the operating cost plays a 
critical role in the mining projects decision making procedure. A large portion of total mining costs 
in an open pit mine must be allocated to excavating and transporting the excavated materials from 
the mining faces to different destinations out of the pit rim. As it is believed by many researchers, 
50% of operating costs in open pit mines (Alarie and Gamache, 2002) and even in some cases 
especially in large open pit mines up to 60% of the operation costs is to be spent on material handling 
(Alarie and Gamache, 2002; Oraee K. and Goodarzi A., 2007; Akbari et al., 2009; Ahangaran et al., 
2012; Upadhyay and Askari-Nasab, 2015). So, improving the transportation operation and 
subsequently decreasing expenses of this part of the operation even by 2 or 3 percent will save 
stockholders a huge amount of money. There are two principle way to improve material 
transportation efficiency in open pit mines. The first way is to implement large size trucks in the 
truck fleet with the capacity of transporting more material in each payload, the point current truck 
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manufacturers have been reaching to the maturity. The second principle way to improve the 
transportation operation reduce cost per ton of material transported is to implement operations 
research techniques to enhance productivity of the operation. Although as Alarie and Gamache 
(2002) considers there is a single stage approach like the one was presented by (Hauck, 1973) which 
implement a continuous algorithm to maximize productivity of the operation and send trucks to the 
destination in a way that minimize deviation from the production target simultaneously, there is a 
multistage approach of the open-pit operation optimization that is of the most interest under which 
the problem is divided into two sub problems. In the first sub problem a static scheduling algorithm 
is implemented to determine the optimal loaders configuration over the mining faces as well optimum 
production rate for each route connecting loading points to discharge points and also allocation of 
truck resources to meet production target. This stage called upper stage runs at the beginning of the 
shift and when the mine status changes. As the lower stage a dynamic algorithm mostly based on 
assignment problem or rarely based on transportation problem assigns the trucks to a proper 
destination by the time they asks for a destination in the way that minimize deviation from the 
production target. 
There are two basic categories for open pit mines’ operation optimization. Industrial groups who 
present the software packages to the mining projects without disclosing algorithms behind the 
software; the academic groups who, although, disclose all logics behind the algorithms never 
implement the methods world widely. 

2. Definition of the Operational Planning Problem in Surface Mines 

A mine’s production schedule include three time range plans: 1 – Long-term (20 – 30 years length, 
describe feasibility of the mining adventure and cash flow distribution, and is the major input of the 
medium- and short-term plan); 2 – Medium-term (1 – 5 years length, provides more detail 
information for extraction of mining areas specifically, presents more information about fleet 
expansion or equipment replacement); 3 – Short-term (1 – 12 months, detailed information about 
faces to be extracted and feeds to be sent to the plant) (Osanloo et al., 2008). Short-term schedule 
itself is broken down to operational plans. Operational plan is the shift base stage of open pit mine 
production scheduling which covers dynamic real-time decision making procedure in surface mine 
operation that includes: finding the shortest paths between loading and discharge points, operation 
optimization that means finding optimum productivity rate of each route and allocate truck payload 
to each route in a way that cover the production target (upper stage), and dynamic truck assignment 
(lower stage) which is illustrated in Fig 1.  Indeed, the operational planning tasks challenge with the 
equipment allocation problem tries to make decision on allocation and dispatching of the trucks based 
on the routes capacity and equipment capabilities (Newman et al., 2010). 

 
 

 
Fig 1. Stages of Making Decisions in Mine Production Scheduling (Upadhyay and Askari-Nasab, 2015). 

Operation plan as it is shown in Fig. 2 runs all over the mine life. As it is illustrated it accepts schedule 
of each period from the short-term schedule and available mining faces. Then it runs until the end of 
the shift or the time mine status changes. 
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Fig 2. schematic illustration of Open Pit mine operational plan (Upadhyay and Askari-Nasab, 2015). 

Researchers in both academic institutes and industrial sectors have been trying to improve the 
algorithms of open pit mine operational plans to reduce the cost of the project or increase the 
production level. Herein, we reviewed both sides of the development including industrial algorithms 
and academically improved ones, though for the former one there is not sufficient revealed 
algorithms. 

3. Fixed Truck Allocation 

In this type of mine operation at the beginning of each shift a group of trucks are locked to each 
transportation route. The trucks allocated to the paths are to work on the same path over the shift 
period based on some criteria such as production requirement, availability of the trucks in the fleet, 
and so on (Lizotte and Bonates, 1987; Lizotte et al., 1987). The paths to which trucks have been 
allocated to will not change until a shovel breaks down or a critical event happens. Some efforts to 
modify this method has been seen in the literature. Firstly, Bogert (1964) suggested using of radio 
communication between equipment operators and mine control center. Late 1970s Mueller (1977) 
introduced implementation of the dispatching boards installed in the control center. This method of 
operation scheduling is the least productive method and From Kolonja and Mutmansky (1993) to 
Hashemi and Sattarvand (2015) it has been always being used as the base method to study other 
algorithms and approaches. 
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4. Flexible Truck Allocation 

In this type of mine operation scheduling a portion of available trucks of the fleet are assigned to a 
specific working shovel at the beginning of the shift. But these trucks instead of being in the service 
of only a single shovel or a single route whole the shift, they ask for a new assignment each and 
every time they loaded the material at the loader or discharge it in a dump area. This method of taking 
equipment into the work, researcher claim that improves productivity of the operation with a high 
percentage. Olson et al. (1993) enclosed a 13% increase in the production Bougainville Copper Mine, 
10 to 15 % improvement in the productivity of the Barrick Goldstrike Gold mine, 10 % of growth in 
Iron ore production of LTV steel mining, and 10% increase in the production of the Quintette Coal 
mine. Furthermore, Hashemi and Sattarvand (2015) in a simulation study of the Sungun Copper 
Mine’s operation showed that by implementing a flexible allocation the productivity of the mine 
increased by 8% in comparison with the fixed allocation. Also, Kolonja and Mutmansky (1993) study 
of different types of open pit mine production management heuristics including minimize shovel 
waiting time (MSWT), minimize shovel saturation (MSS), minimize shovel production requirement 
(MSPR), minimize truck waiting time (MTWT), minimize truck cycle time (MTCT), and logic 
behind DISPATCH shows that no matter what type of the flexible truck allocation algorithm be used 
it always improves productivity in comparison with the fixed allocation (FA) (Table 1). 

Table 1: Effect of flexible allocation on open pit mine production (Kolonja and Mutmansky, 1993) 

 Percentage difference in production 
System 

Comparison 
13 trucks Significant 

difference 16 trucks Significant 
difference 18 trucks 

Significant 
difference 

FA vs. MSWT 2.97 no 5.67 yes 3.35 yes 
FA vs. MSS 3.84 no 5.62 yes 2.89 yes 

FA vs. MSPR 2.94 no 4.52 yes 1.33 no 
FA vs. MTWT 4.82 yes 6.88 yes 1.47 no 
FA vs. MTCT 1.96 no 4.30 yes 1.63 no 

FA vs. DISPCH 4.46 yes 7.15 yes 3.15 yes 
 

Since late 1960s number of research have been done in both industries and academies to enhance 
productivity and reduce cost of mining operation by developing flexible allocation models and 
algorithms based on different strategies. 

4.1. Algorithms Implemented in Industrial Packages 

There are many companies across the world providing mine operation management system. From 
them Mudular mining system with 12% improvement in productivity and accompanying in 200 
mines around the world is the leader. Jigsaw with 130 mine is in the second place. However, Wenco 
by presenting FleetControl claims of 11% improvement in system productivity. They currently have 
65 mine sites using their system. CMC introduces Dynamine with a range of productivity 
improvement of 10% to 15%, Micromine with Pitram system and Caterpillar are the next leader of 
mine operation management system. Commercial companies who supports mine fleet management 
do not have willingness of disclosing the logics behind their fleet manager software, though. 
However, in 1980s and early 1990s Mudular Mining System revealed the models and algorithms 
based on which DISPATCH mine fleet management system works. Thus, in this section we try to 
review the algorithms behind DISPATCH from finding the shortest paths to real-time dispatching. 
Fig 3 and Fig 4 illustrate the procedure DISPATCH goes through to find the solution and the 
algorithms implements to complete the tasks, respectively. 
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Fig 3. Schematic representation of DISPATCH block diagram (Olson et al., 1993) 

 

 
Fig 4. Procedure through with DISPATCH assigns trucks (Olson et al., 1993) 

4.1.1. Finding the Shortest Path 

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or 
nodes) in a graph such that the sum of the weights of its constituent edges is minimized. Among 
different algorithms to find the shortest path in the literature of operations research such as Dijkstra, 
Bellman – Ford, A* search, Floyd – Warshall, Johnson, Viterbi, and so on, DISPATCH uses 
Dijkstra’s algorithm with the objective of minimizing travel time between each pair of starting and 
ending points. After solving the shortest path problem in DISPATCH following information is 
presented to the operation optimization model: 1- total minimum distance and travel time for each 
specific transport. 2- The nodes truck must passes from to reach destination. 
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4.1.2. Production Optimization and Truck Allocation 

DISPATCH uses linear programming (LP) approach to optimize production target of the time 
horizon by dividing it into two separated but weakly coupled models from which the first one (Eq. 
(1)) optimizes total operation including mine sector, plant sector and stockpile, and the second part 
(Eq. (5)) maximizes the fleet production by minimizing total required volume to be handled. White 
and Olson (1986) and Olson et al. (1993) describe the model as follow: 

1 1 1 1 1
min ( ) ( ) ( ) ( )

qm m s s m s NN N N N N N

m i p t i s i j q ij i
i i i i j
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+ +

= = = = =

= × + × − + × + × × ×∑ ∑ ∑ ∑ ∑  (1) 
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1
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i
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+
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+

=
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Where: 

C is functional dimensionless pseudo cost 

Nm is number of shovels at mining faces 

Cm is material transportation pseudo cost (hr/m3) 

Qi is material being transported per hour (m3/hr) that should be determined in the procedure 

Ns is number of shovels working at stockpile 

Cs is stockpile material handling pseudo cost (hr/m3) 

Nq is number of quality constraints 

Lj is quality director: 1 for low crit and -1 for high crit 

Cq is quality pseudo cost (hr/m3) 

Xij is jth quality factor at ith shovel 

Cp is pseudo cost of low feed to plant (hr/m3) 

Pt is target rate of plant feed 

Ri is digging rate at ith shovel 

Mc is 1st in/1st out average control mass, kg 

SG is specific gravity 

Tc is base control interval, hr 

XjL is lower limit for quality factor j 

XjA is running average value of quality factor j 

XjU is upper limit for quality factor j 

All pseudo costs are being chosen arbitrarily with respect to (Cm< Cq < Cs < Cp). 
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As the second segment of the LP model, DISPATCH tries to minimize total haulage capacity needed 
to meet shovel production coverage: 

( ) ( )
1 1

min V
p dN N

i i j j e s
i j

P T P D N T
= =

= × + × + ×∑ ∑   (5) 
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j iP Q=   (9) 

0 iP≤   (10)  

Where: 

V is total mine haulage (m3) 

Np is number of feasible haul routes 

Pi is haulage on path i which should be determined (m3/hr) 

Ti is path i travel time (hr) 

Nd is number of dumps for mine haulage 

Pj is net haulage input to dump j (m3/hr) 

Dj is the average dump time at dump j (hr) 

Ne is number of operating shovels 

Ts is fleet average truck size (m3) 

Npi is number of feasible input paths at node j 

Npo is number of feasible output paths at node j 

Pk is input path haulage (m3/hr) 

kP ′  is output path haulage (m3/hr) 

Rj is limiting rate at node j (m3/hr) 

The model introduce first segment of the operation optimization as a pseudo cost based LP which is 
established on summation of costs in all four operational sector of the mine. The solution of the first 
segment present shovels production rates with respect to maximum digging rate of shovel (Eq. (2)), 
maximum capacity of the plant (Eq. (3)), and lower and upper bounds of the blending grade (Eq. (4)
). The second segment LP maximizes production of the operation by allocating minimum number of 
trucks to each active route (Eq. (5)) to meet the routes productivity rate. Eq. (6) makes sure that input 
and output flow at each shovel and each dumping point are equal. Eqs.(7) and (8) guarantee material 
handling to meet grade requirement at plant cannot exceed shovels’ digging rate working at stockpile. 
Coupling between two segments of the operation plan is attained by constraining total productivity 
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of all routes servicing a shovel to be greater or equal to the shovel productivity (Eq.(9)). It should be 
mentioned here that both P and Q in Eq. (9) are vector. Finally, Eq. (10) ensures that all haul rate in 
the mine are nonnegative. The model follows current status of the mine. An advantage of the model 
is that the optimum production rate of each route is based on the volume of material not on number 
of trucks. That helps the dispatching step to send proper truck to cover the shortage. Major drawback 
of the model is that it does not consider stripping ratio (SR) limitation in the operation. However, 
most of the drawbacks of DISPATCH will arise in the real-time dispatching model which will be 
explained in more detail later on. 

4.1.3. Real-time Dispatching 

After solving upper stage (operation optimization) LP problem by implementing simplex method 
resulting optimum material flow rate on routes, White and Olson (1986) employs dynamic 
programming (DP) approach to send trucks to the proper destination. To do so, two list and three 
parameters are defined. List of needy shovels or LP-selected paths and list of trucks dumping material 
at discharge points or en route from a loading point to a destination are provided. Also, need-time 
(Eq.(11)) which is defined as the expected time for each path’s next truck requirement formulated as 
follow: 

( ) /i j ij j j ineed time L F A R P− = + × −    (11) 

Where: 

Lj is time last truck was allocated to the shovel j 

Fij is flow rate of path i over the total flow rate into shovel j 

Aj is total haulage allocated by time Lj to shovel j 

Rj is haulage requirement of shovel j 

Pi is path flow rate (ton/hr or m3/hr) 

So, the neediest path which is on the top of the neediest shovels list will be the one with the shortest 
need-time. Then lost-ton is defined and formulated as a criterion to find the best truck for the neediest 
path from the truck list with Eq. (12): 

( )truck size total ratelost ton truck idle excess travel shovel rate shovel idle
required trucks

×
− = × + + ×   (12) 

Where: 

Truck size is size of truck being assigned; Total rate is total digging rate of all shovels in mine; 
Required trucks is total required trucks in LP solution; Truck idle is expected truck idle time for this 
assignment; Excess travel is extra empty travel time to neediest shovel; Shovel rate is sum of all path 
rates into neediest shovel; Shovel idle is expected shovel idle time for this assignment. 

Considering the lost-ton definition, best truck is the truck covering lost-ton of neediest shovel the 
most. After finding the best truck and assigning it to the neediest shovel, it is moved to the last 
position on the needy paths’ list and the procedure is repeated for the second neediest which is now 
the neediest until all trucks on the list are assigned. 

Defining a rolling time horizon when a sequence of assignment is needed is a benefit of the model. 
Because the information of the mine status which is being used in the model always is up to the 
minute. However, it does not consider effect of current truck assignment on the forthcoming truck 
matching, though all trucks previously sent to the shovels are considered. Another drawback of the 
model is that despite the authors claim, the solution method is not a DP. It is a heuristic rule solving 
each sub problem based on the best solution of previous sub problems and based on Alarie and 
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Gamache (2002), maybe it is because of the authors misunderstanding of Bellman’s principal of 
optimality. 

4.2. Academic Algorithms 

Algorithms and models have been presented to solve open pit mine real-time operational plan in 
academic institutes are enclosed to the public. Herein, we reviewed the models those effects on the 
real-time open pit mines’ operation optimization is undeniable. 

4.2.1. Finding the Shortest Path 

One of the first appearance of the operational problem in the literature of open pit mining is (Hauck, 
1973), in which the shortest path was defined as the closet route from loading to discharge point 
time-wisely and based on the previous experience. In their non-linear model of solving upper stage 
problem as a network problem, Elbrond and Soumis (1987) and Soumis et al. (1989) solved a non-
linear programming (NLP) network problem to find shortest path between all loading and discharge 
points. Among all, the most famous and interesting dispatching algorithm up until now which had 
been presented by Temeng et al. (1997) and Temeng et al. (1998) uses Dijkstra’s algorithm of finding 
shortest path between source and sink to select the best route of connecting shovels to their 
destination. 

4.2.2. Production Optimization and Truck Allocation 

Most of the models presented in operational planning of open pit mines are focusing on upper stage 
or shovel and truck allocation part. The model developed by Soumis et al. (1989) performs the upper 
stage in two steps. As the first step, it fixes shovels’ location by implementing combinatory mixed 
integer linear programming (MILP) model with respect to available trucks and the objective of 
maximizing the production and subject to quality constraints. By solving the MILP model it suggests 
some location for shovels to be seated on the computer screen, and it needs a human to make a 
decision on the shovels siting locations. Then after, as the second step of the algorithm Soumis et al. 
(1989) represents truck travel plan between shovels and dumping points by solving a NLP. The 
model’s objective function consists of three major factors: 1- shovel production objective (computed 
shovel production); 2- available truck hours (computed truck hours) which includes truck waiting 
time as well; and 3- penalty for the deviation of the produced ore material from the blending 
objectives. Munirathinam and Yingling (1994) claim that there is an advantage of using NLP versus 
LP. The point is paths will not be on extreme. Because solution methods for solving LP models 
always look for the optimum solution on the corner of the feasible regions whereas NLP solution 
methods search for the optimum solution over the entire feasible region. As a result of implementing 
NLP model the flow rate will be split over paths which helps to achieve blending goals easier. Beside 
the advantage of the model, it is assumed that all trucks in the fleet are from the same capacity called 
homogenous truck fleet. However, generally truck fleet in mine is heterogeneous including different 
types and capacity of trucks. Second drawback of the model is assumption of fixed grade material in 
each mining faces. Whereas, stochastic nature of the ore material quality even in a single block is 
not ignorable (Osanloo et al., 2008). 

However, the model was not presented clearly in the paper. Herein, other approaches of optimizing 
mine truck allocation for each of them there is at least one disclosed mathematical model are 
presented in following subsections: first queuing theory implementation is studied. As the second 
subsection algorithm based on transportation work is introduced. Then, models based on linear 
programming are overviewed before studying goal programming approach as a separated subsection. 
Finally, stochastic nature of the operation problem in open pit mine is considered in the last 
subsection. 
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4.2.2.1. Queuing Theory Approach 
The first use of queuing theory in mining context is referred to (Koenigsberg, 1958) in which a room 
and pillar underground mine and a surface mine haulage system were modeled by using of queuing 
theory. The model presented by aforementioned author has a computational difficulties by the time 
fleet size increases. Afterwards, Barnes et al. (1978), Dallaire et al. (1978) and Carmichael (1987) 
applied queuing theory to solve truck – shovel problem in surface mines which has been followed 
by (Kappas and Yegulalp, 1991). Dallaire et al. (1978) defined mining operation as a system of 
several networks. After that, capacity of the transportation system and cycle time of each 
transportation unit (truck) is calculated by implementing mean value analysis method and based on 
recursive relations between waiting times. Major drawback of this model is production rate 
underestimation due to the approach under which it does not consider traveling time as infinite server 
queuing system. Second drawback of the model presented by Elbrond is that to implement the model 
in the operation a significant engineering judgment is needed. The model developed by Barnes et al. 
(1978) has the same drawback of Dallaire et al. (1978) model which does not consider traveling time 
as infinite server system, as well as disadvantage of using Erlang queuing model. Because Erlang 
distribution can approximate actual distribution with the coefficient variation of interval times less 
than one that can easily be violated in a real mining operation. 
Kappas and Yegulalp (1991) offered a queuing theory model by considering truck – shovel system 
as a production network with regard to trucks as customer and shovels, crushers, waste dump, roads 
and maintenance service areas as servers. In their model, it is assumed that a mining system is a 
stochastic system with Markovian nature. Although it is stochastic, because of some parameters like 
service time distribution in different service areas, it is not Markovian (Newman et al., 2010).  
Najor and Hagan (2006) applied queuing theory to analyze equipment (trucks and shovels) 
utilizations in the stochastic environment. Application of the model in an Australian case study shows 
that ignoring queue of trucks at hoppers (or plant capacity) causes overestimation of the production. 

Later, Ercelebi and Bacetin (2009) represent a queuing theory model to allocate trucks in an open pit 
mine which can estimate some of mining systems performance parameters including number of 
trucks, throughput of the processing plant and waiting time. The model is presented below: 

( )
( )

1 !1
1 !

N MN M
N M N

+ −+ −  =  − 
   (13) 

( ) ( ) ( )
1 2

1

32

1 1 1 1
1 2

1 2 12 3

, ,k, ,O, ,O ,O, ,O
M

M

n n nN n

M nn n
M

P n n n P N K P N K
M

µ µ µ µ
µ µµ µ µ

−      
= = Λ     Λ      

 (14) 

( )1 2, , , 1MP n n K n =∑   (15) 

( )
1 2

1

1 1 1

1 2 1

, ,...,
Mn n n

P N O O
M

µ µ µ
µ µ

−
      
 = Λ     
       
∑   (16) 

1

M

i
i

n N
=

=∑    (17) 

[ ] ( )1 2 1 1Pr 1 , , , ,O,n , ,i i i Mphase i is working P n n K n K nη − += = −∑   (18) 

( )1 2 1 2, , , ( , , , )qi i M ML n P n n K n P n n K n= −∑ ∑    (19) 

1
i qi

i

W W
µ

= +   (20) 



Moradi Afrapoli A. et al.                                    MOL Report Six © 2015 202- 11 
 
 

1

1( )
M

qi
i i

LCT W
µ=

= +∑    (21) 

interestProduction time period of N truck capacity
averagecycletime

= × ×   (22) 

Production timeperiodof interest shovel shovel truck capacityη µ= × × ×   (23) 

1 2C C NC
unit production truck capacity

+
=

×
  (24) 

Where: 

N is total number of trucks 

M is total number of service centers (herein: loaders, loaded haul roads, empty haul roads, 
dump sites) 

ni is the number of trucks in ith service center 

P is the steady state probability (Eq.(16)) 

µi is service rate at ith service center 

ηi computes the probability that service center ith is working (utilization) (Eq.(18)) 

Lqi calculates the expected number of trucks in the queue at the ith service center (Eq.(19)) 

Wqi is the expected time a truck spends at service center (= Lqi/ ηi µi) 

Wi estimates the expected time that a truck spends in the ith service center Eq.(20) 

LCT is the average total cycle time for a truck to complete M service centers (Eq.(21)) 

C1 is the cost per unit of shovel (including capital and operating costs) 

C2 is the cost per unit time of truck (including capital and operating costs) 

C is total cost for unit production 

Average cycle time is sum of load time, dump time, queuing time at the shovel, queuing time at the 
dump, loaded haul time, and empty haul time. Eqs.(13), (14), (15), (16), and (17) show the procedure 
from which probability of each phase utilization is being account. Eq.(22) or (23) are implemented 
to find production per unit of time and Eq.(24) computes total cost per tonne of material extracted. 

Their model has some disadvantages such as: they assumed all stochastic procedures in the operation 
are Markovian which is not true, the fleet is consisting of the same size (homogenous fleet), and 
truck cycle time is calculated based on locked-in allocation which does not care about the time a 
truck needs to reach the route. 

To sum up, although queuing theory is a powerful approach, but by advances in the simulation, 
researchers prefer to use simulation as a tool to cover stochastic nature of the problems instead of 
queuing theory in the field of mine operation optimization. 

4.2.2.2. Transportation Approach 
Li (1990) says that an optimum material flow on a path should minimize total transportation work 
(Eq.(25)) with respect to Eqs.(26) and (27) those ensure the model will meet stripping ratio, Eq.(28) 
to meet grade requirement and Eq.(29) to ensure that number of trucks input in a loading or discharge 
point is equal to number of trucks come out of that point. Transportation work is defined as the 
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distance material is transported multiply by the amount of the material. The transportation model 
was presented by Li (1990) for five shovels is as follow: 
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5
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  (29) 

Where: 

S1 is set of ore shovels 

S2 is set of ore discharge points 

S3 is set of stockpile points 

S4 is set of waste shovels 

S5 is set of waste disposing points 

Xij is the truck flow over path from ith loading point to jth discharge point 

Kij is total number of segments on path ij 
( )k
ijD  is the length of kth segment on ijth route 

( )k
ijf  is the road resistance factor of kth segment of ijth path 

Z1 is net truck weight 

Z2 is ore payload 

Z3 is waste payload 

T is planning period over which number of loading and dumping points do not change 

Pi is amount of material to be transported from ith loading point in T time 

Q is total number of ore quality indicator 
( )q
iα  is ore quality of indicator q at ith loading point 

( )qα  is required ore quality of indicator q at processing plant 

S.j is set of all loading and discharging points which have path to jth discharge point 
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Sj. is set of all loading and discharge points constitute feasible paths from j 

The method implements aforementioned LP model to allocate optimal number of trucks to a route 
meeting its productivity rate. The model presented is based on five shovel fleet but author claims that 
the model can be implemented in a mine with higher number of loading point as well. It consider 
productivity of each shovel and also blending requirement. One major drawback of the model is that 
total model of operational plan including upper and lower stages are based on homogenous fleet. 
However, it will not guarantee optimality in real projects where the fleet is heterogeneous because it 
allocate trucks to each shovel based on assumption of the same capacity whereas they are not. 
Another major drawback is that the model does not consider truck breakdown as a major event that 
changes mine status. However, truck breakdown will not allow the operation to achieve the 
maximum production planned. 

4.2.2.3. Linear Programming Approach 
LP and specially MILP has been implemented in the open pit mine operation optimization more than 
any other approaches. The general LP model implemented in mine operation optimization was 
developed by Bonates (1992) who introduced an LP model to maximize shovel productivity (Eq.(30)
) as follow: 

1 1
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n m

i i j j
i j
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Where: 

i is index of shovels in ore 

j is index of shovels in waste 

n is total number of shovels in ore 

m is total number of shovels in waste 
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k is general shovel index 

CC is crusher capacity 

Xi is ore production per period of ith shovel 

Xj is waste production per period of jth shovel 

Pi is priority of ith shovel for production 

Qj is priority of jth shovel for production 

Gu is material quality upper limit 

Gl is material quality lower limit 

Gi is material grade at ith shovel 

MAXPk is maximum digging rate at kth shovel 

MINPk is minimum production rate at kth shovel 

Bk is linear approximation for trucks working with kth shovel between MINPk and MAXPk 

TT is total number of available trucks over the time horizon 

Rl is lower limit of SR 

Ru is upper limit of SR 

Constraint (31) makes sure that total production of shovels working in ore area do not exceed 
maximum capacity of crusher. Eq.(32) and (33) guarantee that ore quality is within the prescribed 
limits. Constraints (34) and (35) ensure total production of each shovel over the time period will not 
deviate from minimum and maximum digging rate of the shovel. Eq.(36) ensures total number of 
truck is being used over the time horizon do not proceed total number of available trucks. Constraints 
(37) and (38) ensure stripping ratio requirement will be met.  

The LP model was presented to be employed in small to medium size mines. The objective is to 
maximize the production of all shovels. The model consider required grade interval for feeding the 
plant. It also account for stripping ratio and relative priority of shovels specially ones working on ore 
faces. Nevertheless, it was assumed that shovels production will increase linearly by increasing the 
number of trucks. However, in heterogeneous fleet by adding trucks with different sizes to the 
available fleet production rate will increase nonlinearly up to its maximum production rate. Another 
major drawback of the model is that it is necessary to add stockpiling (re-handling) to the objective 
as well. 

Gurgur et al (2011) proposed an LP model of operation optimization that helps to minimize deviation 
of the operation from the strategically set targets in short- and long-term schedules. To link operation 
plan to the strategic ones the model provides shovel assignment. Advantage of model is that it 
account for available trucks of fleet in each time period. Second advantage of the model is that it is 
a lifelong model which considers the mine as a multi period task. As a result, effects of current 
operations on the next ones are taken into account. There is a major disadvantage of the model 
presented by (Gurgur et al., 2011) that pushs it away from optimality. Costs and lost tons associated 
with the shovel movement during the operation is not considered. Another drawback of the model is 
using continuous variables in the discrete production operation, which provides the rates of material 
transported using various trucks. The only constraint relating the flow rate with the capacities of the 
trucks is the available fleet constraint, which though limits the total production transported by trucks 
with the maximum transportation possible, cannot provide exact measure of the number of truck trips 
required. 
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Ta et al. (2013) developed a mixed integer linear programming (MILP) model to allocate trucks of a 
fleet to different shovels based on probability of shovels’ idle time. The probability of the ide time 
approximated by defining shovel as a server of the mine as a G/G/1 /y finite-source system. The 
objective of the model is to minimize total number of trucks. The model was implemented in a 
simulation mode of an oil sand mine. Results of the simulations show that in some cases idle 
probability of some shovels goes up to 40% to 60% illustrating that the model does not provide a 
reliable open-pit mine equipment allocation. Second drawback of the model is: Although it is claimed 
by authors that the model has the ability of being used in heterogeneous fleet, regarding to the 
simulation results, it does not offer a realistic combination of the trucks with different sizes available 
at the fleet. 

Mena et al. (2013) defined a knapsack problem which tries to maximize cumulative truck fleet 
production by a fixed time horizon. Their main aim was to allocate available trucks to the route 
requesting for a truck. To do so, they used equipment availability function as a part of objective 
function coefficient. They multiplied productivity of truck on each route by the availability of the 
truck and tried to maximize the problem in this way. Then by implementing simulation procedure 
they solve the model for a period horizon of one week. Then compared results of their model with 
the result of general model without considering availability. The comparison showed decrease in the 
productivity of the fleet because the enhanced model was more accurate. Advantage of the model is 
that it uses each truck with its own availability and in this model there is no equipment with 100% 
availability. Major drawback of the model was that at the time a certain number of trucks fail or go 
out of performance for maintenance repair, then the system becomes infeasible and the optimizer is 
not able to find an optimal solution problem. Another disadvantage of the model is that only 
availability of the trucks is inputted in the optimization problem. However, priority in mining system 
is with bigger equipment and it is needed to add availability of all equipment who plays a role in the 
production procedure. Along with above cons, the blending requirement of the plant feed is not 
considered in the model as well. 

The most resent model based on the LP has been presented by Chang et al. (2015). The model 
schedules trucks over a shift by implementing MILP with the objective of maximizing transportation 
revenue. Then a heuristic rule is implemented to solve the model. They also take into account 
transport priority. The model is based on homogenous truck fleet which is far from reality and cause 
non-optimality of the model results on a real system. The model does not consider stripping ratio 
requirement as well as ignoring stochastic nature of grade distribution. Plant capacity and feed head 
grade are ignored as well. 

One of the major drawbacks of all models based on linear programming is that: to consider 
limitations of operation such as stripping ratio and required feed grade the models have to define an 
acceptable range. However, it pushes the operation far behind optimality especially if plant feed 
grade requirement changes. 

4.2.2.4. Goal Programming Approach 
The Goal Programming (GP) first introduced by Charnes and Cooper (1955) and (1961). In the 
simplest version of GP, the designer prepares some goals he or she wishes to achieve for each 
objective function. Then, the optimum solution is the set which minimize deviations from the goals 
has been set which means that it does not maximize or minimize an specific objective, it tries to find 
an specific goal value of those objectives, though (Caramia and Dell'Olmo, 2008). The general GP 
model for multi-objective problems (Eq.(39)) is as follow (Rao, 2009): 
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( ) 0 1,2,...,jg X for j m≤ =   (40) 

( ) 1,2,...,j j j jf X d d b for j k+ −+ − = =    (41) 

0 1,2,...,jd for j k+ ≥ =    (42) 

0 1,2,...,jd for j k− ≥ =    (43) 

0 1,2,...,kj jd d for j+ − = =    (44) 

Where: 

bj is the set of goals 

j jd and d+ −  are the underachievement and over achievement of the jth goal 

p is the value chosen by designer based on utility function 

Eq. (40) shows general format of constraints. By algebraic summation of optimum results and 
deviations the goals will be achieved (Eq.(41)). Eq.(42), (43) and (44) are defining negative and 
positive deviation from each goal. 

In the mining operation optimization there exist variety of goals to be achieved such as production 
maximization and maintenance of ore quality between the desired limits (Temeng et al., 1998), 
optimization of the processing plant utilization and minimization of trucks and shovels movement 
costs (Upadhyay and Askari-Nasab, 2015). 

Temeng et al. (1998) formulated a model of open pit mine operation optimization based on GP which 
is presented below: 
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Where: 

P1 is priority factor for production 

P2 is priority factor for grade control 

id −  is ith shovel production negative deviation variable 

kj kjc and c+ −  are positive and negative deviation from ore grade indicator k at jth crusher 

ns is number of shovels 

nq is number of quality identifiers 

nc is number of the crushers 

nd is total number of destinations 

nos is number of shovels working at ore faces 

xij is the production to be assigned to the ijth path connecting ith shovel to jth discharge 
point in each shift 

yij is capacity of truck which is to be assigned from jth dumping point to ith shovel per 
shift 

Mi is the maximum production of ith shovel per shift 

Bi is the minimum production of ith shovel per shift 

Cj is the maximum available capacity of jth discharge point per shift 

Gik is the average ore quality indicator k at ith shovel 

Qkj is the target ore quality indicator k at jth crusher 

Lkj is the prescribed lower limit of ore quality indicator k at jth crusher 

Ukj is the prescribed upper limit of ore quality indicator k at jth crusher 

RL and RU are prescribed lower and upper bounds of required stripping ratio 
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Hij is the average travel time from ith shovel to jth discharge point 

Dj is the average dumping time at jth destination including spot time 

Rji is the average travel time from jth discharge point to ith shovel 

Si is the average loading time at ith shovel including spot time 

N is number of trucks 

T is weighted average truck payload 

The model maximize shovel production and ensure ore grade requirement achieved as much as 
possible (Eq.(45)). Eqs.(46) and (47) ensures that total material transported from ith shovel cannot 
exceed shovel’s digging rate and will not be less than its minimum digging rate. Eq.(48) makes sure 
that total material dumped in each discharge point cannot surpass its maximum capacity. Eqs.(49) 
and (50) ensure that number of trucks travels into a point is equal to number of trucks come out of 
the point. Eqs. (51), (52) and (53) guarantee ore quality requirement at plant. Eq.(54) conserves the 
production between required stripping ratio. Eq.(55) ensures that total production cannot exceed total 
truck capacity available. The main advantage of GP model developed by (Temeng et al., 1998) is 
that it optimizes two major goals of the open pit operation simultaneously without neglecting any of 
them. Besides covering the objective function drawbacks of previous models it covers another 
disadvantage of LP models which is defining upper and lower limits for the target grade of material 
are being sent to the plant. As it was introduced before, in LP models it is usual to control the grade 
by imposing it between upper and lower limit. Let us assume that objective is to maximize the 
production. Then truck assignment to the shovel closer to the crusher which results shorter truck 
cycle time will be higher. If the average grade at these closer faces are pretty close to one of the 
allowed grade boundaries, then whatever the dispatching algorithm is controlling the feed grade 
within the interval is difficult. As a result, existing of stockpile and subsequently re-handling cost 
associated with it is undeniable. However, the model has some disadvantages. It does not consider 
all the goals are supposed to be met in an open pit mine operation such as equipment movement 
costs, of which some of them are covered by Upadhyay and Askari-Nasab (2015).  The model the 
mining operation as a multi-period operation which needs to meet strategic goals of the project. It 
does not consider stochastic nature of the grade of material are feeding to the plant as well. The most 
resent open pit operation optimization model based on GP can be found in (Upadhyay and Askari-
Nasab, 2015) where the authors enhanced aforementioned model’s objective with adding two new 
goals. The newly added goals are minimizing the deviation of calculated plant feed to desire feed 
and minimizing cost of both trucks and shovels operation, respectively. 

4.2.2.5. Stochastic Approach 
Ta et al. (2005) implemented a chance-constrained stochastic optimization to allocate trucks in an 
open pit mines as a part of upper stage in mine operational plan. They also used an updater to renew 
the model and parameters by the time shift or status of the mine changes. The presented model 
considers truck load and its cycle time as stochastic parameters. The decision variables in the model 
are number and types of trucks allocated to the shovels. Authors claim that stochastic model they 
presented can be solved by converting it to a quadratic deterministic model and implementation of 
mixed integer nonlinear programming techniques and solvers but it is time consuming. So the initial 
model was divided into two sub model. The sub models were solved to allocate discrete number of 
trucks to each loader. The main model is as follow: 

MinimizeTruck Resource ( ) ( , , ) ( )
s d g

K g X s d g truck units=∑∑∑   (57) 

Subject to: 
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[ ]{ }Prob o Truck Extraction MinV H V V V α+ − ≥ ≥    (58) 

60 (s,d,g)X(s,d,g) (tonnes/ hr)
( , , )Truck o

s d g o

V L
s d gτ

=∑∑∑   (59) 

60 (s,d,g)X(s,d,g) ( ) (tonnes/ hr)
( , , ) o Shovel

d g o

L C s
s d gτ

≤∑∑   (60) 

X(s,d,g) ( )
s d

R g≤∑∑    (61) 

( , , ) 0X s d g ≥    (62) 

Eq.(58) ensures confidence level of the model is more than or equal to predefined level (α  ). Eq.(59) 
calculates total volume a truck can transport in a unit of time (hr). Eq.(60) aims to limit trucks at 
shovel based on the shovel capacity. Eqs.(61) and (62) limit number of trucks in use to the available 
trucks in the fleet. The first sub model which is a probabilistic chance-constrained model is as follow: 

MinimizeTruck Resource(1) ( ) ( , , )
s d g

K g X s d g=∑∑∑   (63) 

Subject to: 

60 (s,d,g)X(s,d,g)
( , , )Truck o

d g o

V L
s d gτ

=∑∑    (64) 

[ ]{ }Prob o Truck Extraction MinV H V V V α+ − ≥ ≥    (65) 

( )Truck ShovelV C s≤    (66) 

( )Truck ShovelV mC s≥    (67) 

X(s,d,g) ( )
s d

R g≤∑∑    (68) 

( , , ) 0X s d g ≥    (69) 

First sub problem is almost the same as the general problem. Except for constraint (67) which 
maintains the solution from assignment of zero truck to shovels is the only difference. Also minimum 
ore throughput from the shovels is maintained. The model must be simplified as a nonlinear 
deterministic model and be solved by using of nonlinear techniques. The model provides a 
continuous amount for number of trucks which must be a discrete number. To do so, second sub 
problem as follow was presented: 

MinimizeTruck Resource(2) ( ) ( , , )
s d g

K g Y s d g=∑∑∑   (70) 

 
 
Subject to: 

( ) ( , , ) Truck Resource(1)
s d g

K g Y s d g ≥∑∑∑    (71) 

60 (s,d,g)Y(s,d,g) ( )
( , , ) o Shovel

d g o

L C s
s d gτ

≤∑∑    (72) 
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60 (s,d,g)Y(s,d,g) ( )
( , , ) o Shovel

d g o

L mC s
s d gτ

≥∑∑    (73) 

Y(s,d,g) ( )
s d

R g≤∑∑    (74) 
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1: ( , , ) 0
2,3,... : ( , , ) 1 ( , , ) ( , , ) 1

i

i i i

i Y x d g
i Y x d g Y x d g Y x d g− −

= ≥

= − ≤ ≤ +
  (75) 

( , , ) 0Y s d g ≥    (76) 

Where: 

s is shovel type; d is type of discharge point 

g is truck type 

K(g) is cost coefficient of truck type g (for the truck type g with the smallest 
capacity K(g)=1 and for the rest it is calculated based on the smallest truck 
capacity. For example, in a fleet consisting of 240 ton and 320 ton capacity 
trucks K(240)=1 and K(320)=1.33) 

X(s,d,g) is number of truck type g assigned to shovel s and dump d (fractional or 
theoretical) 

Y(s,d,g) is number of truck type g assigned to shovel s and dump d (discrete) 

Lo(s,d,g) is the truck type g capacity working on route connecting shovel s to dump d 

( , , )o s d gτ  is ore truck cycle time (minute) 

Vo is initial surge volume 

VTruck & VExtraction are ore production rate that goes in and out of surge per hour 

CShovel(s) is capacity of shovel s (tonnes/hr) 

Dw is amount of waste needs to be handled per hour 

R(g) is tha available number of type g truck 

H is number of hours in each period of concern 

m is used to specify the minimum amount of ore to be mined by the working 
shovels (0 1 / )m ton hr≤ ≤  

Constraint (71) defines the lower bound of the objective function. Eqs.(72), (73) and (74) are the 
same as (66), (67) and (68) in the first sub model with the exception of number of trucks being 
discrete. Eq.(75) helps to move to the next time period realistically. 

The objective function value of the first sub problem helps to define a lower limit for the objective 
function value of the second sub problem. To move to the next time horizon, constraint (75) is defined 
to ensure gradual transition of allocation from the current period of time. Although the model 
provides a good conceptual background for stochastic optimization approach to solve the multi-stage 
optimization problem, it takes into account the probabilistic nature of truck travel times only. Also 
the model formulation is very much specific to a mining case and cannot be generalized to other 
mining systems. 
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4.2.3. Real-time Dispatching 

Real-time decision making on the destination of trucks in a mining operation was first used in early 
1960s with implementation of radio communication tools to link between dispatcher and trucks 
operators in a fixed truck allocation mine. However, based on utilization of computer real-time fleet 
management in mining operation systems are divided into three major categories: locked-in or fixed 
allocation, semi-automated and fully automated systems. In the locked-in method there is no effort 
for dispatching the transportation units. Semi-automated dispatching which has been developing by 
increasing the computer usage in mining sector is divided into two different classes: passive and 
active. In the earlier class computer just displays current mine operation information and does not 
have any role on decision making procedure. However, in the later class computers use current mine 
status information as inputs and process them based on predefined models and suggest list of 
assignments to the dispatcher and leave the decision to be make for humans. In the automated 
dispatching data of the current mine status and condition and position of the equipment within the 
operation are collected into a main computer server and it sends the assignment to trucks after solving 
some heuristics or mathematical programs. What we review here is the last class where computers 
receive data, process them and assign the trucks to the next destinations. 

There are two major approaches governing dispatching procedure: Assignment problem approach 
and transportation problem approach from those the first one is a subcategory of the transportation 
problem in the operations research context. 

4.2.3.1. Algorithms based on Assignment Problem 
A general assignment problem is a balanced transportation problem in which all demands and sources 
have capacity of one unit. In each assignment problem there is a cost matrix that consists of the costs 
associated with assigning each supply to each demand. The objective of each assignment model is to 
minimize cost of allocating supplies to demands. In mining context assignment problem has been 
used mostly to dispatch trucks as supply to shovels or dumping points as demand. The objective in 
mining truck dispatching based on assignment model is to minimize shovel idle time, truck waiting 
time, inter-truck time, and so on. In comparison with the other approach, almost all real-time truck 
dispatching models in both industrial and academic research area are based on assignment problem. 

Hauck (1973) implemented a sequence of assignment problem to dispatch the trucks need 
destination. The objective function of his model is to minimize total idle time of shovels which 
minimize lost ton of the operation subsequently. The sub problem that is solved in each assignment 
request is as follow: 

min ( ) ( )ij k ij k
i j

W t X t∑∑    (77) 

Subject to: 

( ) 1 1,...,ij k
j

X t for i m≤ =∑   (78) 

( ) 1 1,...,ij k
i

X t for j n= =∑    (79) 

( )ij k kX t D∈    (80) 
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( )ij kW t is lost ton due to idle time caused by assigning ith truck to jth shovel at time tk; Dk is 
representative of a situation will be explained later on. 

The model tries to minimize lost ton due to idle periods. Constraint (78) guarantees that each truck 
is assigned to at most one shovel and constraint (79) ensures that each shovel is assigned exactly one 
truck. Eq.(80) ensures that a truck to be assigned meets all requirements  

Two main disadvantages of the dispatching part of Hauck’s model are: firstly, assignment is not as 
accurate as possible because the decisions are made now will not be recomputed unless number of 
available trucks change. As a result, the assignment decision is not up to the minute. Secondly, the 
model is a sub model of a large model which uses result of last stage of the total model above 
dispatching. The last stage above dispatching decision making model itself is an optimum result of 
its previous sub model. So, the dispatching model is not able to use DP to solve assignment problem 
because it does not have possibility of using all possible solutions of previous stages and only uses 
the optimum solution of those stages. 

Soumis et al. (1989) developed an assignment model that consider 10-15 forthcoming trucks and 
their effects on current assignment. The objective of the model is to minimize sum of squared 
deviation of estimated waiting time of trucks from the planned waiting time. The model finds 10-15 
next trucks based on average travel time, discharge time, and loading time and shovel inter-truck 
waiting time. After assignment of current truck, all 10-15 trucks which had been used for the 
assignment are erased. The procedure will repeat when next assignment is requested. The main 
advantage of the method is that it considers effects of forthcoming trucks on the current assignment. 
However, assumption of homogeneous fleet is a drawback of the model. Assuming homogenous fleet 
of trucks in a multistage model of truck dispatching cause a considerable deviation from the reality. 
The reason behind such a deviation is to use homogenous fleet in the lower stage (real-time 
dispatching level) it is necessary to model upper stage (operation optimization level) considering 
homogenous truck fleet as well. Consequently, optimized production rate resulted from upper stage 
is far from the one in reality because in reality trucks in the fleet are from different size in most of 
the fleets (Alarie and Gamache, 2002). But, based on Lizotte et al. (1987) to implement a multistage 
dispatching algorithm for an open pit mine operation the production plan should represents the mine 
as close to reality as possible to have an optimal plan. The second major drawback of the model 
which happens in almost all of the dispatching models based on assignment problem is that, although 
they account for upcoming trucks for current assignment request, effects of current assignment on 
forthcoming trucks are not accounted for. 

Ercelebi and Bascetin (2009) after providing optimum truck allocation by using of queuing theory 
implemented assignment problem approach based on the model was presented by White and Olson 
(1986) to dispatch trucks requesting a new destination. Lizotte et al. (1987) in their semi-automated 
model first provided a simulation model of the case study where by the time a truck needs assignment, 
three dispatching heuristic based on assignment problem are solved and the results of the simulation 
are presented on the board in a table beside the result of fixed allocation method and leave the 
decision for the dispatcher. 

All dispatching heuristic rules in the literature that are grounded on maximize truck utilization in 
which a truck is sent to the shovel where it is supposed to be loaded first follow assignment problem. 
Although such an objective improves production in comparison with locked-in non-dispatching 
operation, they have some drawback including: ore quality and stripping ratio are not taken into 
account. Another major drawback of these types of algorithms is that it tries to send trucks to the 
shorter routes and as a result shovels sitting on further mining faces will idle more (Tu and Hucka, 
1985; Lizotte et al., 1987). All dispatching rules in the literature based on maximum utilization of 
the shovels in which truck is sent to the shovel that is supposed to idle longer by the time truck 
reaches the face are following assignment problem as well.  
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To sum up, although implementing assignment problem provides fast solution to for real-time truck 
dispatching in mining operations, it has two major drawbacks arising from the nature of the 
assignment problem: The main drawbacks of algorithms based on assignment problem is that at each 
time just one truck is assigned to each shovel even if a shovel is far behind its production target and 
needs more than one truck. As the second drawback it can be say that despite claims of some authors, 
it is not able to consider effects of forthcoming trucks. 

4.2.3.2. Algorithms based on Transportation Problem 
A transportation problem in the optimization context is described as follow (Winston, 2003): 

1- A set of supply points (m); 

2- A set of demand points (n);  

3- Cost associated with transporting material from the supply point i to the demand point j. 

Let xij is number of units shipped from the supply point i to the demand point j, then general 
formulation of the transportation problem is: 

1 1
max or min

n m

ij ij
i j

c x
= =
∑∑    (81) 

Subject to: 

1
1,..., Supplyconstraints

m

ij i
j

x s for i n
=

≤ =∑  (82) 

1
1,..., Demandconstraints

n

ij j
i

x d for j m
=

≥ =∑  (83) 

0 1,...,

1,...,
ijx for i n

j m
≥ =

=
   (84) 

To have a feasible solution, each transportation model must be constrained as: 

1 1

m n

i j
i j

s d
= =

≥∑ ∑    (85) 

The model tries to minimize total costs of the decision to be made (Eq.(81)). Constraint (82) makes 
sure that total material sent to different sink points cannot exceed ith source capacity. Constraint (83) 
ensure that jth sink will meet its demand. Constraint (84) limits the material to be handled to non-
negativity. The most reliable algorithm of the real-time truck dispatching in open pit mine is the 
model was developed based on transportation problem by Temeng et al. (1997). The procedure of 
truck dispatching by using of Temeng et al. (1997) transportation algorithm is as follow: 

Firstly a needy shovel is defined as a shovel uses a route that up until now has a cumulative 
production behind its production target. Or in the other word, a non-needy shovel is a shovel that 
cumulative production of all routes ending to it are above or equal to the target.  

To find the needy shovels we first calculate current mean of tonnage ratio by using of Eq.(86): 

1 1

1 n m

ij
i j

R R
nm = =

= ∑∑    (86) 

Where:  
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/ij ij ijR x T= ; xij is current cumulative tonnage on path ij; Tij tonnage be assigned to the path ij which 
links ith shovel to jth dump. 

Set current mean as the target ratio of each route. Then for each route define dij (Eq.(87)) as deviation 
of the route ij from the target production: 

ij ijd R R= −    (87) 

Now, a needy shovel is a shovel with dij < 0 (negative deviation). 

Secondly, number of trucks each needy shovel requires is determined. To do so, at first Eq.(88) or 
(89) are being implemented to calculate yij as the tonnage behind the target of the route ij: 

ij ij

ij

x y
R

T
+

=    (88) 

ij ij ijy RT x= −   (89) 

Then, a basic truck capacity (small, large, or an average of them) is chosen based on some statistical 
analysis. Before, the demand of each route is found by using of Eq.(90): 

1

ij
ij

y
M

C
 

=  
 

  (90) 

Where: 

Mij is the demand of each route ij; C1 is the larger truck capacity in the fleet consisting of two different 
truck sizes; x    is the smallest integer ≥ x. 

Finally, the demand for each shovel will be Eq.(91): 

1
1,...,

m

i ij
j

D M i n
=

= =∑    (91) 

And if the demand of ith shovel is Di, then Eq. (92) is being used to calculate total demand of the 
operation at current status: 

1

n

i
i

D D
=

=∑    (92) 

In which D must be less than or equal to number of trucks available for the assignment and if it is 
not, a cut-off value for required tonnage should be used that selects those shovels as needy ones with 
relatively higher negative tonnage. 

Finally Eq.(93) presents the model to assign trucks that tries to minimize total cumulative waiting 
time associated with the assignment: 

1 1
min

l n

ik ik
k i

W X
= =
∑∑    (93) 
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1
1,...,

l

ik i
k

X D for i n
=

≥ =∑    (95) 

0ikX ≥    (96) 

Where: 

ikW  ( ) ( )i i i k j j ijL N E t d e r= + − + + +  is waiting time associated with assigning truck k to 
shovel i 

Xik is the decision on assigning truck k to ith shovel 

Sk is supply of truck k 

Di is the demand of ith shovel 

Li is the mean loading time of ith shovel 

Ni is the number of trucks at ith shovel 

Ei is the number of trucks en route to ith shovel 

tk is the expected travel time of truck k to reach discharge point 

dj is the expected waiting time of truck at discharge point j 

cj is the average dumping time of truck at discharge point j 

rij is average empty travel time from discharge point j to ith loader 

Eq.(94) ensures that total number of trucks assigned cannot exceed number of available trucks. 
Eq.(95) makes sure that trucks are sent to the ith shovel will cover its lost ton as much as possible. 
And, Eq.(96) ensures that number of type k trucks assigned to ith shovel is non-negative. The model 
assumes heterogeneous truck fleet, as a result it will be as close to reality as the upper stage model 
is. It also considers the situation a shovel is far behind its target production and needs to be assigned 
more than one truck. In such a situation the model easily assign more than a single truck to those 
needy shovel further behind the schedule without any limitation occurs by implementing assignment 
model. However, there are two major drawbacks with the model. The first major drawback is that 
mean of production rate for all routes is the basis for calculating the deviation of routes. But based 
on upper stage plan, sometimes it is required to extract much more of some specific materials that 
makes production rate of the routes of transporting those material be maximized and for some other 
be as less as possible. Then during the assignment it will send more trucks to those with higher 
negative deviation. The second major drawback is in transportation problem cost of transporting unit 
of material is constant and independent of supplier centers. Whereas, each truck waiting time at 
shovel or crusher is depending on the trucks previously assigned especially in over-truck systems. 
Also the waiting time accounting for in transportation method is based on trucks currently at 
destination or en route to the destination and there is no way to account for the waiting time will be 
caused by trucks will be assigned in the future but will reaches the destination earlier (Alarie and 
Gamache, 2002). 

4.2.4. Single Stage Approach 

In academic manners, one of the first algorithms introduced to solve truck allocation and dispatching 
problem in open pit mines is a single stage algorithm presented by Hauck (1973). The main feature 
of presented algorithm is combination of operation plan and real-time scheduling in a single model. 
The model is based on solving a sequence of assignment problem by using of DP. The model 
considers stripping ratio, blending objectives, capacity of the plant and stockpile. Objective of the 
model is to maximize the production by minimizing the lost ton caused by shovels idle time: 
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( )
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3
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i j J
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∈
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Where: 

m is number of available trucks 

n is number of shovels 

Ci is average haulage capacity of truck i 

J1 is the set of shovels j working at waste 

J2 is the set of shovels j working at ore mining faces 

J3 is the set of shovels j working at stockpile 

tk is the time a shovel has just loaded a truck (assuming discrete points in time to 
keep track of the process) 

Q(j) is total number of loads completed by jth shovel in T working cycle 

p(i) is pth load of truck i 

q(j) is qth load of shovel j 
( ( ), ( ))ijt p i q j  is the earliest time pth load of truck i which is qth load of shovel j is loaded by 

shovel j on truck i 
 

12

1

( ( ( ), ( )))
( ( ( ), ( )))

0
j ij ij

ij ij

E t p i q j j J
W t p i q j

j J
Γ ∈= 

∈
 

Ej is the loading rate of jth shovel (ton/time) 
( ( ( ), ( )))ij ijt p i q jΓ  is the idle time incurred by jth shovel when it loads its q(j) load as truck’s p(i) 

load into the truck 

andL Ur r  are the lower and upper limits of SR 

b is a suitable quantity of ore 

( ) / 2L Ua b r r= +  
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L UR and R  are minimum and maximum processing plant rate 

( ) and ( )o kV t V t  are stockpile inventory at the beginning of the cycle and at time tk 

For each kth decision an assignment problem is solved as a sub problem by implementing DP which 
has been presented in Eq.(77) to Eq.(80). 

Eq.(98) ensures meeting SR requirement; Eqs.(99) and (100) guarantee that processing plant is 
always being fed; Eq.(101) ensures that total material handling at stockpile cannot exceed the amount 
of current stockpile inventory. Dk is assignment domain satisfying Constraints (99) to (101) also are 
the criteria defined for assignment in Dk domain. The algorithm presents optimal combinatorial 
intractable assignment procedure. Although it is a complex algorithm containing all limitation 
satisfaction criteria, it runs fast. However, assuming the problem as a completely deterministic 
procedure shows that stochastic properties of truck waiting time is ignored. Meeting all the 
production requirements is not the goal of the operation for each assignment and if they can be 
satisfied in a longer period of the time, their short term violation is acceptable. As previously be 
mentioned DP tries to find optimal solution from all of the feasible solutions of previous sub 
problems not from the best solution of them. 

4.2.5. Some Other Efforts 

Krause and Musingwini (2007) used machine repair analogy to analyze and choose truck fleet size 
for an open pit mine. They chose Arena for the simulation part “because it can be programmed with 
any number of probability distribution fitted to an unlimited number of cycle variables and is 
therefore a very flexible model for use in analyzing several variables in shovel-truck analysis”. 
The analogy is as follow: “The Machine Repair Model equivalents are shown in parenthesis. A truck 
is sent for loading (repair) every cycle with the number of shovels or shovel loading sides or number 
of tipping bins (repair bays) being equal to R and the inter-arrival and service times both assumed to 
have an exponential distribution. Therefore, a shovel-truck system can be described as 
M/M/R/GD/K/K, where the first M is truck arrival rate, the second M is loader service rate, R is the 
number of shovels or shovel loading sides that are loading K trucks drawn from a population of size 
K, whereby the loading follows some general queue discipline, GD”. 

He et al. (2010) implement GA to optimize truck dispatching problem in open pit mines. They tried 
to find a route and assign upcoming truck to it based on minimized transportation and maintenance 
costs. In that model it has been assumed that velocity of trucks in both loaded and empty condition 
are the same that is a drawback for their model. Although, their major focus was on minimizing the 
costs, by assuming same velocity for both loaded and unloaded trucks they underestimated costs. 
Another major drawback which is similar to almost all other models is assignment of trucks to routes 
not to shovel-destination. They claimed that truck maintenance cost get higher with the age of the 
truck by a constant coefficient, whereas Topal and Ramazan (2012) revealed that maintenance cost 
behaves in a fluctuated manner during its life and by each main repair the equipment’s maintenance 
cost will decrease dramatically. 

5. Limitations of Current Algorithms and Future Research Directions 

5.1. Linking between strategic level and operational level plans 

Many researchers and companies have been work on open pit mine operational planning, there are 
still many restrictions in the algorithms and models, though. The main objective in mining projects 
is to maximize the net present value (NPV). To achieve the main goal of the expenditure the 
operational plan has to be tied to both short-term and long-term plans. But with the current models 
of operation optimization there is no guarantee of meeting the main goal. Short-term production 
schedule which is the closest part of strategic planning to the operation planning provides destination 
of material from mining cuts, but in reality it will not be followed up to the minute. 
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5.2. Accounting for Uncertainty 

Most of the models for operation optimization are deterministic and also current simulation models 
do not cover all the mine life. However, the nature of mining operation is stochastic and it is a multi-
period task in which each period effects on later ones up until end of the mine life. 

Beside the stochastic operation, material quality in each mining face is stochastic as well. But most 
of the models assume constant average grade for each mining face which causes lack of optimality. 

5.3. Modeling Close to Reality 

Although most mines are using heterogeneous trucks, mixed fleet is ignored in most of the 
dispatching models. 

All models developed for mine operational plan optimization have been validated by using of a 
simulation model of an actual mine. In almost all the simulation models presented for validation of 
the models modeling the processing plant and hoppers have been ignored. To evaluate the models it 
is suggested that a simulation model of a complete open pit mine operation be used to be as close as 
possible to the reality. 

5.4. Dynamic Best Path Determination 

In small mines with a limited number of route segments and small fleet a fixed shortest path between 
all pair of loaders and destination is sufficient. However, for very large open pit mines there exist a 
vast network of haul roads and a large fleet of which trucks travel in the operation area. A large fleet 
of trucks usually consists of variety of truck types with different speed limits and averages which 
causes traffic mass on some route segments. Consequently, it will cause lost production. To fix this 
problem it is shortest paths can be determined dynamically. In the other word, by keeping track of 
trucks working in the system determine the shortest path between the current location of the truck 
and its next destination based on the time it will take to reach the destination regarding current traffic 
jam on approaching route segments. 

5.5. Real-time Dispatching based on Transshipment Problem 

In dispatching procedure it is recommended to implement transshipment problem instead of 
transportation or assignment approaches. In a transshipment problem in addition to supplier and 
demand points there exist transshipment points through which material can be transported from 
suppliers to demand points. In mining system stockpiles can be assumed as transshipment points. 

6. Conclusion 

Open pit mine operational plan algorithms and models first have been divided into two major classes 
of industrial and academic algorithms and then have been reviewed in this paper. The planning 
problem has been broken down to three major sub problems (1- finding the shortest paths, 2- 
operation optimization, and 3- real-time truck dispatching). Then for each sub problem existing 
algorithms have been reviewed. Limitation of current models introduced and suggestions for the 
future works presented. 
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