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Abstract 

The fundamental objective of any mine plan is to maximize the mine profit by extracting ore at the 
lowest possible cost over the mine life. Since the costs associated with the operation of trucks and 
shovels as resources are significant, the optimum allocation and dispatching of these resources is 
an essential issue. This paper presents a Mixed Integer Linear Programming (MILP) model to 
determine the optimum number of shovels and trucks required to meet the short-term plan’s goals.  
Also, the model takes into account the allocation of trucks and shovels to mining faces.  This model 
minimizes operational costs, while attempting to meet the production demand and consider 
technological constraints.  

1. Introduction and literature review 

Mine planning consists of two the planning level and the operational level. The fundamental 
objective of any mine plan is to maximize the mine profit by extracting ore at the lowest possible 
cost over the mine life. Geological, operational, technological and financial requirements constrain 
this objective.  Mining equipment is one of the most expensive necessities of a mine. At the 
operational level, the goal is to use the trucks and shovels efficiently, minimizing the resources 
required which results in reduction in hauling, operating and maintenance costs, while meeting 
production targets. 

In this paper resource allocation refers to the allocation of trucks and shovels to mining faces over a 
shift. Shovels are used to extract the ore and trucks are used to haul the ore to various destinations 
for further processing. Since the costs associated with the operation of trucks and shovels are 
significant, the allocation of these resources is an essential issue. Many mining companies try to 
allocate the trucks and shovels to produce an optimal schedule in a way that the operating costs are 
minimized and the utilization of resources is maximized through the planning horizon. Increasing 
the efficiency of the trucks and shovels results in savings.  

Allocation of resources in the mining context is a complex and important process. The main factor 
that makes the allocation problem complex is the uncertainties in the operation of trucks and 
shovels such as truck cycle time, load tonnage, and truck and shovel reliabilities. These factors 
affect the production of a mine. Ignoring such uncertainties in the operation of a mine could result 
in deviations from the optimal plans. Any deviation from the production plan because of 
operational uncertainties increases the overall cost. One of the solutions to prevent the risk of not 
meeting the production demand is to provide extra trucks and shovels which again imposes extra 
costs to the system. 

In many of the open pit mining systems, dispatching is considered a two level process. The first 
level is to allocate the shovels and the trucks at the beginning of the period and the second level is 
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to implement the solution for real time operations. Most of the studies develop a mathematical 
programming model to solve the allocation problem. They usually aim to minimize the overall 
operating costs or maximize the profit, while meeting the target production. Other studies apply 
heuristic rules or stochastic approaches to solve the allocation and dispatching problems. 

Li (1990) proposed a new dispatching methodology called intertruck-time deviation to keep truck 
flows as close to the optimum as possible. This methodology is based on material transportation 
rather than operational costs and can be used in real time open pit mining operations. Czaplicki 
(1999) proposed a procedure based on the queuing theory to assess the optimum number of 
operating trucks and reserve trucks in a mine. Two types of truck-and-shovel systems are 
considered: (1) one shovel and a certain number of trucks and (2) a certain number of shovels and 
trucks. This study considers many important technical and stochastic properties of the system. 

A mixed integer programming (MIP) model was proposed by Topal and Ramazan (2010) to 
produce an optimum schedule for a fixed fleet of trucks over a year. This model minimizes the 
maintenance costs, while trying to achieve the target production. Yuriy and Vayenas (2008) 
developed a reliability assessment model based on genetic algorithm to evaluate and generate the 
time between truck failures. The output of the model is used as an input to a discrete event 
simulation model to analyze the impact of failures on production. Two different simulation 
software are used to compare the merits. 

Temeng et al. (1997) developed a transportation algorithm for real time dispatching system. This 
algorithm evaluates the criteria called cumulative production ratio and minimizes the deviation of 
this criteria from the mean for each shovel route. Yan et al. (2008) and Yan and Lai (2007) 
developed an integrated mixed integer model to study the production scheduling and truck 
dispatching problems in the same framework. The methodology was applied to a ready mixed 
concrete (RMC) case in Taiwan. Fioroni et al. (2008) presented a two stage method; firstly a 
mathematical programming model is used to allocate the shovels and the trucks; secondly 
simulation is used to assess the results in real time operations. 

Muduli and Yegulalp (1996) modeled the dispatching system as a closed queuing network 
considering different classes of trucks with various attributes. Mean value analysis (MVA) is used 
to evaluate performance measures. Erselebi and Bascetin (2009) presented a two stage procedure to 
optimize the truck and shovel system. In the first stage a model based on the closed queuing 
network theory is used to determine the optimal number of operating trucks. At the second stage a 
linear programming (LP) model is used to specify the dispatching sequence of trucks to shovels. 

This paper presents a mixed integer linear programming (MILP) model to determine the number of 
shovels and trucks and solve the allocation problem to the mining faces available at any given shift. 
The model minimizes operational costs, while trying to meet the production demand and considers 
technological constraints. The next section introduces the problem and defines the assumptions 
considered in this study. Section 3 presents the mathematical formulation of the problem. The last 
section includes the conclusion and future work. 

2. Problem definition 

In the mining industry, trucks and shovels are used as resources to extract ore and haul it to various 
destinations for further processing or dumping as waste. Shovels are used to extract the material 
and load them to the trucks. Trucks operate continuously to haul the material to other locations and 
to feed the processing plant. 

The number and the type of trucks and shovels are important elements in optimal designing of open 
pit hauling systems. The truck-and-shovel allocation problem involves determining the number and 
size of trucks and shovels, and the matching between them. Availability, useful economic life, 
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spare parts availability, maintenance, and operating costs are factors affecting the type of trucks 
and shovels to be chosen for hauling. 

The following assumptions are the basis of the truck-shovel allocation mathematical model. This 
paper studies a mine consisting of different mining faces. A number of shovels and trucks of 
different types are available. Each type of truck has a specific size and hauls a different volume of 
material. Due to the failures and predicted maintenance the number of available trucks of each type 
and available shovels may vary for each period.  

At the beginning of each period the decision is made about assigning trucks and shovels to the 
mining faces which are ready to be extracted. The type of the material of each mining face specifies 
each truck’s destination. If the material type is ore, assigned trucks go to the mill and if it is waste, 
they go to the waste dump. The number of trips of each type of truck to different destinations is 
another variable to be decided in the model. This assignment must be in a manner that the loading 
and haulage costs are minimized. 

The grade of different minerals and metals directly affects the mining costs. The grades of 
materials in the ore faces are considered in the model. Shovels and trucks are allocated to the 
mining faces in order to meet the blending constraints at the mill or stockpiles. Any deviation from 
the target production at the mill results in extra system costs as a penalty. Other assumptions of the 
problem are as follow: 

• Specific types of trucks can work with specific types of shovels; 

• The number of available trucks of each type is known at the beginning of the period; 

• The number of available shovels is known at the beginning of the period; 

• Maximum and minimum production capacity of shovels and load capacity of trucks are 
known; 

• Only one shovel operates at each mining face at a time; 

• Each shovel can operate at only one mining face at a time; 

• The time horizon for the model is an 8-hour shift. 

3. Mathematical formulation 

In this section the MILP model of the problem is presented. 

3.1. Sets 

set of mining facesI =  

set of shovelsJ =  

set of typesof trucksK =  
3.2. Indices 

Index for mining facesi I∈ =  

Index for shovelsj J∈ =  

Index for types of trucksk K∈ =  
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3.3. Parameters    

1 if current material typeof mining face isore
0 otherwisei

i
MAT 

= 


 

remainingore tonnageat mining face (ton)iORE i=  

remaining waste tonnageat mining face (ton)iWASTE i=  
1 if mining face isavailable
0 otherwise

face
i

i
AVL 

= 


 

1 if shovel isavailable
0 otherwise

shovel
j

j
AVL 

= 


 

( )max maximum production capacityof shovel ton/hourjSHCAP j=  

( )min minimum production capacityof shovel ton/hourjSHCAP j=  

number of available trucksof typekNUM k=  

1 if truck iscompatible with shovel
0 otherwisejk

k j
COMP 

= 


 

cycle timeof truck type transferringorefrom mining face to themill (second)ore
ikCT k i=  

cycle timeof truck type transferring wastefrom mining face to the wastedump (second)waste
ikCT k i=  

capacityof truck type transferringore (ton)ore
kCAP k=  

capacityof truck type transferring waste (ton)waste
kCAP k=  

gradeof variable at mining face (%)ilGR l i=  

upper boundof gradeblending for variable (%)lUB l=  

lower boundof gradeblending for variable (%)lLB l=  

maximum processingcapacityof themill (ton)PMAX =  

minimum processingcapacityof themill (ton)PMIN =  

movingcost of shovel fromitscurrent location tominign face (%)ijMC j i=  

trip cost of truck type from mining face to themill ($)ore
ikTRC k i=  

trip cost of truck type from mining face to the waste dump ($)waste
ikTRC k i=  

cost of deviation from target production ($/ton)DC =  

planning timeduration (hour)T =  

3.4. Decision variables 

1 if shovel isassigned tomining face
0 otherwiseij

j i
a 

= 

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number of tripsof truck type from mining face to themillore
ikn k i=  

number of tripsof truck type from mining face to the wastedumpwaste
ikn k i=  

 
 

3.5. Objective Function 

MIN 

( ) ( )ore ore waste waste
ij ij ik ik ik ik i i

i I j J i I k K i I

Z

MC a TRC n TRC n DC PMAX MAT x
∈ ∈ ∈ ∈ ∈

=

⋅ + ⋅ + ⋅ + ⋅ − ⋅∑∑ ∑∑ ∑  (1) 

3.6. Constraints  
face

ij i
j J

a AVL i I
∈

≤ ∀ ∈∑   (2) 

shovel
ij j

i I

a AVL j J
∈

≤ ∀ ∈∑   (3) 

3600 ,ore ore
ik ik k iCT n T NUM MAT i I k K⋅ ≤ ⋅ ⋅ ⋅ ∀ ∈ ∈  (4) 

3600 (1 ) ,waste waste
ik ik k iCT n T NUM MAT i I k K⋅ ≤ ⋅ ⋅ ⋅ − ∀ ∈ ∈  (5) 

,ore
ik ij jk

j J

n a COMP i I k K
∈

≤ ⋅ ∀ ∈ ∈∑   (6) 

,waste
ik ij jk

j J

n a COMP i I k K
∈

≤ ⋅ ∀ ∈ ∈∑   (7) 

3600ore ore waste waste
ik ik ik ik k

i I i I

n CT n CT T NUM k K
∈ ∈

⋅ + ⋅ ≤ ⋅ ⋅ ∀ ∈∑ ∑  (8) 

max .i j ij
j J

x T SHCAP a i I
∈

≤ ⋅ ∀ ∈∑   (9) 

min .i j ij
j J

x T SHCAP a i I
∈

≥ ⋅ ∀ ∈∑   (10) 

i i
i i

x MAT PMAX
∈

⋅ ≤∑   (11) 

i i
i i

x MAT PMIN
∈

⋅ ≥∑   (12) 

i i ix MAT ORE i I⋅ ≤ ∀ ∈   (13) 

( )1i i ix MAT WASTE i I⋅ − ≤ ∀ ∈   (14) 

ore ore waste waste
i ik ik ik ik

k K k K

x CAP n CAP n i I
∈ ∈

= ⋅ + ⋅ ∀ ∈∑ ∑
 

(15) 

il i l i
i I i I

GR x UB x l L
∈ ∈

⋅ ≤ ⋅ ∀ ∈∑ ∑   (16) 

il i l i
i I i I

GR x LB x l L
∈ ∈

⋅ ≥ ⋅ ∀ ∈∑ ∑   (17) 

extracted tonnagefrom mining face (ton)ix i=
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{ }0,1 ,ija i I j J∈ ∀ ∈ ∈   (18) 

, ,ore waste
ik ikn n Z i I k K∈ ∀ ∈ ∈   (19) 

0ix i I≥ ∀ ∈   (20) 

Objective function seeks to minimize the operational costs associated with the mine. The first term 
in Eq. (1) is the total cost of moving shovels to new faces, the second term is the total 
transportation cost of trucks moving to the waste dump or to the mill, and the last term is the cost 
of negative deviation from the production target at the mill. Constraint Eq. (2) indicates that at each 
available mining face only one shovel can operate, and if a face is not available, no shovel should 
be assigned to that face. Constraint Eq. (3) assures that each available shovel can operate at only 
one face. Eq. (4)limits the number of trips for a fleet of trucks travelling from each mining face to 
the mill.  Eq. (5)restricts the number of trips for a fleet of trucks travelling from each mining face 
to the waste dump. Constraints Eq. (6) and Eq. (7) guarantee that a truck could travel to a mining 
face only if a shovel is assigned to that face and the shovel is compatible with that truck type. 
Equation Eq. (8) denotes that the total number of trips of each truck type travelling to the mill or 
the waste dump is less than the maximum possible trips of that truck type. Constraints Eq. (9) and 
Eq. (10) ensure that the production of each mining face is between minimum and maximum 
possible production of the shovel assigned to that face. Eq. (11) and Eq. (12) aim to meet the limits 
of processing capacity of the mill. Constraints Eq. (13) and Eq. (14) force the production of each 
mining face to be smaller than the maximum amount of available material. Eq. (15) defines the 
production of each mining face based on the number of trips of each fleet of trucks. Eq. (16) and 
Eq. (17) ensure that the grade blending at the mill is between specified upper and lower limits. Eqs. 
(18), (19), and (20) define types of decision variables. 

4. Conclusions and future work 

This paper presented a mixed integer programming model to determine the number and the 
optimum allocation of trucks and shovels in an open pit mine. The model is proposed for the 
problem under certain assumptions. The next stage in this study is to code, solve, and verify the 
model using optimization tools. The approach should be applied to a real case to validate the model 
and to study the efficiency of the model and the solution algorithm. 
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