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Abstract  

Planning of caving operations poses complexities in different areas such as safety, environment, 
ground control, and production scheduling. As the mining industry is faced with more marginal 
resources, it is becoming essential to generate production schedules which will provide optimal 
operating strategies while meeting practical, technical, and environmental constraints. 

 Production scheduling of any mining operation has an enormous effect on the economics of the 
venture. The scheduling problems are complex due to the nature and variety of the constraints 
acting upon the system. Relying only on manual planning methods or computer software based on 
heuristic algorithms will lead to mine schedules that are not the global optimal solution.  

The objective of this paper is to develop a practical optimization framework for production 
scheduling of caving operations. A mixed integer linear programming (MILP) formulation is 
developed, implemented and verified in TOMLAB/CPLEX environment. The production scheduler 
aims at maximizing the net present value (NPV) of the mining operation while the mine planner has 
control over the development rate, vertical mining rate (production rate per drawpoint), lateral 
mining rate (rate of opening new drawpoints), dilution entry, mining capacity, maximum number of 
active drawpoints, cave draw strategies and advancement direction, and draw rate. The production 
scheduler defines the opening and closing time of each drawpoint, the draw rate from each 
drawpoint, the number of new drawpoints that need to be constructed, and the sequence of 
extraction from the drawpoints to support a given production target. The successful application of 
the model for production scheduling of a real mine data is also presented. 

1. Introduction 

Long-term mine production scheduling is one of the optimization problems. A production schedule 
must provide a mining sequence that takes into account the physical limitations of the mine and, to 
the extent possible, meets the demanded quantities of each raw ore type in each period throughout 
the mine life.  

Underground mining is more complex in nature than surface mining (Kuchta et al., 2004). 
Underground mining is less flexible than surface mining due to the geotechnical, equipment, and 
space constraints (Topal, 2008).  

A number of optimization techniques have been used in the past; many include significant 
simplifications or fail to produce acceptable results within the required timeframe. In spite of the 
difficulties associated with the application of mathematical programming to production scheduling 
in underground mines, authors have attempted to develop methodologies to optimize production 
schedules. Mathematical programming is a generic term for a variety of optimization algorithms 
developed to solve different mathematical formulations. All share the combination of variables, 
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constraints, and an objective function. The algorithms used to solve the variables all treat the 
problem as a multidimensional solution space. It also reduces complexity and uncertainty to a level 
that is manageable, providing a quantifiable basis for mine design and planning. 

Williams et al. (1972) planned sublevel stoping operations for an underground copper mine over 
one year using a linear programming approximation model. Jawed (1993) formulated a linear goal 
programming model for production planning in an underground room and pillar coal mine. Tang et 
al. (1993) integrated linear programming with simulation to address scheduling decisions, as did 
Winkler (1998). Trout (1995) used the MIP method to schedule the optimal extraction sequence for 
underground sublevel stoping. Ovanic (1998) used mixed integer programming of type two special 
ordered sets to identify a layout of optimal stopes. Carlyle et al. (2001) presented a model that 
maximized revenue from Stillwater's platinum and palladium mine. Topal et al. (2003) generated a 
long-term production scheduling MIP model for a sub-level caving operation and successfully 
applied it to Kiruna Mine. Sarin et al. (2005) scheduled a coal mining operation with the objective 
of net present value maximization. Ataee-Pour (2005) critically evaluated some optimization 
algorithms according to their capabilities, restrictions and application for use in underground 
mining. McIssac (2005) formulated the scheduling of underground mining of a narrow veined 
polymetallic deposit utilizing MIP.  

Scheduling of underground mining operations is primarily characterized by discrete decisions to 
mine blocks of ore, along with complex sequencing relationships between blocks. Since linear 
programming (LP) models cannot capture the discrete decisions required for scheduling, MIPs are 
generally the appropriate mathematical programming approach to scheduling.The methods 
currently used to compute production schedule in block cave mines can be classified in two main 
categories: (a) heuristic methods and (b) exact optimization methods. 

Heuristic methods are particularly used to rapidly come to a solution that is hoped to be close to the 
best possible answer, or optimal solution. These methods are used when there is no known method 
to find an optimal solution under the given constraints. 

The original heuristic methods were the manual draw charts used at the beginning of block caving. 
These methods evolved through use at Henderson mine where a way to avoid early dilution entry 
was described by constraining the draw profile to an angle of draw of 45 degrees (Dewolf, 1981). 
Heslop et al. (1981) described a volumetric algorithm to simulate the mixing along the draw cone. 
Carew (1992) described the use of a commercial package called PC-BC to compute production 
schedules at Cassiar mine. Diering (2000) showed the principles behind the commercial tool PC-
BC to compute production schedules, providing several case studies where different draw methods 
have been applied depending on the ore body geometry and rock mass behavior. 

The application of operation research methods to the planning of block cave mines was first 
described by Riddle (1976). This development intended to compute mining reserves and define the 
economic extent of the footprint. The final algorithm did not reflect the operational constraints of 
block caving described above since it worked with the block model directly instead of defining the 
concept of draw cone as an individual entity of the optimization process.  

The first attempt to use mathematical programming in block cave scheduling was made by Chanda 
(1990) who implemented an algorithm to write daily orders. This algorithm was developed to 
minimize the variance of the milling feed in a horizon of three days. Guest et al. (2000) made 
another application of mathematical programming in block cave long term scheduling. In this case, 
the objective function was explicitly defined to maximize draw control behavior. However, the 
author stated that the implicit objective was to optimize NPV. There are two problems with this 
approach. The first one is that maximizing tonnage or mining reserves will not necessarily lead to 
maximum NPV. The second problem is the fact that draw control is a planning constraint and not 
an objective function. The objective function in this case would be to maximize tonnage, minimize 
dilution or maximize mine life.  
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Rubio (2002) developed a methodology that would enable mine planners to compute production 
schedules in block cave mining. He proposed new production process integration and formulated 
two main planning concepts as potential goals to optimize the long term planning process, thereby 
maximizing NPV and mine life. 

Rahal et al. (2003) used a dual objective mixed integer linear programming algorithm to minimize 
the deviation between the actual state of extraction (height of draw) and a set of surfaces that tend 
towards a defined draw strategy. This algorithm assumes that the optimal draw strategy is known. 
Nevertheless, it is postulated that by minimizing the deviation to the draw target, the disturbances 
produced by uneven draw can be mitigated.  

Diering (2004) presented a non-linear optimization method to minimize the deviation between a 
current draw profile and the target defined by the mine planner. He emphasized that this algorithm 
could also be used to link the short-term plan with the long-term plan. The long-term plan is 
represented by a set of surfaces that are used as a target to be achieved based on the current 
extraction profile when running the short-term plans. Rubio et al. (2004a) presented an integer 
programming algorithm and an iterative algorithm to optimize long-term schedules in block caving 
integrating the fluctuation of metal prices in time.   

We critically reviewed the MILP formulations of the block cave production scheduling problem. 
We modeled the problem considering different possible. We divided the major decision variables 
into two categories, continuous variables representing the portion of a slice that is going to be 
extracted in each period and binary integer variables controlling the order of extraction of 
drawpoints and the number of active drawpoints in each period. We implemented the optimization 
formulation in TOMLAB/CPLEX (Holmstrom, 1989-2009) environment. A scheduling case study 
with real mine data was carried out over fifteen periods to verify the MILP model. 

The next section of the paper covers the assumptions, problem definition, and the notations of 
variables. Section 3 presents mixed integer linear programming formulation of the problem, while 
section 4 presents the numerical modeling techniques. Section 5 presents an example, conclusions 
and future work followed by the list of references in the next section. 

2. Assumptions, problem definition, and notation 

We assume that a geological block model represents the orebody, which is a three-dimensional 
array of rectangular or cubical blocks used to model orebodies and other sub-surface structures. 

The column of rock above each drawpoint, draw cone, is simulated and stored in a slice file. The 
draw cones, which are vertical, are created based on the block model and the total column is 
divided into slices which match the vertical spacing of the geological block model. Numerical data 
are used to represent each attribute of the orebody such as tonnage, densities, grade of elements, 
elevations, percentage of dilution, and economic data for each slice. Five basic drawpoint layouts 
which are being used at caving operations include continuous trough, herringbone, offset 
herringbone, Henderson or Z design, and the El Teniente or parallelogram (Brown, 2003). This 
research  assumed that the physical layout of the production level is offset herringbone. There is the 
assumption of selective mining, meaning that based on the existing conditions either all the 
material in the draw cone or some part of it can be extracted. 

Fig. 1 shows different steps from creation of the initial block model to creation of the slices. All 
stages before scheduling are done using GEMS and PCBC (GEMCOMSoftwareInternational, 
2011). First of all, using GEMS a block model is created to provide a quantitative description of the 
rockmass including and surrounding the cave zone. Then drawpoint locations are defined and block 
model data is converted into drawpoint based data using PCBC. Afterwards, the slices are 
constructed for each drawpoint. These slices represent the draw column above each drawpoint 
before any extraction begins. The best height of draw (BHOD) for each draw cone is estimated. 
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The BHOD is the height which produces the best economic value and it is usually not discounted 
with time. The number of possibilities for finding the optimal height is equal to the number of 
slices above each drawpoint. A simple comparison of the dollar value for each combination (slice 
1, then slices 1,2, then slices 1,2,3) allows the best height to be found. This process or technique is 
shown schematically in Fig. 2. The relevant dollar value of each number in the horizontal axis is 
equal to the summation of dollar values of slices 1 to that number. The maximum value, in this 
case, is obtained for slice number 33. If the height of each slice is h (m), the best height of draw for 
this drawpoint is 33h (m). 

                                          
 

Fig. 1. Flow chart from initial block model to draw column. 

 
Fig. 2. Determination of the BHOD 

After applying the BHOD, the final height of draw is obtained. Afterwards the production schedule 
of a block cave mine can be optimized using the MILP formulation. The problem is maximizing 
the net present value of the mining operation while the mine planner has control over the 
development rate, vertical mining rate (production rate per drawpoint), lateral mining rate (rate of 
opening new drawpoints), dilution entry, mining capacity, maximum number of active drawpoints, 
cave draw strategies and advancement direction, and draw rate. To solve the problem, four decision 
variables are employed, one continuous decision variable and three binary integer variables. Two 
of them are used in controlling slice level and two in controlling drawpoint level. The continuous 
decision variable indicates the portion of extraction from each slice in each period and three binary 
integer variables control the number of active drawpoints, precedence of extraction between slices 
and drawpoints, the opening and closing time of each drawpoint, the draw rate from each 
drawpoint, and the number of new drawpoints that need to be constructed in each period. This 
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formulation is implemented for eight advancement directions to maximize the NPV. Fig. 3 
illustrates these advancement directions. 

According to the advancement direction for each drawpoint, d, there is a set dS  which defines the 
predecessor drawpoints among adjacent drawpoints that must be started prior to extraction of 
drawpoint d. Based on the search direction, eight different predecessor data sets can be defined for 
each drawpoint. Fig. 4 shows that in the offset herringbone layout, each drawpoint is surrounded by 
a maximum of seven drawpoints. The members of set dS in each direction are determined using an 
imaginary line prependicular to the desired advancement direction at the location of the considered 
drawpoint. All located adjacent drawpoints behind the imaginary line are defined as members of set

dS in the considered advancement direction. For instance, Fig. 5a shows that adjacent drawpoints 
for drawpoint d4 include d1, d2, d3, d5, d6, d7, and d8. In advancement direction of North to South 
(NS), extraction of drawpoints d1, d2, and d3 have to be started prior to drawpoint d4. Fig. 5b 
shows the advancement direction of South West to North East (SW to NE), extraction of 
drawpoints d1, d6, and d7 have to be started prior to drawpoint d4.   

 

 
 

Fig. 3. Alternative cave advancement directions (Pourrahimian and Askari-Nasab, 2010) 

 

      

    

  

    

  

    

  

    

 
Fig. 4. Offset herringbone extraction level layout (after Brown, 2003) 
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(b)   

 

  

 

  

 

 

Fig. 5. Determination method of members for set dS  in different directions. 

2.1. Notation 

The notation of decision variables, parameters, sets, and constraints are as follows: 

2.1.1. Sets 

dS  For each drawpoint, d, there is a set dS defining the predecessor drawpoints that 
must be started prior to extraction of drawpoint d. 

 

d sS  
For each drawpoint, d, there is a set d sS defining the slices in draw cone 
associated with drawpoint d. 

 

sS  For each slice, s, there is a set sS defining the predecessor slice that must be 
extracted prior to extraction of slice s. 

 

d l sS  For each drawpoint, d, there is a set d l sS defining the lowest slice within the 
draw cone associated with drawpoint d.  

 

2.1.2. Indices 

{1,...., }t T∈  Index for scheduling periods.  

{1,..., }d D∈  Index for drawpoints.  

{1,..., }s S∈  Index for slices.  

{1,..., }e E∈  Index for elements of interest in each slice.  

m  Index for a slice belonging to one of the sets sS or 
d l sS   

j  Index for a drawpoint belonging to one of the sets dS or 
d sS   

2.1.3. Parameters 

sSEV  Economic value of slice s.  

i  The discount rate.  

dN  Number of drawpoints.  

dNs  Number of slices within the draw cone associated with drawpoint d.  

dDC  Development and construction cost of drawpoint d.  

d sSC  
Development and construction cost of slice s in the draw cone associated with 
drawpoint d. 

 

atN  Maximum number of active drawpoints in period t.   

ntN  Upper limit of number of new drawpoints in period t.  

(a)   
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ntN  Lower limit of number of new drawpoints in period t.  

sO  Total tonnage of ore in slice s.   

sW  Total tonnage of waste in slice s.   

s sO W+  Total tonnage of material in slice s.  

dTD  Total tonnage of material in draw cone associated with drawpoint d.  

esG  Average grade of element e in ore portion of slice s.  

etG  Upper limit of acceptable average head grade of element e in period t.  

etG  Lower limit of acceptable average head grade of element e in period t.  

tM  Upper limit of mining capacity in period t.  

tM  Lower limit of mining capacity in period t.  

d tDR  Draw rate of drawpoint d in period t.  

d tDR  Minimum possible draw rate of drawpoint d in period t.  

d tDR  Maximum possible draw rate of drawpoint d in period t.  

dγ  Density of material in drawpoint d.  

2.1.4. Decision variables 

[0,1]s tX ∈  Continuous variable, representing the portion of slice s to be extracted in 
period t. 

 

{0,1}d tE ∈  Binary integer variable controlling the starting period of drawpoints and the 
precedence of extraction of drawpoints. d tE is equal to one if extraction of 
drawpoint d has started by or in period t, otherwise it is zero. 

 

{0,1}d tC ∈  
Binary integer variable controlling the closing period of drawpoints. d tC is 
equal to one if extraction of drawpoint d has finished by or in period t, 
otherwise it is zero. 

 

{0,1}s tB ∈  
Binary integer variable controlling the precedence of extraction of slices. It is 
equal to one if extraction of slice s has started by or in period t, otherwise it is 
zero. 

 

3. Mathematical model 

A mixed integer linear programming (MILP) problem contains both integer and continuous 
variables and there are no quadratic terms in the objective function. 

3.1. Objective function 

The objective function of the MILP formulation is to maximize the net present value of the mining 
operation. The profit from mining a drawpoint depends on the value of the slices and the costs 
incurred in mining.  

The objective function, Eq.(1), is composed of the slice economic value (SEV), discount rate, slice 
cost, and a continuous decision variable that indicates the portion of a slice which is extracted in 
each period. The most profitable slices will be chosen to be part of the production call in order to 
optimize the NPV.  
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In Eq.(1), construction cost of drawpoint d is divided among the slices in the draw cone associated 
with drawpoint d. For example, if there are 15 slices in the draw cone associated with drawpoint 
number 20 and drawpoint development and construction cost of this drawpoint is $ DC20

 

, the cost 
of each slice within the relevant draw cone is given by Eq.(2). 

( )1 1

Maximize
1

T S
s

s stt
t s

SEV SC X
i= =

 
 − ×
 + 

∑∑                                                                                        (1) 

2020
20

$
15

s
s

DCSC s S= ∈                                                                                                              (2) 

3.2. Constraints 

3.2.1. Mining capacity 

This constraint forces mining system to achieve desired mining capacity. It is applied using 
inequalities in Eq.(3), which ensures that the total tonnage of material extracted from drawpoints in 
each period is within the acceptable range that allows flexibility for potential operational 
variations. 

{ }
1

( ) 1,...,
S

t s s s t t
s

M O W X M t T
=

≤ + × ≤ ∀ ∈∑                                                     (3) 

3.2.2. Grade blending 

This constraint forces the mining system to achieve the desired grade.  The average grade of the 
element of interest has to be greater than or equal to a certain value, etG , and less than or equal to 

a certain value, etG , for each period t. It is applied using inequalities in Eq.(4), which ensure that 
the average grade of production is within the desired range in each period. 

( )

( )
{ } { }1

1

1,..., , 1,...,

S

es s s s t
s

et etS

s s s t
s

G O W X
G G t T e E

O W X

=

=

× + ×
≤ ≤ ∀ ∈ ∈

+ ×

∑

∑
                              (4) 

3.2.3. Maximum number of active drawpoints and continuous extraction from draw cone  

During the mine life, each drawpoint can be in three different situations: open, active, and close. 
Fig. 6 illustrates how the situations change. In each period, we need to know the number of active 
drawpoints because this number must not exceed the allowable number. This constraint controls 
the maximum number of active drawpoints at any given period of the schedule.  

As an example, Fig. 7 shows that the draw cone associated with drawpoint d contains four slices. 
The starting period of extraction of drawpoint d can be controlled by the lowest slice. This means, 
extraction of drawpoint d is started by extraction of the relevant lowest slice. When extraction of 
the last portion of a slice is finished in period t, extraction of the above slice can be started in the 
period t or t+1. In other words, extraction of a slice can be started if the below slice is totally 
extracted. If extraction of a slice is not started after finishing the extraction of the below slice in 
period t or t+1, the relevant drawpoint must be closed. Fig. 8 shows values of variables when 
extraction of a slice is finished. The mentioned concept is applied using inequalities in Eqs.(5), (6), 
(7), and (8). Eq.(7) ensures that when drawpoint d is open, at least a portion of one of the slices 
within the draw cone associated with drawpoint d is extracted otherwise the drawpoint must be 
closed. This means extraction must be continuous otherwise the drawpoint will be closed. 
Parameter L in Eq.(7) must be a big enough number. Eqs.(6) and (8) ensure that when variables 
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Lowest 
Slice 

Drawpoint d 

d tE and d tC change to one, they remain one until the end of the mine life. This helps us to 
recognize the periods when the drawpoint is active. Fig. 9 shows the relationship between opening 
time, closing time, and active time. Eq. (9) controls the maximum number of active drawpoints in 
each period. atN  should be given as an input to the algorithm.                         

   
Fig. 6. Changes of drawpoint situation during the mine life 

 

 

 

 

 

 

 

 

 
 

Fig. 7. Extraction time of the lowest slice is equivalent to drawpoint starting period. 

 

 

 

 

 

 
 

Fig. 8. Value of variables when extraction of a slice is finished. 

{ }0 1,..., , {1,..., }, dls
s t d tX E t T d D s S− ≤ ∀ ∈ ∈ ∈                            (5) 

{ }( 1) 0 1,..., , {1,..., }d t d tE E t T d D+− ≤ ∀ ∈ ∈                                      (6) 

{ }1,..., , {1,..., }, d s
d t d t mtE C L X t T d D m S− ≤ × ∀ ∈ ∈ ∈∑                          (7) 

{ }( 1) 0 1,..., , {1,..., }d t d tC C t T d D+− ≤ ∀ ∈ ∈                                     (8) 

Time 

Mine life 

Open Close 
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Slice 

1
, 1, 1

t
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g i g t
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g S and S X B
=

∈ = =∑  
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Slice g 

1d tE =  

Slices, in period t ( ),s t s tX B and in the period t+1 ( ), 1 , 1,s t s tX B+ +  
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Mine life 

0d tE =  1d tE =  

0d tC =  1d tC =  

Drawpoint life ( Drawpoint is active) 

1d t d tE C− =

 
0d t d tE C− =  0d t d tE C− =

 

→ Extraction has been finished in period t if  
1

1
t

s
s i

i
X s S′

=

′= ∈∑  

Slice s 

Slice s′  

{ }
1

( ) 1,...,
D

d t d t at
d

E C N t T
=

− ≤ ∀ ∈∑                                                            (9) 

3.2.4. Precedence 

• Drawpoints 

These constraints control the extraction precedence of drawpoints. Eq. (10) ensures that all 
drawpoints belonging to the relevant set, dS , have been started prior to extraction of drawpoint d. 
This set is defined based on the selected mining advancement direction. This set can be empty, 
which means the considered drawpoint can be extracted in any time period in the schedule. Eq.(10) 
ensures that only the set of immediate predecessor drawpoints need to be started prior to starting 
the drawpoint under consideration.  

{ }0 {1,..., }, 1,..., , d
j t d tE E d D t T j S− ≤ ∀ ∈ ∈ ∈                              (10) 

• Slices 

Extraction of slice, s, can be started if the slice below it has been extracted totally.  Fig. 10 shows 
that for each slice except the lowest, there is a set sS defining the predecessor slice that must be 
extracted prior to extraction of slice s. The extraction precedence of slice within each draw cone is 
controlled by Eqs.(11), (12) and (13). Eqs. (11) and (12) ensure that extraction of slice belonging to 
the relevant set, 

sS , has been finished prior to extraction of slice s. Eq.(14) ensures that slice s is 
extracted when the relevant drawpoint is active. 

 

 
 

 

 
 

Fig. 10. Sequence of extraction between slices 

Fig. 9. Drawpoint activity duration based on opening and closing periods 
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{ }
1

0 {1,..., }, 1,..., ,
t

s
s t mi

i

B X s S t T m S
=

− ≤ ∀ ∈ ∈ ∈∑                                     (11) 

{ }
1

0 {1,..., }, 1,...,
t

s i s t
i

X B s S t T
=

− ≤ ∀ ∈ ∈∑                                                 (12) 

{ }( 1) 0 {1,..., }, 1,...,s t s tB B s S t T+− ≤ ∀ ∈ ∈                                                (13) 

{ }{1,..., }, 1,..., ,mt d s
d t d t

d

X
E C d D t T m S

Ns
≤ − ∀ ∈ ∈ ∈∑                                (14) 

3.2.5. Number of new drawpoints (Development rate) 

This constraint defines the maximum feasible number of drawpoints to be opened at any given time 
within the scheduled horizon. This constraint is usually based on the footprint geometry, the 
geotechnical behavior of the rock mass and the existing infrastructure of the mine, which will 
typically define available mining faces. 

The drawpoint opening is controlled by the variable d tE , which takes a value of one from the 
opening period to end of the mine life. From period two to the end of the mine life, the difference 

between the summation of opened drawpoints until and including period t,
1

{2,..., }
D

d t
d

E t T
=

∈∑ , and 

the summation of opened drawpoints until and including previous period t-1, 

( 1)
1

{2,..., }
D

d t
d

E t T−
=

∈∑ , indicates the number of new drawpoints. Eq.(15)  ensures that the number 

of new drawpoints which are opening in each period except period one is within the acceptable 
range. Eq. (16) ensures that in period one the number of new drawpoints is equal to the number of 
active drawpoints.  

( 1)
1 1

{2,..., }
D D

nt d t d t nt
d d

N E E N t T−
= =

≤ − ≤ ∀ ∈∑ ∑                                                  (15) 

1 1
1

D

d a
d

E N
=

≤∑                                                                                                                                    (16) 

3.2.6. Reserves 

Eq.(17) ensures that there is selective mining for the slices, and thereby based on the existing 
conditions either all the material in the draw cone or some part of that can be extracted. 

{ }
1

1 1,...,
T

st
t

X s S
=

≤ ∀ ∈∑                                                  (17) 

3.2.7. Draw rate 

This constraint controls the maximum and minimum rate of draw and is a function of 
fragmentation and capability. This rate should be fast enough to avoid compaction and slow 
enough to avoid air gaps. The maximum limit to the draw rate is usually determined by the 
fragmentation process since time is required to achieve good fragmentation. However, sometimes, 
the maximum rate may be determined by the LHD productivity. Inequalities in Eq. (18) ensure that 
the draw rate from each drawpoint is within the desired range in each period.  
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( ) ( ) { }. . {1,..., }, 1,..., , d s
d t d t d t m m mt d tE C DR O W X DR d D t T m S− ≤ + ≤ ∀ ∈ ∈ ∈∑      (18) 

4. Numerical modeling 

To solve linear programming problems in which the variables of the objective function are 
continuous in the mathematical sense, with no gaps between real values, ILOG CPLEX implements 
optimizers based on simplex algorithms (Winston, 1995) (both primal and dual simplex) as well as 
primal-dual logarithmic barrier algorithms.  

The branch‐and‐cut method is an efficient way for solving combinatorial optimization problems 
that are formulated as mixed integer linear programming problems. It is an exact algorithm which 
combines cutting plane and the branch‐and‐bound algorithms. It works by solving a sequence of 
linear programming relaxations of the IP problem. The cutting plane improves the relaxation of the 
problem to a closer approximation (Horst and Hoang, 1996).  

In this study we used 

Table 1

TOMLAB/CPLEX version 12.1.0 (Holmström, 1989-2009) as the MILP 
solver. TOMLAB/CPLEX efficiently integrates the solver package CPLEX (ILOGInc, 2007) with 
a MATLAB environment(MathWorksInc, 2007).  

 represents the required number of decision variables for the proposed MILP formulation as 
a function of the number of drawpoints, dN , number of slices, sN ,  and number of scheduling 
periods, T.  Thus, the number of continuous and binary decision variables for each problem are 
( )sN T×  and ( )2 d sT N N × +  , respectively. 

Table 1. Number of decision variables in the presented formulation 
Variable Type Relevant level Number of 

variables 
s tX  continuous Slice sN T×  

s tB  binary Slice sN T×  

d tE  
binary Drawpoint dN T×  

d tC  
binary Drawpoint dN T×  

5. Illustrative example 

The presented model has been implemented and tested in TOMLAB/CPLEX environment. It was 
verified based on a real data set containing 20 drawpoints. There were 607 slices in the primary 
slice data file which was reduced to 324 after calculating the BHOD. Fig. 11 illustrates tonnage and 
grade distribution of the 324 slices. The grade of copper varies between 0.7and 1.5 percent and the 
majority of slices are more than 6000 tonnes. The total tonnage of material within drawpoints is 
almost 2.08 Mt. Fig. 12 shows a plan view of the drawpoints and tunnels based on relevant 
coordinates. Fig. 13 illustrates a 3D view of draw columns. As  can be seen, southern draw 
columns are taller than northern ones. 
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Fig. 11. Tonnage and grade distribution of slices 

         

 
Fig. 12. Plan view of drawpoints and tunnels 

6. Results and discussion 

The presented MILP formulation was implemented for all mining advancement directions to find 
the optimum production schedule. Table 2 shows CPU time and size of the problem to test the 
MILP model for 20 drawpoints over 15 periods of extraction along the different advancement 
directions. The same scheduling parameters were used as input to solve the problem in the different 
advancement directions (see Table 3) 

Table 3 shows scheduling parameters and obtained results for each advancement direction. Fig. 14 
shows that difference between the highest and the lowest NPVs is more than five percent. The 
maximum NPV is obtained in the South to North direction.  Fig. 15 to Fig. 22 show that all 
assumed constraints have been satisfied. Fig. 15 illustrates average grade of production for each 
period along the different advancement directions.  

Cu grade (%) Tonnage of slices (tonne) 

(a) (b) 



Pourrahimian Y. et al. MOL Report Three © 2011 - ISBN: 978-1-55195-281-9 105-14 
 
 

 
Fig. 13. 3D view of draw columns 

 
Table 2. Numerical results for the solution time and problem size 

Direction CPU time (s) Size of matrix A 
(row×col) 

Continuous 
variables 

Binary 
variables 

West to East 208 17030 × 10320 4860 5460 
East to West 1343.7 17030 × 10320 4860 5460 

North to South 2644.7 16925 × 10320 4860 5460 
South to North 2188.1 16925 × 10320 4860 5460 

South East to North West 2380.3 16925 × 10320 4860 5460 
North West to South East 95.3 16925 × 10320 4860 5460 
South West to North East 308.27 16940 × 10320 4860 5460 
North East to South West 403.45 16940 × 10320 4860 5460 

In South to North direction in Fig. 15, it can be seen that the formulation tries to extract high grade 
slices earlier than others. Fig. 16 shows that tonnage of extraction in South to North direction 
during the first 11 years is equal to the upper bound of production that has been set up as a 
scheduling parameter. 

 

X (m) 

Y (m) 

H
ei
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m
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Table 3. Scheduling parameters and obtained net present value 

Advancement 
Direction 

/et etG G  

(%) 

/t tM M  

(t)×10

/d t d tDR DR
3 

 

(mm/day) 
atN  /nt ntN N  NPV 

($M)  

WE 0.5 / 1.9 100/139 50 / 300 7 0 / 3 2.8074 
EW 0.5 / 1.9 100/139 50 / 300 7 0 / 3 2.7649 
NS 0.5 / 1.9 100/139 50 / 300 7 0 / 3 2.6936 
SN 0.5 / 1.9 100/139 50 / 300 7 0 / 3 2.8497 

SE-NW 0.5 / 1.9 100/139 50 / 300 7 0 / 3 2.8019 
NW-SE 0.5 / 1.9 100/139 50 / 300 7 0 / 3 2.8033 
SW-NE 0.5 / 1.9 100/139 50 / 300 7 0 / 3 2.8280 
NE-SW 0.5 / 1.9 100/139 50 / 300 7 0 / 3 2.7210 

 

 
Fig. 14. Amount of NPV for different directions over 15 years scheduling horizon 

Fig. 17 illustrates the maximum number of active drawpoints in each period for the different 
advancement directions. It can be seen that this constraint has been satisfied for all directions. In 
South to North direction, the mine works with the maximum allowable number of active 
drawpoints except for years one, six and fourteen. Fig. 18 illustrates the number of new drawpoints 
that are opened in each period for all advancement directions.  

According toIn South to North direction in Fig. 15, it can be seen that the formulation tries to 
extract high grade slices earlier than others. Fig. 16 shows that tonnage of extraction in South to 
North direction during the first 11 years is equal to the upper bound of production that has been set 
up as a scheduling parameter. 

Table 3, the number of new drawpoints that can be opened in each period varies between 0 and 3. 
As can be seen in Fig. 18, the upper bound is equal to 3 for all periods except period one. In period 
one, the number of new drawpoints that can be opened is equal to the maximum number of active 



Pourrahimian Y. et al. MOL Report Three © 2011 - ISBN: 978-1-55195-281-9 105-16 
 
 
drawpoints because at the beginning, we need more flexibility to reach the target grade and 
production level.  

Fig. 18 shows a striking difference in the number of new drawpoints in the different advancement 
directions. In the South to North direction, extraction starts with six new drawpoints in the first 
period then the number of new drawpoints falls sharply to two in the second period and it remains 
almost constant until the end of the mine life. Extraction of all drawpoints is started before period 
15 and there is no new drawpoint in this period.  

Fig. 19 shows the production schedule for South to North direction. It illustrates the starting and 
finishing periods of extraction and the drawpoints life during the mine life. The ID number of 
active drawpoints and new drawpoints can be obtained by comparing Fig. 19 and the South to 
North direction of Fig. 17 and Fig. 18. For instance, according to the South to North direction of 
Fig. 17 and Fig. 18, there are seven active drawpoints and one new drawpoint in period five. In Fig. 
19, it can be seen that the ID number of active drawpoints include DP7, DP10, DP11, DP15, DP16, 
DP19 and DP20 and the new drawpoint which has to be opened is DP7.  

Fig. 20 shows the draw rate for drawpoints DP8 and DP11 in the South to North direction. It can be 
seen that the defined upper and lower bounds for both selected drawpoints have been satisfied. Fig. 
20a shows the fluctuation in the draw rate of DP8; in contrast, Fig. 20b shows that DP11 has an 
almost  uniform draw rate. This situation happened because of constant numbers which have been 
defined as upper and lower bounds. The formulation tries to extract material from drawpoints with 
a draw rate within the acceptable range without considering a specific shape.  

 

    
Fig. 15. Average grade of production for different advancement directions over 15 periods 
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Fig. 16. Tonnage of production for different advancement directions over 15 periods 

 
Fig. 17. Maximum number of active drawpoints for different advancement directions over 15 periods 
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Fig. 18. Development rate for different advancement directions over 15 periods 

 
Fig. 19. Sequence of extraction and the drawpoints life for South to North advancement direction 
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Fig. 20. Draw rate of drawpoints DP8 and DP11 in the South to North direction. 

 

(b) 

(a) 
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Fig. 21 shows cumulative tonnage extracted from DP8 and DP11 and percentage of extraction from 
slices within draw columns associated with drawpoints DP8 and DP11. The Y-axis of Fig. 21a and 
Fig. 21c represents the ID number of slices within the draw cone associated with the considered 
drawpoints DP8 and DP11, respectively. The smallest and the biggest numbers in these graphs 
indicate the lowest and the topmost slices in the draw cone associated with the considered 
drawpoints. For example, Fig. 21a shows that the lowest and the topmost slices within draw cone 
associated with drawpoint DP8 are slices 53 and 67, respectively. The blue numbers in these graphs 
are the percentage of extraction from each slice in the related period. It can be clearly seen that 
extraction from each slice is started after finishing the extraction of the slice below. Fig. 21b shows 
that all the material within the draw cone associated with drawpoint DP8 is extracted, while 
according to Fig. 21d, almost 90 percent of the materials within the draw cone associated with 
drawpoint DP11 are extracted. 

Fig. 22a shows defined precedence among drawpoints for South to North direction based on the 
mentioned advancement direction concept in Fig. 5 . For example, extraction from drawpoint DP11 
can be started if extraction from drawpoints DP14, DP15, and DP16 has been started. Fig. 22b 
shows obtained start and end periods from the MILP formulation for South to North direction. It 
can be seen that all defined precedence among drawpoints has been observed. According to Fig. 
22a,  extraction of drawpoints DP14, DP15, and DP16 can be started after starting the extraction of 
drawpoints DP18, DP19, and DP20, but Fig. 22b shows that extraction of drawpoints DP14, DP15, 
DP16, DP18, DP19, and DP20 starts at the same period. This happened because when a small 
portion of the lowest slices of drawpoints DP18, DP19, and DP20 is extracted that means 
extraction  has been started and extraction of drawpoints DP14, DP15, and DP16 can be started in 
the same period.  

7. Conclusions and future work  

The economics of today’s mining industry are such that the major mining companies are increasing 
the use of massive mining methods. Of the methods available, caving mines are favored because of 
their low cost and high production rates. 

Improvement in both computer processing power and optimization solution algorithms have caused 
increased ability to find an optimum schedule. These advances have increased the importance of 
MILP for production scheduling because it can provide a mathematically provable optimum 
schedule. 

This paper presented an MILP formulation for block cave mines production scheduling. The 
formulation maximizes the NPV subject to several constraints such as development rate, vertical 
mining rate (production rate per drawpoint), lateral mining rate (rate of opening new drawpoints), 
mining capacity, ore production target, maximum number of active drawpoints, cave draw 
strategies and advancement direction. The production scheduler defines the following: the opening 
and closing time of each drawpoint, the draw rate from each drawpoint, the number of new 
drawpoints that need to be constructed, and the sequence of extraction from the drawpoints to 
support a given production target.  

Further focused research is underway to add new capabilities to the model. In the presented model, 
constant draw rates were used as upper and lower bounds. One method of managing drawpoint 
production is by establishing a production rate curve, which limits production based on the amount 
of material that has been drawn previously. This means that production depends on the cumulative 
tonnes mined from a drawpoint. So in the new model production rate curve (PRC) will be used 
instead of the constant upper and lower boundaries. Sometimes extraction from drawpoints is 
started from two or more different areas of the mine; hence we need to have a schedule which 
considers all mining areas at the same time. For this reason, some new constraint will be added to 
the MILP formulation for handling multiple-lift and multiple-mine scenarios.  
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Fig. 21. Cumulative depletion tonnage and extraction percent from slices of DP8 and DP11 in South to North 

direction 

(a) 

(c) 

(b) 

(d) 



Pourrahimian Y. et al. MOL Report Three © 2011 - ISBN: 978-1-55195-281-9 105-22 
 
 

  

 
Fig. 22. Precedence of extraction between drawpoints 

(a) 

(b) 
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9. Appendix 

 

MATLAB and TOMLAB/CPLEX documentation for block cave mines scheduling 

http://www.ualberta.ca/MOL/locked-dir/DataFiles/2011_Papers/Doc/105/index.html
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