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Abstract 

Mine production planning is the process of deciding on the order of extraction of blocks from the 
block model. This can be done in various ways, but a known and reliable approach is through 
mathematical programming. The goal of this paper is to propose a mathematical model which can 
handle multiple destinations with different capacities, profits, mining and haulage costs, and 
processing costs. In order to make the problem tractable, two clustering techniques are proposed 
and compared based on their accuracy and resource consumption. Three procedures for removing 
unnecessary variable are also proposed, which together eliminate around 70% of variables in a 
test dataset.  

1. Introduction1

Mining is a complex industry with large capital investment requirements. Critical decisions are 
made at different stages in the exploration, design, extraction and reclamation of mines; these deal 
with the movement of millions of tonnes of materials and cash flows in the order of billions of 
dollars. Therefore, operations research has been broadly used to assist with decision making 
processes in the mining industry.  

 

Open pit mine planning is commonly defined as the process of deciding on the sequence of 
extracting blocks from a mine in order to gain the highest net present value (NPV) subject to a set 
of constraints. This process is usually undertaken based on two main approaches. The first 
approach is in two stages: 1) decide which blocks to extract (finding final pit limits); and 2) find 
the appropriate sequence of extraction (scheduling). In the second approach both problems are 
solved simultaneously. Although the second approach seems to result in a better solution with 
respect to maximization of the objective function, Caccetta and Hill (2003) have proven that the 
optimum pit found using the simultaneous approach will fall inside the pit outline found using pit 
optimization techniques. Therefore, the first approach is taken for this paper.    

Open pit production scheduling is a known problem which has attracted many researchers. This 
problem has been studied in various levels of detail and various time horizons. Production 
scheduling models are usually categorized into long-term, mid-term, and short-term time horizons. 
One of the main issues with various mathematical models proposed for open pit production 
scheduling in the literature is the size of the problem. A typical midsize open pit mine block model 
consists of hundreds of thousands of blocks at least. The mathematical formulation of the 
production scheduling of such a mine is beyond the ability of today’s commercial software and 
                                                      
 
 
1 Some parts of introduction and literature review are direct excerpts from (Tabesh and Askari-Nasab, 2011) 
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hardware to solve the optimization problem in a reasonable time or to find a solution to the 
problem at all. Attempts have been made to overcome this curse of dimensionality, but one of the 
main obstacles of using exact optimization methods in open pit mine production scheduling is still 
the intractability of such formulations.  

The first objective of this paper is to develop a mathematical formulation for multi-destination 
production scheduling of a mine. The proposed formulation is a mixed-integer linear programming 
model which uses continuous variables for determining the portion of block to each destination and 
binary variables for controlling the order of extraction of blocks and slope constraints. This means 
that for every block in the model there are T binary and T D×  continuous variables, where T  and 
D  represent the number of planning periods and destinations respectively. For a real size block 
model this can lead to a mathematical formulation with tens of millions of variables – a situation 
which is not tractable using currently available hardware and software. 

Clustering algorithms are then proposed in order to make the problem tractable and also to have 
more practical production plans from the mining point of view. The clustering algorithms 
aggregate blocks into selective mining units based on rock types, ore grades and distances between 
blocks. The aggregated blocks are referred to as mining-cuts, which are consequently used in the 
aforementioned mathematical formulation. Two known clustering algorithms are developed and 
compared based on the variability of grades and rock types inside cuts, the NPV that results when 
the algorithm is used with the multi-destination model, and the shape of the created clusters. The 
first algorithm is a hierarchical clustering technique proposed in Tabesh and Askari-Nasab (2011) 
which defines a similarity index between blocks and aggregates blocks together until it reaches a 
predefined number of clusters. The next clustering algorithm is an implementation of the k-means 
algorithm based on kernel functions. The term k-means, first used in MacQueen (1967), also covers 
a large series of heuristics proposed in subsequent literature, all of which partition data points by 
selecting mean points for clusters and assigning each data point to the nearest mean. 

The next part of this paper presents some efforts made to reduce the number of variables and 
consequently the size of the problem. In many mathematical formulations, paying attention to the 
structure of the problem can lead to pre-determining some variable values and removing them from 
the model. Three variable reductions are proposed in this paper which together can remove 73% of 
variables on a test problem.  

The rest of the paper is organized as follows. A review on the long-term open pit mine production 
planning (LTOPP) literature is followed by a review of the relevant clustering techniques and 
implementations in the next section. The third section explains the mathematical model and the 
clustering algorithm proposed. The algorithm is then implemented on a small subset of a real 
dataset and the results are presented in section four. The paper is concluded in the fifth section. 

2. Review of literature  

2.1. Long-term open pit mine production planning  

Various models for LTOPP have been proposed in the literature. The traditional approach was to 
define production levels (in tonnages) of ore and waste (Gershon, 1983). Other models of interest 
consist of zero-one decision variables indicating whether a block is going to be extracted in a 
period, subject to some constraints on mining and processing capacities, grade blending, and slope 
constraints. Usually the objective function aims at maximizing the NPV in order to take the time 
value of money into account. For a complete review of the mathematical programming models 
used in mine production scheduling, see Osanloo et al. (2008) and Newman et al. (Newman et al., 
2010). In this literature survey we will focus on block aggregation and clustering techniques. 

The first attempts to cluster blocks and reduce the size of problem were made by (Busnach et al. 
(1985) and Klingman and Phillips (1988); the authors of these studies decided to aggregate all the 
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blocks on the same bench without considering any of the block properties. Gershon and Murphy 
(1989) then tried to form layers of material labeled as ore or waste. Samanta et al. (2005) used the 
same approach but solved the problem using a genetic algorithm. Another interesting approach for 
grouping blocks and reducing the number of binary variables is taken in Ramazan (2001). The 
author of this thesis creates a tree based on the blocks in the model and their extraction sequence 
constraints. Ramazan (2001) then extracts the fundamental trees and solves the problem using these 
trees. The same author has refined the approach in Ramazan (2007). Although this can lead to 
optimal solution of the problem, finding the fundamental trees and solving the problem using them 
is still NP-Hard. Zhang (2006) uses a genetic algorithm to create mining cuts and solve the problem 
in cut level. 

2.2. Clustering 

Clustering is defined as the process of grouping similar entities together in a way that maximum 
intra cluster similarity and inter cluster dissimilarity is achieved. This can be modeled and solved 
as a mathematical programming problem, but the difficulty lies in the amount of resources and time 
required to solve the problem. The clustering problem has been proven to be NP-Hard (Gonzalez, 
1982). Therefore, a wide range of non-exact algorithms has been developed in the literature. These 
algorithms are usually performed by defining a measure of similarity or dissimilarity between the 
objects. These techniques can be categorized into two major groups: hierarchical and partitional 
clustering. As its name implies, hierarchical clustering is performed by creating a hierarchy of 
clusters. On the other hand, partitional clustering is performed by partitioning data objects into a 
number of groups. Hierarchical clustering is known to result in better clusters than partitional 
algorithms, but by taking more CPU time (Feng et al., 2010). A famous example of partitional 
algorithms is the k-means, which attempts to find cluster means and assign data points to the 
closest mean. K-means is a partitioning technique which tries to find a good partitioning scheme by 
iteratively modifying the partitions. This has also proven to be an NP-Hard problem (Mahajan et 
al., 2010), but it can still be used to find good partitions on the data. Some recent modified versions 
of k-means clustering can be found in Chung and Lin (2006), Bagirov (2008) and Zalik (2008). 
This algorithm has also been combined with other methods to form hybrid faster or more accurate 
techniques (Chang et al., 2009), (Niknam and Amiri, 2010) and (Niknam et al., 2010). A more 
complete review of the algorithm and its extensions can be found in Jain (2010). One extension to 
k-means clustering which is relevant to this project is the kernel k-means which is developed to be 
able to partition data points which are not linearly separable by mapping them into a kernel space 
(Dhillon et al., 2004). 

3. Mathematical formulation 

The mixed integer linear programming model for multi destination mine planning is explained in 
this section. The model consists of continuous variables for extracting material and sending it to 
various destinations as well as binary decision variables for controlling the sequence of extractions 
and slope stabilities. Decision variable [ ], 0,1d t

kx ∈  is used in determining the portion of block/cut 

k  in period t  and sending the material to destination d . Therefore, ,d t
kx  has to be bounded by the 

rock tonnage in block/cut k  that can be sent to the corresponding destination. This is done through 
defining the set dR  and constraints (6) and (7). Binary decision variables are also used in the model 
in order to control the order of extraction of blocks/cuts. t

kb  is set to one, if extraction of block/cut 
k  is allowed in period t ; i.e., all of the predecessor blocks/cuts are completely removed. This is 
guaranteed through constraint (8). Parameter L  in this constraint is the number of members in set 

( )kC L  which holds all the predecessor blocks/cuts of the block/cut k .When t
kb  gets a value of 

one, it remains at one until the end of the mine life. On the other hand, mining is prevented through 
constraint (10) as long as t

kb  is equal to zero. 
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The objective function of the model is the net present value (NPV) of extracting material from the 
mine and sending them to the corresponding destinations. The block value earned from sending one 
tonne of rock from each block/cut is calculated and discounted to the present value and is called 

,d t
kv . This parameter holds all the profits and costs such as mining, haulage, dumping and 

processing of one ton of rock from the corresponding block/cut. Since haulage and dumping costs 
are considered, this value can also be different for different waste destinations. 

Constraint set (2) is responsible for controlling the minimum and maximum mining capacity in 
each year. There is also a set of constraints for controlling the capacity of each processing 
destination in each period, as in constraint (3). Waste dump capacities are controlled through 
constraint (4). The limitation on waste dumps is usually the available lease area or the area 
prepared for dumping material. Therefore, having these as cumulative capacity constraints is more 
reasonable than having a yearly upper and lower bound. Average head grades of elements and 
deleterious material sent to each processing destination is also controlled by constraint (5). Finally, 
constraint (11) makes sure that all the material in the pit is extracted and sent to an appropriate 
destination. 

 The rest of parameters and sets used in the mathematical formulation are defined as follows. 

3.1. Sets 

PD    Set of indices of the processing destinations 

WD    Set of indices of the waste dumps 

( )kC L    For each mining-cut k , there is a set ( )kC L  defining the immediate  
   predecessor mining-cuts that must be extracted prior to extracting mining-
   cut k , where L  is an integer number presenting the total number of cuts  
   in the set ( )kC L . 

dR    For each destination d , dR  holds the rock types that are allowed to be  
   sent to this destination if the there is enough capacity. 

3.2. Indices 

{ }1,2,...,k K∈   Index for the mining cuts 

{ }1,2,...,t T∈   Index for the planning periods 

{ }1,2,...,d D∈   Index for the destinations 

{ }1,2,...,e E∈   Index for the elements of interest 

3.3. Parameters 
,d t

kv   The discounted value (Net Present Value) of extracting one tonne of cut k  in  
  period t  and sending it to destination d . If  Pd D∈  the value is expected to be  
  positive; otherwise, it is expected to be negative. 

kt   The total tonnage of material in mining-cut k  
r
kt   The tonnage of rock type r  in mining-cut k  

tm   The lower bound of mining capacity in period t  

tm   The upper bound of mining capacity in period t  
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,d tp   The lower bound of processing capacity of destination pd D∈  in period t  

,d tp   The upper bound of processing capacity of destination pd D∈  in period t  
,d tw   The lower bound on waste dump cumulative capacity for destination Wd D∈  from 

  the first period to period t  
,d tw   The upper bound on waste dump cumulative capacity for destination Wd D∈  from 

  the first period to period t t  
e
kg   The grade of element e  in mining-cut k  

, ,e d tg   The lower bound of the average head grade of element e  for destination pd D∈  in 
  period t  

, ,e d tg   The upper bound of the average head grade of element e  for destination pd D∈  in 
  period t  

3.4. Decision Variables 

[ ], 0,1d t
kx ∈  Continuous variable, representing the portion of mining-cut k  extracted and sent 

  to processing destination pd D∈ , in period t  

{ }0,1t
kb ∈  Zero-one variable for controlling the extraction precedence. It is equal to one if it  

 is allowed to extract mining-cut k  in period t . If this variable gets the value of 
one it will remain at one until the end of the mining period. 

3.5. Objective Function 

, ,

1 1 1
max

T D K
d t d t
k k k

t d k
v t x

= = =

× ×∑∑∑   (1) 

3.6. Constraints 

,

1 1

K D
t d t t

k k
k d

m t x m
= =

 
≤ × ≤ 

 
∑ ∑  t∀  (2) 

, , ,

1

K
d t d t d t

k k
k

p t x p
=

≤ × ≤∑  ,Pd D t∀ ∈  (3) 

, , ,

1 1

t K
d t d t d t

k k
t k

w t x w′

′= =

≤ × ≤∑∑  ,Wd D t∀ ∈  (4) 

,

, , , ,1

,

1

K
e d t

k k k
e d t e d tk

K
d t

k k
k

t g x
g g

t x

=

=
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×

∑

∑
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∑
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4. Clustering  

The first proposed clustering algorithm in this paper is based on a hierarchical approach presented 
in Tabesh and Askari-Nasab (2011). In this approach, there is a need for a similarity index to be 
defined in order to define similarities between objects. It is defined based on grade difference, 
distance, rock type and the beneath bench clustering scheme. Then the clusters are formed in a 
hierarchical manner, as the name implies. Each block is considered as one cluster at the beginning 
of the algorithm. In each step, the two most similar clusters are merged together and form a new 
cluster. Then the similarities between the newly created cluster and all others are updated based on 
one of these techniques: single-link, complete-link or average-link. The single-link approach takes 
the similarity between the two most similar objects from each cluster as the similarity between the 
two clusters. In contrast, the complete-link approach looks for the two most dissimilar objects. The 
average-link method, as its name implies, averages all of the pair similarities. In this paper, the 
update is done based on the complete-link approach. The procedure continues until a predefined 
number of clusters are achieved. The main contributions by Tabesh and Askari-Nasab (2011) are 
the definition of the similarity index and calibration of parameter weights, forcing the algorithm to 
respect maximum cluster size and to prevent non-adjacent clusters from merging together. For 
more details readers are referred to Tabesh and Askari-Nasab (2011). 

The next clustering technique used is an implementation of the k-means algorithm based on 
gradient descent search. In this approach, K  initial cluster centers are randomly selected at each 
replication. Then the objects are assigned to the nearest center. Afterwards, based on the gradient 
descent search technique, the centers are manipulated in such a way that the summation of 
distances between the objects and the means is locally minimized. Another replication is then 
started with a new random set of means and the process continues for a limited number of 
replications.  

The first step for this algorithm is to form the feature matrix, which holds all the important 
properties of all objects. To be consistent with the hierarchical clustering technique, the same 
parameters are used with the same weighting approach. Then the matrix has to be kernelized in 
order to get better results. When objects are not linearly separable in their initial space, kernel 
functions are used to map data points from the initial space to the kernelized space and do the 
clustering in there. Then the same map is used in returning to the initial space with all the objects 
labeled as belonging to various clusters. Having tested various kernel functions and parameters, a 
polynomial kernel function with 1d =  is used in this implementation. Afterwards, K  initial cluster 
centers are randomly selected in the kernelized space and objects are assigned to the closest mean. 
Then the objective function, which is a summation of Euclidean distances between all objects and 
cluster means, is calculated. Cluster means are then manipulated in an iterative manner based on 
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gradient descent until a local minimum is found. This is stored as a solution to the clustering 
problem and a new replication starts with another random definition of cluster means. Finally, all 
of the replications are compared, and the one with the lowest objective function is selected as the 
solution to the clustering problem on that bench.  

5. Variable reduction techniques 

5.1. Clustering 

As mentioned earlier, clustering brings two advantages to the problem. The first is that it reduces 
the number of variables in the model, since only one variable is defined for each group of blocks 
referred to as mining-cuts. The second advantage of clustering lies in having bigger units for 
planning, which makes the resulted long-term production plan more practical from the mining 
point of view. 

5.2. Removing unnecessary variables 

Since the model is built to deal with multi-destination production planning, a variable is used for 
sending a portion of each cut to some (but not all) destinations. As mentioned above, clustering 
seeks to have cuts with homogenous rock types; i.e., most of the blocks grouped together have the 
same rock type. Therefore, it can be determined based on DR  (the possible rock type destination 
combinations) which cuts cannot be sent to which destinations. The corresponding variables can be 
removed without making any change to the optimality of the final solution. The only exception is 
for a waste destination called general waste dump which accepts all types of material. For example, 
ore rock types can be sent to this destination if the processing capacity is insufficient to let them 
into processing destinations. 

5.3. Predecessor cone 

Another technique used is borrowed from Bley et al. (2010), who remove extraction decision 
variables for certain blocks based on their availability. To do so, the whole tonnage of rock in the 
predecessor cone of the block is calculated. This is the cone which has to be extracted before one 
can get access to the block based on slope constraints. The cone tonnage is then compared against 
the cumulative mining capacity from the first period up to period t . If the cone tonnage exceeds 
this cumulative mining capacity, the binary and consequently continuous variable for extracting 
that cut in that period is removed from the problem, because one can already be sure the variables 
cannot have values other than zero. The idea can be expanded to processing capacities too, i.e. by 
comparing the ore tonnage in the cone to the cumulative processing capacity. However, this makes 
the decision a bit tricky since there are multiple destinations and rocks that can be sent to different 
destinations if it results in higher objective function value. Therefore, this approach is not used in 
this paper. 

5.4. Successor cone 

Since there is an assumption that all the material has to be extracted from the mine, the same idea 
can be applied to the cone below each block. This is the set of blocks which can only be extracted 
after the block is completely extracted. In this case, if the total tonnage in the cone below the block 
exceeds the cumulative mining capacity from period t  to the end of mine life, the block has to be 
totally extracted prior to period t . The two-cones concept is also used in a meta-heuristic approach 
based on simulated annealing in Kumral and Dowd (2005). The predecessor and successor cones 
are shown in Fig 1 with green dashed and blue dotted filling patterns respectively. 
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Fig 1.Predecessor and Successor Cones 

6. Results 

Three different experiments are undertaken to verify the ideas proposed in this paper. The first 
experiment is designed in order to compare the two clustering techniques based on the 
homogeneity of the created clusters as well as runtimes. This is done on an iron ore block model 
with more than 19,000 blocks. The goal of the second experiment is to study the effects of the 
variable reduction techniques. The same dataset is clustered with hierarchical clustering and 
variable reduction techniques are applied after forming mathematical programming matrices. In the 
third experiment, the clustering techniques are used to form mining-cuts as the input to the multi- 
destination mathematical model, and the resulting NPVs and required CPU times are compared for 
different techniques as well as different cluster sizes. Since running the multi-destination 
mathematical model is time- and resource-consuming, a small subset of the model with 2413 
blocks from the bottom of the pit is selected and the optimal production plan for 11 periods is 
determined. 

6.1. Hierarchical versus K-Means 

The test dataset is an iron ore block model with 19,561 blocks which are distributed in 12 benches. 
Three elements are tracked in the model: iron, which is tracked as magnetic weight recovery 
(MWT), and sulfur and phosphor, which are tracked as deleterious material. The properties of the 
block model are summarized in Table 1. The most significant fact from this pre-processing is the 
high correlation between Sulfur and Phosphor grades and the MWT grade. Hence, Sulfur and 
Phosphor grades are removed from the feature vector. 

Table 1.Block model summary 

  MWT Grade S Grade P Grade 

MIN 0 0 0 

Max 0.83 0.0380 0.0039 

Mean 0.11 0.0023 0.0002 

STDev 0.27 0.0056 0.0005 

Range 0.83 0.0380 0.0039 

Correlation with MWT grade   0.96 0.97 

After running both clustering algorithms on the dataset, the techniques are compared based on the 
following measures. As mentioned earlier, it is required to have mining-cuts homogenous in grade 
and rock types. Consequently, the resulting mining-cut scheme is evaluated using two separate 
measures for grade and rock type, which are numerical and categorical attributes respectively. It is 
common to evaluate numerical attributes by the use of squared error criterion (Hsu et al., 2007). 
This is the square distance of each data point from the cluster mean. Since there is only one 
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numerical attribute having an effect on the quality of the results, this distance is the same as the 
standard deviation of that attribute. Therefore, the first criterion is the average coefficient of 
variation (CV) of block grades in each mining-cut, which is a normalized version of the standard 
deviation. Mining-cuts with lower grade variation are more effective in practice. The same thing 
applies to the rock type distribution. Since it is a categorical variable, neither standard deviation nor 
CV can be used. One measure used for categorical attributes is the categorical utility which is the 
probability of having two objects from same category in one cluster (Hsu et al., 2007). Another 
measure is the relative frequency of categories in clusters. This measure puts more weight on rare 
categories if considered as the objective of clustering (Huang, 1997). Based on the structure of the 
problem and existing criteria for categorical variables, a new index is defined as the percentage of 
blocks in a mining-cut belonging to the most dominant rock type in that mining-cut2

Table 2
. This is called 

the rock unity and is depicted in  along with other comparison measures. The hierarchical 
clustering technique takes more time to run but provides more accurate results, as can be seen in 
Table 2. The shape of the created clusters is also of importance. Therefore, the clustering schemes 
of one bench in the middle of the block model are provided for comparison in Fig 2 and Fig 3. 

Table 2.Comparing clustering techniques 

Technique 
CPU Time 

(s) 
Number of 

Clusters 

Average 
Rock Unity 

(%) 

Average 
MWT CV 

(%) 

Average S 
CV (%) 

Average P 
CV (%) 

Hierarchical  119 402 94.6 0.3 0.008 0.0008 

K-Means  67 399 67.4 0.4 1.8 1.2 

 

 
Fig 2.Hierarchical Clustering 

                                                      
 
 
2 This part is a direct excerpt from (Tabesh and Askari-Nasab, 2011) 
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Fig 3.K-Means Clustering 

6.2. Variable reduction 

The same iron ore data set clustered with hierarchical clustering is used to test the effectiveness of 
the variable reduction techniques. A more accurate study on the effects of predecessor cone and 
some other techniques can be found in Bley et al. (2010). There are 19,561 blocks in the model and 
402 mining-cuts. The number of binary and continuous variables for a model with 3 destinations 
over 21 periods is presented in Table 3. 

Table 3.Effectiveness of variable reduction techniques 

 Number of variables Number of continuous 
variables 

Number of binary 
variables 

Original block model 1,643,124 1,232,343 410,781 
Clustered model 33,768 25,326 8,442 

Clustered model after 
variable reduction 

9,147 4,863 4,284 

 

6.3. Mathematical formulation 

The multi-destination mathematical formulation is also tested on the same dataset. However, 
solving the MILP with available hardware and software is a resource- and time-consuming 
operation. Therefore, a small subset from the bottom of the pit with 2413 blocks on 6 benches is 
extracted and clustered with hierarchical clustering with various cluster sizes. The optimal schedule 
for each cluster size is obtained and compared in Table 4. The scheduling is to be done for 11 
periods. The total rock tonnage in the dataset is 81 million tonnes, which is made up of 56 million 
tonnes of rock type 101 and 1.5 million tonnes of rock type 301, and the rest of which is waste. 
Lower and upper bounds of 5 and 8 million tonnes per year are considered for mining capacity. 
Two processing destinations are considered, the first of which is the main processing plant. The 
second destination is a backup process which has lower capacity and  lower efficiency but can be 
used if the first process is working at full capacity. Rock type 101 is the main ore and can be 
processed in either of the destinations, unlike rock type 301, which can only be economically 
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processed in the second destination. The processing capacities are considered to be 5 and 1 million 
tons per year, respectively, for the two processing destinations. For simplification, cumulative 
capacity constraints are not considered for the only waste dump in the model. The production 
schedule and the stripping ratio for the four settings are presented in Fig 4 to Fig 7. Blue bars 
represent the production schedule at the main processing plant, while green bars represent that of 
the second processing plant. Material sent to the waste dump is shown in brown. Generated 
schedules for a sample bench are also presented in Fig 8 to Fig 11. It can be seen that by having 
bigger cuts, the CPU time required for finding the optimal solution and the NPV drop. However, by 
increasing blocks per cut from 25 to 50, the CPU time is reduced by 99% while the NPV decreases 
by only 0.4%. On the other hand, the practicality of the generated schedule is one of the most 
important factors for judging on various clustering options. A higher number of drop-cuts, as can 
be seen in Fig 8, is a usual drawback of using smaller planning units. On the other hand, higher 
resolution clustering results in smoother schedule, as shown in Fig 4. 

Table 4.Mathematical Modeling Summary 

# 
Average 

Blocks per Cut 
Number of 

Cuts 
Coefficient 
Matrix Size 

Number of 
Binaries 

CPU 
Time (s) 

NPV (million 
dollars) 

1 25 115 3345*2806 881 41,372 2501.8 
2 50 62 1741*1312 407 42.26 2490.7 
3 75 43 1195*816 245 6.64 2479.0 
4 100 33 931*573 170 3.13 2461.6 

 
Fig 4.Production Schedule #1 

 
Fig 5.Production Schedule #2 

 
Fig 6.Production Schedule #3 

 
Fig 7.Production Schedule #4 
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Fig 8.Sample Plan View of Schedule #1 

 
Fig 9.Sample Plan View of Schedule #2 
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Fig 10.Sample Plan View of Schedule #3 

 
Fig 11.Sample Plan View of Schedule #4 

7. Conclusions 

The term “open pit long-term production planning” has received significant attention from 
researchers and practitioners. Various models have been introduced in literature, and solution 
procedures have been proposed to address the tremendous amount of computational resources 
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required to solve the problem. One well-known approach is to cluster blocks into larger sets in 
order to reduce the size of the problem3
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