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Abstract 
In this paper, two modeling works performed on the provided geostatistical data related to Fort 
McMurray formation are elaborated. There are two main steps for regional modeling of reservoir 
known as mini-modeling and 3-D conventional data modeling. The focus of mini-modeling and 3-D 
conventional modeling is to model the porosity and permeability throughout the domain in 2-D and 
3-D. Various steps of these modeling works are explained in great detail.    

1. Introduction  

The provided data is from one part of the McMurray formation and consists of 37 wells with 
information on X-coordinate, Y-coordinate, SZ, elevation from sea level, facies, porosity, and oil 
saturation for each well. There are 7 different facies (1 to 7) as follows:  

• 1 for Sand  
• 2 for sandy IHS 
• 3 for Muddy IHS 
• 4 for Mud at the top 
• 5 for Breccia 
• 6 for Mud plug  
• 7 for Mud at the bottom 

In order to visualize the data in 2D, the Locmap program of the GSLIB software is used (Deutsch 
and Journel, 1997). Fig. 1 shows the location map of the 37 wells in 2D. In Fig. 1, the different 
colors are used as the means to differentiate the various facies. 
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Fig. 1. Location map of the wells (separated by facies). 

The organization of this paper is as follows: in section 2, different steps of mini-modeling are 
elaborated. Section 3 concentrates on the 3-D conventional modeling. Finally, the conclusion is 
presented in section 4.  

2. Mini-modeling 

Changing the scale from small scale (decimeter scale) to the geological scale is done by mini-
modeling. Mini-modeling includes four steps: (1) finding the distribution of porosity by 
considering well log porosity, (2) modeling porosity-permeability relations, (3) considering the 
effective permeability values in horizontal and vertical direction and (4) checking the results from 
the previous steps for geological modeling (Deutsch, 2009). Here, the results of micro-modeling 
are used to build the mini models.  

The main goal of mini-modeling is to establish the porosity/permeability statistics and models for 
sandy IHS; the resolution is 1dm by 1 dm by 1dm within a volume of 1m by 1m by 1m. Several 
realizations are done to simulate the porosity values for the mini-modeling grid cells. The 
probability field simulation and cloud transformation are done to assign the permeability values to 
the mini-modeling grid cells. In order to find the vertical permeability for the mini model, the 
KV/KH 

2.1. Statistics 

ratio from micro-modeling results are used. Also, to upscale the data from decimeters to 
meters; flow simulation is done using the simulation output of porosity values, cloud 
transformation outputs of horizontal and vertical permeability in order to find the effective porosity 
and effective horizontal and vertical permeability for the mini-modeling data. 

After the general description about the mini-modeling goals and tasks to be done, here are some 
statistics related to the given data, i.e. the maximum, minimum, the mean and the standard 
deviation (STD) of some variables, are presented in Table 1. showing their histograms.    

Table 1. Statistics about the geographical information of data. 
Variable Min. Max. Mean Standard deviation  

X-coordinate (m) 1099.6 6678.1 4772.1 1235.66 
Y-coordinate (m) 972.2 2643.5 1770.9 517.8 

SZ (m) -77.3 -6.2 -38.6 17.8 
Porosity 0.0 0.647 0.208 0.146 

 

Regarding the facies, Table 2 presents the statistics about the porosity for different facies.   The 
following table and plots indicate a summary of statistics and histogram plots of porosity for 
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different facies. In addition, Figs. 2 to  6 show the histogram plots of porosity values in different 
facies.   

Table 2. Statistics related to facies. 

Variable  Facies 1 
(sand) 

Facies 2 
(sandy IHS) 

Facies 3 
(muddy IHS) 

Facies 5 
(breccia) 

Facies 4, 6 & 7 
(muddy shale) 

Mean   0.197 0.108 0.203 0.024 
Standard deviation 0.074 0.100 0.090 0.091 0.065 

Maximum 0.647 0.40 0.38 0.41 0.644 
Minimum  0 0 0 0 0 

 

 
Fig. 2. Histogram plot of porosity of facies 1. 

 

 
Fig. 3. Histogram plot of porosity of facies 2. 

  

 
Fig. 4. Histogram plot of porosity of facies 3. 

 
Fig. 5. Histogram plot of porosity of facies 5. 
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Fig. 6. Histogram plot of porosity of facies 467. 

 

2.2. Experimental semivariogram 

Experimental semivariogram shows the variability of a variable in a specific direction. To calculate 
the vertical semivariogram, first, the data are converted to normal score values. This is done using 
the NSCORE command from GSLIB (Deutsch and Journel, 1997). In this part we are interested in 
the semivariogram of sandy IHS facies, therefore the data for the sandy HIS facies are used to 
create the semivariogram. The values of porosity for facies 2 are converted to normal score values. 
After converting the data, the vertical semivariogram for porosity of facies 2 is calculated based on 
the corresponding normal score values. Table 3 indicates the parameters for vertical semivariogram 
calculation. 

Table 3. Experimental semivariogram parameters. 
Parameter Value Parameter Value 

Number of lags 100 Azimuth angle  
Lag separation 0.01m Dip angle  
Lag tolerance 0.005m Azimuth tolerance   

Calculation range 1m  Dip tolerance  

2.3. Semivariogram modeling 

After calculating the experimental semivariogram, it should be modeled. The semivariogram model 
will be used in simulation, kriging, and other steps of mini-modeling. The specifications of vertical 
and horizontal semivariogram models are presented in Table 4. 

 
Table 4. Semivariogram model parameters. 

Direction Nested 
Structure No. 

Nested Structure 
type Contribution Range (hor.) 

vertical 
1 nugget 0.00 N/A 
2 spherical 0.43 0.7 m 
3 spherical 0.57 9.0 m 

horizontal 
1 nugget 0.00 N/A 
2 spherical 0.43 3.5 m 
3 spherical 0.57 45.0 m 

 

The horizontal semivariogram model is considered to have the same parameters such as nested 
structure and nugget effect as the vertical semivariogram, but the range of the horizontal 
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semivariogram is considered to be 5 times the vertical one. Figs. 7 and  8 show the semivariogram 
models in 2 directions. Here, the value of sill is 1, because the data are normal scores. 

 

 
Fig. 7. Semivariogram model in the  

horizontal direction. 

 

 
Fig. 8. Semivariogram model in the  

vertical direction. 

 

 

2.4. Sequential Gaussian Simulation of Porosity  

In this part, porosity of sandy IHS facies is simulated. Two kinds of Gaussian simulation are done 
on the porosity values, both of them based on unconditional data. One is carried out with no 
transformation and no reference distribution. The other one is performed with the reference 
distribution and transformation. The former, is named P-field simulation and its results include the 
normal scores. In the latter, the transformation is set as the transformation table created in 
producing the normal scores. Also, the reference distribution is set as the porosity values of facies 
2. The results of the latter simulation are in original scale of porosity values. In both kinds of 
simulation, 100 realizations with grid size of 0.1 m by 0.1 m by 0.1 m along X, Y, and Z directions 
within the cube of 1m by 1m by 1m are set; therefore there will be 10 grid cells along each 
direction. Figs. 9 and 10 show the 3-D view of Gaussian simulation of porosity with transformation 
in original scale after using POSTSIM command of GSLIB for averaging the values of 100 
realizations.   
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Fig. 9. 3-D view of simulated  

porosity. 

 
Fig. 10. Typical 2-D views of simulated 

porosity. 

  

Table 5 indicates the statistics of POSTSIM results. 
Table 5. Statistics of results of simulation after using POSTSIM. 

Number of lines of the 
input data 1000 

Mean 0.202 

Standard deviation 0.007 

Minimum 0.185 

Maximum 0.22 

 

2.5. Bivariate distribution  

In order to model the permeability values related to the micro-modeling results, a bivariate 
distribution of porosity-permeability is required. Using the Bimodel program of GSLIB, the 
bivariate distribution of porosity and permeability is modeled. Bimodel program quantifies a 
bivariate distribution at a user-defined discretization for KH and Ø (McLennan et al., 2006). The 
KH Fig. 11 and Ø were extracted from the flow simulation output of micro-modeling.  indicates the 
bivariate distribution of porosity and horizontal permeability values. 
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Fig. 11. Bivariate distribution of porosity and horizontal permeability. 

 

2.6. Cloud transformation 

In this step, to find the horizontal permeability values for the mini-modeling grid cells, the Cltrn 
program of GSLIB is used. Cloud transformation technique is used to populate the permeability 
values for the given porosity values from the simulation output. The cloud transformation 
technique uses the bivariate distribution of porosity and horizontal permeability from micro-
modeling results and porosity values of mini-modeling from the sequential Gaussian simulation 
outputs to assign permeability values to the mini-modeling grid cells. Therefore, three input files 
for cloud transformation are: the bivariate model of porosity and horizontal permeability from 
section 2.5 and output files of the 2 types of simulation performed in section 2.4. The output of the 
cloud transform has three columns: porosity values, probabilities, and K values assigned to the 
mini-modeling grid cells as the result of cloud transformation. The cloud transform will preserve 
the uncertainty in the bivariate relationship between porosity and permeability. This technique will 
use the probability field simulation (p-field) to sample the permeability cumulative distribution 
function (CDF) to ensure the spatial continuity in the neighboring model cells (Waite et al., 2004). 
Table 6 represents the statistics for permeability values of cloud transformation results. The output 
file of cloud transformation includes 100 realizations. Using POSTSIM command, the average of 
these realizations is obtained. Fig. 12 and Fig. 13 show the output of POSTSIM.  

                
Fig. 12. 3-D view of horizontal permeability 

from cloud transform. 

            
Fig. 13. 2-D views of horizontal permeability 

 from cloud transform. 
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So far, the bivariate distribution of horizontal permeability and porosity are calculated and drawn. 
Also, using cloud transformation, the values of horizontal permeability are simulated. There are 
some ways to calculate the vertical permeability. One way which is applied here is to use the ratio 
of vertical permeability and horizontal permeability from the flow model done in the macro-
modeling. This ratio equals to 1.653. Then, the value of this ratio is multiplied to the values of 
horizontal permeability outputted from the cloud transform. The results for the vertical 
permeability are shown in Figs. 14 and 15.  

 
Fig. 14. 3-D view of vertical permeability. 

 
Fig. 15. 2-D views of vertical permeability. 

  

 

2.7. Flow modeling and analysis 

Using the porosity, horizontal permeability and vertical permeability from the cloud transformation 
output, the flow simulation can be done to upscale the data from decimeter scale to the meter scale. 
The flow simulation calculates the effective horizontal and vertical permeability values and the 
effective porosity values for the mini-modeling grid cells. Here, using FLOWSIM program of 
GSLIB, the flow of porosity and permeability in the domain is modeled. The porosity of the 
domain is calculated as the arithmetic average of porosity of grid cells. The arithmetic average 
cannot be applied for permeability. The summary statistics of porosity, vertical and horizontal 
permeability are presented in Table 6. 

Table 6. Summary statistics of flow simulation results. 
Variable  Min. Max. Mean Standard deviation 
Porosity  0.086 0.307 0.1988 0.0449 

Vertical permeability (mD) 1554.317 2284.027 1883.0311 176.961 
Horizontal permeability (mD) 946.073 1401.500 1161.628 110.856 

Vertical/horizontal permeability (mD) 1.592 1.643 1.621 0.0103 

 

Fig. 16 shows the diagram of change of average porosity between 100 realizations of FLOWSIM.  
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Fig. 16. Diagram of changes of porosity through realizations. 

 

Also, the histograms of porosity, vertical and horizontal permeability are shown in Figs. 17  to 19. 

 

 
Fig. 17. Histogram plot of porosity. 

 
Fig. 18. Histogram plot of vertical permeability. 

 
Fig. 19. Histogram plot of horizontal permeability. 

 

Fig. 20 shows the scatter plot of horizontal permeability versus porosity. The correlation is 0.998.  
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Fig. 20. Scatter plot of vertical permeability versus horizontal permeability.   

Fig. 21 shows the scatter plot of the ratio of vertical to horizontal permeability versus horizontal 
permeability. The corresponding correlation is -0.314.  

Fig. 21. Scatter plot of ratio of vertical permeability to  
 

horizontal permeability versus horizontal permeability. 

3. 3D conventional modeling 

The 3D conventional modeling of an exploration data within the McMurray formation is presented 
here. Therefore, the general information about the data and the related statistics are the same as in 
section 2. The steps of the 3D conventional modeling are presented in this section. These steps 
include facies modeling, porosity modeling and merging the models.     

3.1. Facies modeling 

The main tasks involved in the facies modeling are as follows: 1) Trend modeling 2) 
Semivariogram modeling 3) Kriging and 4) Sequential Indicator Simulation (SIS). 

3.1.1 Trend modeling 

Areal proportions of the facies are summarized by calculating the proportion of each facies in the 
37 wells. This gives the facies proportions in all the wells categorized by well ID. Fig. 22 shows 
the areal proportion of each facies in the vertical direction.  
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Fig. 22. Areal proportion of each facies in the vertical direction. 

Then, in order to estimate the facies trend in 2D at all locations, the facies data are kriged. Ordinary 
kriging with a variogram that has 40% nugget effect and a range of 1/3 of the domain size is used. 
This is known as the horizontal trend. The horizontal trend statistics from kriging is summarized in 
Table 7 for all the facies. Also, Fig. 23 to Fig. 27 show the horizontal trend maps for each facies. 

Table 7. Horizontal trend statistics from kriging of all facies. 
 Minimum Maximum Mean Std. deviation 

Facies 1 0.264 0.685 0.471 0.095 

Facies 2 0.047 0.273 0.134 0.045 

Facies 3 0.013 0.283 0.116 0.062 

Facies 467 0.066 0.501 0.216 0.089 

Facies 5 0.029 0.144 0.064 0.020 

 

 
Fig. 23. Horizontal trend map of facies 1. 

 

 
Fig. 24. Horizontal trend map of facies 2. 
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Fig. 25. Horizontal trend map of facies 3. 

Fig. 26. Horizontal trend map of facies 5. 
 

   

 
Fig. 27. Horizontal trend map of facies 467. 

 

 

  

A vertical trend model is calculated from the data by subsetting the data by slices of SZ. The 
original vertical data spacing is 0.1m and this is regrouped in SZ slices of 1m which is the target 
grid dimension. A graph of facies proportion in every 1m depth is plotted to visualize the vertical 
trend. Fig. 28 to Fig. 32 show the plots of the vertical trend for all of the facies.  

 

 
Fig. 28. Vertical trend map of facies 1. 

 
Fig. 29. Vertical trend map of facies 2. 

 

   

 
Fig. 30. Vertical trend map of facies 3. 

 
Fig. 31. Vertical trend map of facies 5.  
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Fig. 32. Vertical trend map of facies 467. 

 

  

The horizontal and vertical trend models are merged to get a 3-D trend model which will be used to 
control kriging and simulation of the facies proportion in the grid. The 3-D trend model is 
calculated based on Eq. (1) (Hong and Deutsch, 2009): 

( ) ( ) ( ),. ,
, , z x y

global

m z m x y
m x y z

m
=                                                                                          (1) 

Where  mz

 m

(z): mean from the vertical trend, 

x,y

 m

(x,y): mean from the areal trend, 

global

 m(x,y,z): mean at location (x,y,z). 

 : global mean from histogram, 

This equation is based on the assumption of conditional independence of vertical and areal trends. 
Use of this equation amounts to scaling the vertical trend curve, mz, by the areal trend, mx  and my

3.1.2 Semivariogram modeling 

. 
Maps of facies of the same slice in the 3D trend model are comparable to that from the 2D trend 
model. 

The original 3-D data is used to calculate the indicator experimental semivariogram for each of the 
facies in the vertical and horizontal directions. All the vertical semivariograms are modeled from 
the experimental semivariogram. The horizontal semivariograms for facies 1 and 4 are modeled 
whilst anisotropy ratio is used to obtain the horizontal semivariogram models for facies 2, 3, and 5. 
Vertical to horizontal anisotropy ratio is considered to be 1:80. The semivariograms for facies 1 to 
5 are shown by Eqs. (2) to (6), respectively. The modeled semivariogram plots are shown in Fig. 33 
to Fig. 39. 

2.2 24.0 24.0
1 1.0 1 1200.0 1 20000.0
2 1.0 2 1200.0 2 20000.0

( ) 0.0 0.125 ( ) 0.103 ( ) 0.020 ( )av av av
ah ah ah
ah ah ah

h Exp h Sph h Sph hγ = = =
= = =
= = =

= + + +                        (2) 

2.5 24.0
1 200.0 1 1920.0
2 200.0 2 1920.0

( ) 0.0 0.0780 ( ) 0.0487 ( )av av
ah ah
ah ah

h Exp h Sph hγ = =
= =
= =

= + +                                                    (3) 

2.3 10.0 50.0
1 1.0 1 800.0 1 4000.0
2 1.0 2 800.0 2 4000.0

( ) 0.0 0.0500 ( ) 0.0350 ( ) 0.0125 ( )av av av
ah ah ah
ah ah ah

h Exp h Sph h Sph hγ = = =
= = =
= = =

= + + +                    (4) 

1.5 7.5 60.0
1 1.0 1 500.0 1 1400.0
2 1.0 2 500.0 2 1400.0

( ) 0.0 0.060 ( ) 0.047 ( ) 0.055 ( )av av av
ah ah ah
ah ah ah

h Exp h Sph h Sph hγ = = =
= = =
= = =

= + + +                          (5) 

2.5 12.0
1 200.0 1 960.0
2 200.0 2 960.0

( ) 0.0 0.0553 ( ) 0.0180 ( )av av
ah ah
ah ah

h Exp h Sph hγ = =
= =
= =

= + +                                                     (6) 
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Fig. 33. Vertical semivariogram model of facies 1. 

 
Fig. 34. Horizontal semivariogram model of facies 1. 

 
Fig. 35. Vertical semivariogram model of facies 2. 

 
Fig. 36. Vertical semivariogram model of facies 3. 

  

 
Fig. 37. Vertical semivariogram model of facies 467. 

 
Fig. 38. Horizontal semivariogram model of facies 467. 
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Fig. 39. Vertical semivariogram model of facies 5. 

 

3.1.3 Kriging 

Using simple kriging, facies kriged model is validated and estimated from the data using the 
semivariogram models and the 3-D trend model on a grid of blocks, 120 x 50 x 78 with block sizes 
of 50m in x-y direction and 1m in z direction. The use of the trend model is to guide the kriging 
process as various facies proportions in the grid. The cross validation of the facies showed good 
results with high correlation coefficients and a regression slope of 1 in all facies. After kriging 
468000 blocks, the estimated mean and standard deviation for the facies have been summarized in 
Table 8. Figs. 40 to 44 show the kriged maps of the facies. 

Table 8. Summary statistics from the kriged facies models 
 Minimum Maximum Mean Std. deviation 

Facies 1 0 0.995 0.468 0.224 

Facies 2 0 1.000 0.158 0.187 

Facies 3 0 0.550 0.099 0.103 

Facies 467 0 1.000 0.247 0.182 

Facies 5 0 0.376 0.065 0.068 

 
Fig. 40. Kriged map of facies 1. 

 

 
Fig. 41. Kriged map of facies 2.  

  

Statistic Parameter 
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Fig. 42. Kriged map of facies 3. 

 
Fig. 43. Kriged map of facies 5.  

  

 
Fig. 44. Kriged map of facies 467.  

 

  

3.1.4 Sequential indicator simulation (SIS) 

Using simple kriging with locally varying means (LVM), a facies SIS is performed using the 
original 3-D well data, the 3-D trend model data and the semivariogram models. The use of the 
trend model is to guide the simulation process as to the various facies proportions in the grid. 100 
realizations are simulated with light cleaning and the results summarized for comparison with the 
kriged data. The mean and standard deviation of the facies from SIS are shown in Table 9 and 
compares well with kriged results and the original data statistics. Fig. 45 shows a 2D view of 100 
realization from the SIS data which shows the dominance of facies 467 at the upper portion of the 
formation.  

 

 

 

 

 

 

Table 9. Statistics of SIS for each facies. 

 Mean Std. deviation 

Facies 1 0.492 0.480 

Facies 2 0.133 0.339 

Facies 3 0.086 0.281 

Facies 467 0.249 0.432 

Facies 5 0.040 0.196 

Parameter 
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3.2. Porosity modeling 

The tasks involved in porosity modeling are: 1) declustering and normal score transform 2) 
semivariogram modeling 3) kriging and 4) Sequential Gaussian Simulation (SGS). 

 

3.2.1 Declustering and normal score transform 

The subset porosity data are declustered to quantify the impact of irregular drillhole spacing on the 
porosity statistics. The results from the declustered data compared with the equal weighted 
statistics data for each facies is shown in Table 10.There are no significant differences in the two 
results. The data are then transformed to normal scores without declustered weights to be used in 
semivariogram and kriging calculations.  

Table 10. Statistics of porosity in the facies from equal weighted and declustered data. 
 

Minimum Maximum 
Equal weighted Declustered 

Mean Std. dev. Mean Std. dev. 

Porosity of facies 1 0 0.647 0.327 0.074 0.311 0.090 

Porosity of facies 2 0 0.400 0.197 0.099 0.181 0.103 

Porosity of facies 3 0 0.380 0.108 0.089 0.108 0.089 

Porosity of facies 467 0 0.644 0.024 0.065 0.024 0.065 

Porosity of facies 5 0 0.410 0.203 0.091 0.203 0.091 

3.2.2 Semivariogram modeling 

The normal score data without declustering weights is used in calculating the experimental 
semivariograms for each of the facies porosity in the vertical and horizontal directions. All the 
vertical semivariograms are modeled from the experimental semivariograms. The horizontal 
semivariograms for porosity of facies 467 is modeled whilst anisotropy ratio is used to obtain the 
horizontal semivariogram models for porosity of facies 1, 2, 3, and 5. Vertical to horizontal 
anisotropy ratio of 1:80 is used. The porosity semivariograms for the five facies are modeled by 
Eq. (7) to (11), respectively. The modeled porosity semivariogram plots are presented in Figs. 46 to 
51. 

Fig. 45. 2D view of facies model from simulation. 

Parameter 

Statistic 
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1.2 22.0
1 96.0 1 1760.0
2 96.0 2 1760.0

( ) 0.0 0.47 ( ) 0.53 ( )av av
ah ah
ah ah

h Exp h Sph hγ = =
= =
= =

= + +                                                                  (7) 

1.1 24.0
1 88.0 1 1920.0
2 88.0 2 1920.0

( ) 0.0 0.53 ( ) 0.47 ( )av av
ah ah
ah ah

h Exp h Sph hγ = =
= =
= =

= + +                                                                  (8) 

1.1 40.0
1 88.0 1 3200.0
2 88.0 2 3200.0

( ) 0.0 0.51 ( ) 0.49 ( )av av
ah ah
ah ah

h Exp h Sph hγ = =
= =
= =

= + +                                                                  (9) 

0.1 4.0 40.0
1 1.0 1 1900.0 1 1900.0
2 1.0 2 1900.0 2 1900.0

( ) 0.4 0.13 ( ) 0.17 ( ) 0.30 ( )av av av
ah ah ah
ah ah ah

h Exp h Sph h Sph hγ = = =
= = =
= = =

= + + +                             (10) 

1.0 60.0
1 80.0 1 4800.0
2 80.0 2 4800.0

( ) 0.0 0.8 ( ) 0.2 ( )av av
ah ah
ah ah

h Exp h Sph hγ = =
= =
= =

= + +                                                                    (11) 

 
Fig. 46. Vertical semivariogram of porosity for facies 1. 

 

 
Fig. 47. Vertical semivariogram of porosity for facies 2. 

  

 
Fig. 48. Vertical semivariogram of porosity for facies 3. 

 
Fig. 49. Horizontal semivariogram of porosity for facies 5. 
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Fig. 50. Vertical semivariogram of porosity for facies 

467. 

 
Fig. 51. Vertical semivariogram of porosity for facies 

467. 

  

3.2.3 Kriging 

Using simple kriging, a porosity kriged model is validated and estimated from the normal score 
data of each facies using the variogram models on a grid of blocks, 120 x 50 x 78 with block sizes 
of 50m in x-y direction and 1m in z direction. The cross validation of porosity of the facies shows 
good results with high correlation coefficients and a slope of regression of 1 in all facies. After 
kriging 468000 blocks and back-transforming, the estimated mean and variance for porosity of the 
facies is summarized in Table 11. Figs. 52 to 56 show the cross validation results of porosity of the 
facies from kriging.  

Table 11. Summary statistics from the porosity kriged model of the facies. 

 Minimum Maximum Mean Std. deviation 

Kriged porosity of facies1 0.278 0.347 0.344 0.005 

Kriged porosity of facies 2 0.000 0.209 0.192 0.013 

Kriged porosity of facies 3 0.056 0.151 0.098 0.006 

Kriged porosity of facies 467 0.000 0.113 0.011 0.025 

Kriged porosity of facies 5 0.000 0.223 0.176 0.068 

 
Fig. 52.  Cross validation for facies 1. 

 
Fig. 53.  Cross validation for facies 2. 

Parameter 
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Fig. 54.  Cross validation for facies 3. 

 
Fig. 55.  Cross validation for facies 467. 

 

 
Fig. 56.  Cross validation for facies 5. 

 

3.2.4 Sequential Gaussian Simulation (SGS) 

Using simple kriging a SGS of porosity is performed using the declustered porosity data of each 
facies and the semivariogram models. The grid system is simulated through 100 realizations and 
the results are summarized for comparison with the kriged data. The mean and standard deviation 
of porosity of the facies from SGS are presented in Table 12 and compares well with the kriged 
results and the original data statistics. Figs. 57 to 61 show the map of porosity of the facies from 
the SGS data which shows the dominance of porosity of facies 1. 

Table 12. Statistics of porosity of the facies from SGS. 
 Minimum Maximum Mean Std. deviation 

SGS porosity of facies 1 0 0.364 0.307 0.015 

SGS porosity of facies 2 0 0.300 0.177 0.016 

SGS porosity of facies 3 0 0.259 0.098 0.015 

SGS porosity of facies 467 0 0.210 0.018 0.008 

SGS porosity of facies 5 0 0.400 0.202 0.009 

 

Parameter 
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Fig. 57. Simulation map of porosity for facies 1. 

 

 
Fig. 58. Simulation map of porosity for facies 2. 

 

 
Fig. 59. Simulation map of porosity for facies 3. 

 
Fig. 60. Simulation map of porosity for facies 5. 

 
Fig. 61. Simulation map of porosity for facies 467. 

 

3.3. Merging models 

The facies simulation output from SIS and the five porosity simulation outputs of the facies are 
merged to get the final 100 porosity models. This is done by matching the different porosity data of 
the facies with the facies data from simulation and drawing the appropriate porosity value that 
matches the simulated facies. Statistics from the merged porosity models are summarized in Table 
13. The histogram plot of the merged porosity models is shown in Fig. 62. Maps of slice 1 and 78 
of 100th realization in the merged porosity models are shown in Fig. 63. This shows the dominance 
of facies 467 with low porosity values in the upper portion of the formation and facies 1, 2 and 5 
with high porosity values in the lower portion of the formation.   



Ben-Awuah E., Kalantari S. & Eivazy H.   114 - 22 
 

 
Table 13.  Statistics from merged porosity models. 

 Minimum Maximum Mean Std. deviation 

Porosity of merged model 0 0.647 0.179 0.155 

 

 
Fig. 62. Histogram plot of the merged porosity models. 

 

 
Fig. 63. Maps of slice 1 and 78 of realization 100 in the merged porosity models. 

 

4. Conclusions 

In this paper, two main modeling at the scale of regional modeling are performed. The data related 
to geological features of a domain in Fort McMurray formation are used for these modeling works. 
Mini-modeling considers the results of micro-modeling and the well log data. The resolution scale 
is 3dm  within a 3m  volume. Bivariate distribution of porosity-horizontal permeability from the 
micro-modeling results are extracted. Then, using cloud transformation technique, horizontal 
permeability values are assigned to the mini-modeling grid cells. In order to find the vertical 
permeability, the average Kv/KH ratio of micro-modeling is used. The correlation between Kv/KH 
ratio and KH is very low which is reasonable. On the other hand, the 3-D conventional data 
modeling enables us to estimate porosity of a deposit at a resolution of about 103m. The five facies 
in the study area under consideration are: 1) sand, 2) sandy Inclined Heterolithic Strata (IHS), 3) 
muddy IHS, 4) mud, and 5) breccia. The most dominant facies are 1 and 467. Facies 1 has the most 

Parameter 
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dominant porosity value of 0.3 and facies 467 is the least porous with a value approximately zero. 
After merging the facies model and the porosity models, 100 final models of porosity are obtained.  
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