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Abstract

Predicting the performance of in-situ recovery processes is required to optimize development
planning and resource management in mining and petroleum projects. In this paper, two different
concepts are presented; mini modeling and the 3D conventional modeling. In the first part of this
paper, the mini modeling is discussed. In general, the mini modeling focuses on the porosity
modeling of the formation in decimeter resolution. Then, the permeability is simulated through a
number of realizations, and finally, the permeability is scaled up for the domain of interest through
flow simulation. The mini modeling steps are implemented on a data set from the McMurray
formation. In the second part, the steps of 3D conventional modeling are discussed and results
from applying those steps to the data set from McMurray formation are illustrated. As the result of
3D conventional modeling, the porosity for different facies in the formation is both estimated and
simulated through a number of realizations.

1. Introduction

This paper is divided into two parts: mini modeling and 3D conventional modeling. The mini
modeling starts with section (2.1) about a survey on the characteristics of the data from McMurray
formation, in terms of some statistics and histograms. Then, in section (2.2), the variogram,
corresponding to each facies is calculated, followed by the variogram modeling. The simulation
results for the porosity are discussed in section (2.3). Then, the permeability and flow simulation
steps are discussed and the results for permeability and flow simulations are illustrated in section
(2.4).

The 3D conventional modeling steps are discussed in the second part of the paper. In section (3.1),
the facies proportions are calculated for each cell in the cubed grid. In section (3.2), the indicator
variograms of facies are calculated, followed by the variogram modeling. After cross validating,
the variogram models are used in the estimation and simulation of the facies in section (3.3).
Section (3.4) starts with the declustering of the data points. Afterwards, based on the declustering
weights, the variogram of porosity for each facies is calculated and modeled. The cross validation
is done in order to check the goodness of variogram models as well. Estimation and simulation of
porosity for each facies and the final porosity model are presented in section (3.5).The sample
parameter files of GSLIB that are used in mini modeling and 3D conventional modeling are listed
in the appendix section.
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2. Mini Modeling
To do the geostatistical modeling some software are required. It is decided to use a set of free
geostatistical tools as well as general software as mentioned in Table 1.

For mini modeling four steps should be done. These steps are as follows: (1) discussing the data
characteristics, (2) calculation and modeling the porosity variogram only for one facies, the sandy
IHS, (3) simulation of the porosity, and (4) simulation of the permeability and the flow.

Table 1. Required software

# Software Description Website
Name

http://Notepad-

1 Notepad ++ A professional open source text editor
plus.sourceforge.net

) Cygwin A command prompt application based on Linux http://www.cygwin.com

syntax

A free set of geostatistical tools provided by Stanford  http://sgems.sourceforge.ne
3 SGeMS .

university t

. A free command based set of geostatistical tools by ) .

4 GSLib Clayton Deutsch and Manu Schnetzler. http://gslib.com
5 MS Excel A commercial spreadsheet used for doing some http://office. microsoft.com

statistical operations and charting

2.1. McMurray data characteristics

The data set used is a set of well logs data collected using 37 wells. Data have been measured along
each well in 10 cm intervals. Wells are not distributed evenly over a large domain of 6000 by 2500
meters. Fig. 1 shows well locations. The domain of study is defined as a 6000*2500*78 m cube
which is gridded by 50*50*1 m blocks. The facies parameter in the data file represents different
facies. Table 2 shows the numbering scheme of the facies. The frequency of each facies is shown in
Fig. 2.

Table 2. Facies numbering scheme

Number Facies Number Facies
1 Sand 5 Breccia
2 Sandy IHS 6 Mud (plug)
3 Muddy [HS 7 Mud (bottom)
4 Mud (top) 9 Below or/and above the McMurray
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Fig. 1. Well locations and topology map of the study area



Badiozamani M. M., Pourrahimian Y., Tabesh, M. 113-4

Y
=]

na 5]
= =
[T R

Frequency

s
=]

=
=

Facies

Fig. 2. Facies histogram

There are a number of fields in the database. The titles and a brief description of them are as
follows:

e  Well ID: the identification code of the wells.

e RX, RY and SZ: these three real numbers are the spatial coordinates of the well data in X, Y
and Z orientations, respectively. The resolution of the measurements is decimeters.

e Elevation: a real number, representing the elevation from the sea level.

e Facies: an integer number, representing the code of facies Table 2. For later calculations, facies
9 is deleted, and then facies 4, 6 and 7 are all considered to be muddy shale and grouped
together as a new facies, 4.

e Porosity: a real number, which represents the porosity of different facies. In the database, the
points that their porosity has not been measured are reported to have the porosity of -1, which
should be filtered in the calculations. Due to the precision of the measurement instruments, in
some cases, the measured porosity is reported as “0”.

e Oil saturation: a real number, which represents the percent of oil saturation. 0 and -1 values
have the same considerations as those of the porosity field.

e The porosity frequency histograms of facies are illustrated in Fig. 3.
As we want to do mini modeling for facies 2, this facies was more considered. Fig. 4 shows the top

and bottom surfaces of facies 2 in the study area. It can be seen that the top surface is smoother
than the bottom. Fig. 5 shows that well 428 does not cut the facies 2 and it can be an anomaly.

2.2. Variograms

Prior to calculating the experimental variogram, the data are transformed to normal scores, using
the NSCORE command of GSLIB. The transformation is required, because the variograms will be
used in the sequential Gaussian simulation (SGS), which requires variogram for normal scored
values.

2.2.1 Variogram Calculation

The variogram is calculated for the facies 2, the sandy IHS. As noted in the data characteristics in
section 1, there are some -1 as porosity values in the data set. These values are trimmed in the
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variogram calculation. Furthermore, since the trial variogram showed a very long range, only two
meters is considered for variogram calculation and modeling. The variogram calculation
parameters for vertical direction are presented in Table 3.

Facies 1 Facies 2
1 — Number of Data 9507 1 - Number of Data 2392
025 ] — number trimmed 855 0.07_71 I ! 0 — number trimmed 963
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Fig. 3. Porosity distribution of facies
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Fig. 5. Thickness of facies 2 in each well
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Table 3. Variogram calculation parameters

parameter value parameter value
Number of lags 200 Azimuth angle
Lag separation 0.0lm Azimuth tolerance
Lag tolerance 0.005m Dip angle
Calculation range 2m Dip tolerance

2.2.2 Variogram Modeling

The nugget effect for the vertical variogram is approximately zero. In addition, since the actual
range is high, the continuity of the porosity in the sandy IHS can be judged to be high.

The variogram is modeled, using the VMODEL command of GSLIB. The horizontal variogram is
considered to have the same characteristics of the vertical variogram, with a range ratio of

a,,, ‘a,, =J:1. It means that after modeling the vertical variogram, the horizontal variogram

can be modeled only by changing the range. The variogram models are illustrated in Fig. 6. The red
line represents the horizontal variogram, while the vertical variogram is illustrated with the blue
line.

y(h)=0.398ph, ;s (h)+0.195ph, _,(h)

Ap min =3.5 Ap min =10
aVE}' =0'7 aV@V :2
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Distance. m
Fig. 6. Normal score variogram of well log scale porosity within the facies 2
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2.3. Porosity Simulation

The porosity of the sandy IHS is simulated through 100 realizations. The horizontal and vertical
variogram models are used in simulation. For simulation, the grid cells are defined

ldmx1dmx1dm, within a cubic regular grid of 1m’. Since the simulation is done
unconditionally, the results of simulation are in Gaussian units. (SGSIM command of GSLIB works
this way). Therefore, the results of realizations should be back transformed to the original data
units, between 0.0 and 0.4. It is done using BACKTR command of GSLIB. The back transformed
results of the realizations are then averaged, using the POSTSIM command of GSLIB. The averaged
result from the realizations is illustrated in Fig. 7.

In the process of averaging the simulation results, the averaged values violated the porosity limits
in original data (0.0 to 0.4). That is because the POSTSIM command uses the first column of the
input file, which is the back transformed data, but the first column of the back transform file is the
original data, not the back-transformed! Therefore, first the back transform results should be
refined and the first column should be omitted and then, the results should be passed to the
POSTSIM. The results of the averaged simulations show the mean of 0.2, with the minimum and
maximum of 0.18 and 0.22, respectively. The histogram of the post simulation results and
histogram reproduction are shown in Fig. 8. The histogram reproduction in Fig. 8 shows that the
histogram has been reproduced.

2.4. Permeability and Flow
To simulate the flow, firstly, the horizontal permeability should be simulated and then, using the

)\

ratio, the vertical permeability and the flow can be simulated.
h

2.4.1 Cloud Transformation; Permeability

Based on the simulation results for the porosity, the arithmetic average of porosity is calculated,
using the FLOWSIM command of GSLIB. The summary statistics for the porosity are presented in
Table 4.

Table 4. Statistics for porosity based on the flow simulation

statistics value

minimum
average
maximum

standard deviation

To simulate the horizontal permeability flow, the cloud transformation and p-field simulated
values are used. The p-field values are simulated through 100 realizations and unconditionally. The
same variogram, as for the porosity is used for cloud transform as well. Then, for creating the
bivariate distribution between porosity and horizontal permeability, the BIMODEL command of
GSLIB is used. As the input, the BIMODEL requires the paired data points for porosity and horizontal
permeability. These pairs are extracted from the results of micro modeling. The output of the
BIMODEL, the bivariate distribution of porosity and the horizontal permeability, is illustrated in Fig.
9.

The bivariate distribution and the porosity values (simulation results that are back transformed to
the original scale) are then used in cloud transformation. The cloud transformation is performed to
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find the horizontal permeability values, based on the porosity values, the p-field values and the
bivariate distribution of porosity and horizontal permeability.

0.zz0e
— 0.215
— 0.Z083
— 0.Z036&
— 0.198
— 0.1323

— 0.1367

Fig. 7. simulation results for porosity, sandy IHS
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Fig. 8. Histogram of porosity for facies 2 and histogram of average of 100 realizations referenced to the
distribution of porosity of facies 2
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The horizontal permeability values are simulated through 100 realizations, using the CLTRANS
command of GSLIB. Then, the simulated values are averaged, using the POSTSIM command. The
average of simulated values is illustrated in Fig. 10.

1637. 4

mD

1237,
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B37.
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0.167 0.207 0227  0.247

Porosity

Fig. 9. The bivariate distribution of porosity and horizontal permeability
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Fig. 10. Simulation result for horizontal permeability

The average of the — ratio, based on the outputs of micro modeling, equals to 1.927. Using this
h

ratio, the values for vertical permeability are calculated. The summary statistics of the permeability
values is presented in Table 5.
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2.4.2 Flow simulation

The simulation results for the horizontal and vertical permeability now can be used for flow
simulation. The flow is simulated through 100 realizations, using the FLOWSIM command of
GSLIB. The resulting values from flow simulation are illustrated as cross plots in Fig. 11. The
summary statistics corresponding to the flow simulation results are presented in Table 6.

Table 5. Statistics of permeability simulation

minimum maximum average standard deviation
Vertical permeability (mD) 843 3199 1993 623
Horizontal permeability (mD) 437 1660 1034 323
.
1  xvariable: mean 1026.080 -
2643. | y . o’ 1 1
] std. dev. 235,507 - ‘ 1.900 ] X Variable: mean 1026.080 '."3
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Fig. 11. Cross plot of obtained results from FLOWSIM
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Table 6. Summary statistics of flow simulation results

variable minimum maximum  mean Standard deviation
(mD) 1043 2798 1916 455
(mD) 575 1472 1026 236
Kv/Kh 1.65 1.93 1.87 0.05

Correlation coefficients

vs. 0.99 —Vvs. 0.19

porosity vs. 0.84 porosity vs. 0.82

3. 3D Conventional Modeling

For 3D conventional modeling five steps should be done. These steps are as follows: (1)
calculation of facies proportions, (2) calculation and modeling the facies indicator variograms and
cross validation of the variogram models, (3) estimation and simulation of facies indicators, (4)
declustering of the data points and porosity variogram calculation and modeling, and (5) estimation
and simulation of porosity for each facies and building the porosity model.

3.1. 3D Proportion Cube of Facies

The facies proportions can be calculated in both vertical and areal directions. In the vertical
direction, the proportions are calculated based on the values of all facies at each elevation (from 0
to -78 meter). The resulting proportion charts are illustrated in Fig. 12.

For the areal proportions, the areal trend is estimated, using the KT3D command of GSLIB.
In order to estimate the trend, a variogram with a very large range, approximately equal to one third
of the domain in each direction, is used. The nugget that is used for the trend model variogram is
30 percent of the sill. The grid system specifications are presented in Table 7. The areal trend maps
for different facies are illustrated in Fig. 13.

Table 7. The grid specifications for the 3D conventional modeling

Min (m) Max (m) specified range (m) cell size (m) No. of cells

X direction 1100 6679 6000 50 120
Y direction 972 2644 2500 50 50
Z direction -78 0 78 1 78

The vertical proportions and the areal trend maps are merged together to make the “proportion
cube” of facies. The theoretical background of combining proportions is based on the probability
combination schemes that approximates the probability of geologic event jointly conditioned to
diverse data sources through combining the calibrated probabilities conditioned to individual data
source (Hong and Deutsch, 2009). Integrating the vertical and horizontal proportion that may be
modeled by different data sources can be viewed as a probability combination problem. Consider
the proportion of facies k in (x,y,z) location Py(x,y,z) given the areal proportion Py(x,y) and the
vertical proportion Py(z), k=1,...,5. The P\(X,y,z) can be estimated as following:
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PK(x,y,Z):(PKg’y)}.(PIE)(Z)j.PK

Where Py is the global proportion of facies k. The merging is performed, using the PCSTM
command of GSLIB. 3D cross sectional views of the resulting cube for each facies are illustrated in
Fig. 14. For better visualization, the elevation -“Z” direction- is scaled up to 20. The global
proportions are 0.46, 0.15, 0.11, 0.22 and 0.07 for facies 1 to 5.

3.2. Variogram of Facies

The indicator variogram for each facies is calculated, using GAMV command of GSLIB. Then, the
variogram for each facies is modeled.

The indicator variogram in vertical direction is calculated for all five facies. Since the
horizontal variograms do not show any specific behavior, it is not possible to fit a model for them.
On the other hand, according to the geology of the specific domain, the ratio of variogram ranges is

approximately equal toa,  :a,, =100:1. Vertical variogram is modeled and then, for the

vert.
horizontal variogram, the same vertical model is used with the only change in the range. Variogram
calculation parameters for vertical direction are presented in Table 8.

Table 8. Facies indicator variogram calculation parameters

parameter value parameter value
Number of lags 50 Azimuth angle

Lag separation 0.4m Azimuth tolerance

Lag tolerance 0.05m Dip angle

Calculation range 20 m Dip tolerance

Table 9 contains the parameters used for variogram modeling in vertical direction. The variogram
is modeled, using the VMODEL command of GSLIB. The horizontal variogram is considered to have

the same characteristics of the vertical variogram, with a range ratio ofa,, _ :a,, =100:1. It

vert.
means that after modeling the vertical variogram, the horizontal variogram can be modeled only by
changing the range. The vertical variogram models are illustrated in Fig. 15.

In order to check the goodness of the variogram models, the cross validation is performed, using
the KT3D command of GSLIB. For the cross validation, the 3D trend proportion cube is required. In
addition, the stationary assumption should not be considered in kriging for the cross validation,
because the variance changes over the domain and the homoscedastisity is not met. The results of
cross validation are then compared with the original data to check the reproducibility of the data,
using the variogram model. The correlation coefficients and the slope of the regression line in each
case are reported in Table 10. The cross plots of original data versus the estimated data are
illustrated in Fig. 16.The results show that the variogram models are acceptable.
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Fig. 12. Vertical trend for each facies
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Fig. 12, Continued
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(a) facies 1 (range:0 —0.97) (b) facies 2 (range:0 — 1.0)

(c)facies 3 (range:0 — 0.58) (d) facies 4 (range:0 — 1.0)

(e) facies S (range:0 — 0.42)

Fig. 14. The proportion cube of facies
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Table 9. Parameters for facies variogram modeling
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facies Structure # Structure type contribution Range (vert.), m Range (Hor.), m
1 nugget 0.10 N/A N/A
1 2 spherical 0.55 6 600
3 spherical 0.35 30 3000
1 nugget 0.20 N/A N/A
2 2 spherical 0.50 5 500
3 spherical 0.30 25 2500
1 nugget 0.10 N/A N/A
3 2 spherical 0.80 7.5 750
3 spherical 0.10 20 2000
1 nugget 0.10 N/A N/A
4 2 spherical 0.70 9 900
3 spherical 0.20 120 12000
1 nugget 0.20 N/A N/A
5 2 spherical 0.78 6 600
3 spherical 0.02 13 1300

Table 10. Cross validation summary for facies variogram

. correlation regression
Facies .

coefficient slope
1 0.95 1.033
2 0.94 1.059
3 0.96 1.035
4 0.95 1.034
5 0.92 1.064

3.3. Facies Estimation and Simulation

The same adjustments and configurations are considered in estimating the facies as those used in
cross validation. The results from kriging are visualized, using SGEMS and illustrated in Fig. 17.

The family of red colors represents the presence of the facies in the area.

The facies are simulated through 100 realizations, using the BLOCKSIS command of GSLIB. In order

to simulate the facies, it is required to put the 3D trend proportion cube as input.

3.4. Variogram of Porosity

Prior to calculating the experimental variograms for porosity, the data is declustered, using

DECLUS command of GSLIB.
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Fig. 15. Vertical variogram models for five facies
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3.4.1 Declustering

Since the data points are located on a regular grid in Z direction (equal intervals of 1 m), the
declustering is performed only based on X and Y coordinates. The declustering cell size is 0.211 m.
The porosity frequency histograms of facies, resulted from declustering, are illustrated in Fig. 18.
The summary statistics for each facies is presented in Table 11.

Then, the data are transformed to normal scores, using the NSCORE command of GSLIB. The
transformation is required, because the variograms will be used in the sequential Gaussian
simulation (SGS) which requires variogram for normal scored values.

3.4.2 Variogram calculation

The vertical variogram of porosity is calculated for all facies. The variogram calculation
parameters for vertical direction are presented in Table 12.

3.4.3 Variogram modeling

The vertical variograms are modeled, based on the experimental variograms. For horizontal
variograms, the same ratio of a,,_ :a

* Tvert.

=100:1 is used, as in facies variograms.

Table 13 includes the parameters used for variogram modeling in vertical and horizontal directions.
The variograms are modeled, using the VMODEL command of GSLIB. The horizontal variogram is
considered to have the same characteristics of the vertical variogram, with a range ratio of

a,,. a,, =100:1. It means that after modeling the vertical variogram for each facies, the

vert.
horizontal variogram can be modeled only by changing the range. The variogram models are
illustrated in Fig. 19.

Table 11. The porosity statistics for different facies

Facies 1 Facies 2 Facies 3 Facies 4 Facies 5

(sand) (sandy IHS) (muddy IHS) (muddy shale) (breccia)
number of data 9507 2392 2228 3938 1765
average 0.20 0.11 0.02 0.20
standard deviation 0.07 0.10 0.09 0.06 0.09
coefficient of variation 0.23 0.50 0.82 2.72 0.45
maximum 0.65 0.40 0.38 0.64 0.41

Table 12. The porosity variogram calculation parameters

parameter value parameter value
Number of lags 25 Azimuth angle

Lag separation I m Azimuth tolerance

Lag tolerance 0.5m Dip angle

Calculation range 2m Dip tolerance
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Fig. 16. Cross validation results for facies
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(a) facies 1 (b) facies 2

(c) facies 3 (d) facies 4

(e) facies S

Fig. 17. The results from facies kriging
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Table 13. Parameters for porosity variogram modeling
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facies Structure # Structure type contribution Range (vert.), m  Range (Hor.), m
1 nugget 0.10 N/A N/A
1 2 spherical 0.57 5 500
3 spherical 0.33 45 4500
1 nugget 0.20 N/A N/A
2 2 spherical 0.47 7 700
3 spherical 0.33 30 3000
1 nugget 0.10 N/A N/A
3 2 spherical 0.42 11 1100
3 spherical 0.48 20 2000
1 nugget 0.52 N/A N/A
7 2 spherical 0.26 8 800
3 spherical 0.22 50 5000
1 nugget 0.30 N/A N/A
5 2 spherical 0.50 7 700
3 spherical 0.20 20 2000

In order to check the goodness of the variogram models, the cross validation is performed, using
the KT3D command of GSLIB. For the cross validation, the 3D trend proportion cube is required. In
addition, the stationarity assumption should not be considered in kriging for the cross validation as
the variance changes over the domain, and the homoscedastisity is not met. The results of cross
validation are then compared with the original data to check the reproducibility of the data, using
the variogram model. The correlation coefficients and the slope of the regression line in each case
are reported in Table 14. The cross plots of original data versus the estimated data are illustrated in

Fig. 20.

Table 14. Cross validation summary for porosity variogram

. correlation regression
Facies .

coefficient slope
1 0.92 1.047
2 0.90 1.078
3 0.90 1.044
4 0.64 1.071
5 0.81 1.162

3.5. Porosity Estimation and Simulation (The Porosity Model)

The porosity is estimated for each facies, using the vertical and horizontal variogram models. As an
example, the estimation results are illustrated for three facies in Fig. 21.
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Fig. 19. Vertical variogram model for porosity of facies

The porosity is then simulated through 100 realizations for each facies. The results of simulated
results are then merged together, using the facies simulation result. The averages of simulated
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values for porosity are illustrated in Fig. 22. In order to take the average, the POSTSIM command of
GSLIB is used.
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Fig. 20. Cross validation results for porosity in facies
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(a) facies 1 (b) facies 2

(c) facies 3

Fig. 21. Kriging results for porosity in facies

Fig. 22. The simulation results for porosity (merged) range: 0-0.34

4. Conclusion

The prediction of porosity and permeability at unsampled locations of reservoir is one of the
important problems in petroleum engineering. The goal of mini modeling is to address the scale
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changing from the dm scale to the scale of flow modeling. In this paper, all steps of mini modeling
are explained. The directional permeability of each mini model is calculated with the same basic
procedure as the micro models. Each mini model is summarized by an average porosity ¢, a
horizontal permeability KH, and a vertical permeability KV. The results form mini models are used
directly in geological model construction.

According to the 3D conventional modeling, the porosity of deposit with resolution of dm® can be
estimated. In this paper full 3D trend is modeled using 2D areal trend and 1D vertical trend. For
this method post processing should be done after merging. For this kind of problems, reasonable

sensitivity analysis and calibration are required.
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6. Appendix

List of GSLIB sample parameter files that are used in mini modeling and 3D conventional
modeling (in alphabetical order)

backtr.par
bimodel.par
blocksis.par
cltrans.par
declus.par
flowsim.par
gamv.par
histplt.par
kt3d.par
merge multi.par
mergemod.par
nscore.par
psctm.par
sgsim.par

scatplt.par

Parameter file for back transformation to original distribution.
Parameter file for calculating the bivariate distribution.
Parameter file for simulating the indicator variables.
Parameter file for cloud transform simulation.

Parameter file for declustering.

Parameter file for flow simulation.

Parameter file for variogram calculation (irregularly spaced data).
Parameter file for plotting histograms.

Parameter file for kriging.

Parameter file for merging separated columns of data.
Parameter file for merging the gridded results.

Parameter file for transforming to normal scores.

Parameter file for producing 3D maps.

Parameter file for generating random numbers.

Parameter file for plotting the scatter plots.
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scatxval.par
scatxval.par
pixelplt.par
postsim.par
vargplt.par

vmodel.par

Parameter file for cross plotting the results.
Parameter file for cross plotting the results.
Parameter file for plotting 2D results (maps).
Parameter file for averaging the realizations.
Parameter file for variogram plot.

Parameter file for variogram modeling.
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