
Badiozamani M. M., Pourrahimian Y. & Tabesh M.                                                                      112 - 1 
 

Review of micro modeling and regional modeling 
in geostatistics with focus on McMurray data 

Mohammad Mahdi Badiozamani, Yashar Pourrahimian, Mohammad Tabesh  
Mining Optimization Laboratory (MOL) 
University of Alberta, Edmonton, Canada 

Abstract 

Predicting the performance of in-situ recovery processes is required to optimize development, 
planning and resource management in mining and petroleum projects. In this paper, two different 
concepts are presented; micro modeling and regional modeling.  

In the first part of this paper, vertical permeability in the McMurray formation is estimated by 
micro modeling and a consistent numerical modeling framework based on core data, core 
photographs, high resolution image logs, and detailed geological interpretation. The framework 
includes dividing the stratigraphic column into facies with similar spatial arrangement of 
sand/shale, constructing high-resolution models of sand/shale, assigning porosity and permeability 
to sand/shale, calibrating the models to direct measurements, solving for effective horizontal and 
vertical permeability at the appropriate scale and transferring the results to geomodeling. 

Multiple reservoir parameters should be mapped to assess the economic viability of a particular 
site. Some of these parameters considered in this research are structure, gross and net thickness, 
amount of contained bitumen. There are others which should be taken into account in more in-
depth studies. In the second part of this paper, the reservoir of McMurray formation is 
characterized by 2D geostatistical modeling.  

1. Introduction  

The McMurray formation in the Athabasca oil sands deposits of Northern Alberta is part of the 
world’s second largest proven crude oil reserves. The formation is characterized by stratigraphic 
layers that correspond to three different depositional environments: Marine, Estuarine and Fluvial 
facies. The McMurray Formation contains a vast resource of heavy oil.  The economic production 
of this heavy oil often makes use of thermal processes to reduce viscosity and horizontal wells that 
have a large contact area with the formation. Steam is often injected to introduce thermal energy. 
The rates of steam rise and water/oil drainage are predicted by flow simulation. A critical input 
parameter in that flow simulation is the vertical permeability. Accurate prediction of fluid flow 
would permit optimization of the recovery process and operating parameters; thus, accurate 
estimation of vertical permeability is of great interest in the McMurray formation.  

The sands in the McMurray formation are host to the crude bitumen, in which three main 
lithofacies are recognized based on the depositional environments: Fluvial, Estuarine and Marine 
from the base to the top of the formation. Stratigraphic subdivisions for the McMurray formation 
include the lower, middle and upper McMurray. There are a lot of studies and historical overviews 
about the McMurray. Total remaining established reserves of crude bitumen in Alberta are 
estimated at more than 27 billion cubic meters, or imperial equivalent in excess of 175 billion 
barrels. This includes about 22.6 billion m3 of in-situ bitumen, of which 0.5 billion m3 are from 
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lands under active development. Surface-mineable crude bitumen reserves amount to 5.2 billion m3 

, of which 1.4 billion m3  are from lands under active development (Hein & Cotterill, 2000). 

The major bitumen reserves of Alberta are hosted within four major oil sands deposits in northern 
Alberta, the Athabasca, Wabasca, Cold Lake, and Peace River deposits. Some of recent studies 
have recommended that the informal term ‘Middle McMurray’ be abandoned, and what was 
formerly, mapped as Middle McMurray now be included as part of the Upper McMurray. What 
was formerly designated as ‘basal’ or ‘lower’ McMurray is called Lower McMurray. In summary, 
it is proposed that the two mappable informal members of the McMurray formation are the Lower 
McMurray and Upper McMurray, which are separated by a disconformity (Hein & Cotterill, 2000). 

  

The ability of the reservoir formation to transmit fluids (permeability) has a large effect on the 
reservoir response for given operating conditions. Permeability is a constant value that relates the 
flow rate through a porous medium to an imposed pressure gradient. Small-scale variations in the 
clastic deposits of the McMurray cause permeability to be variable and direction dependent. 
Permeability in the vertical direction is of primary concern because operators are concerned with 
(1) the rise of steam through the formation, (2) the possible escape of steam and thermal energy to 
overlying formations, and (3) the rates at which condensed water and oil will drain to horizontal 
production wells (C. V. Deutsch, 2009). 

The micro modeling part of this paper is concerned with absolute vertical permeability. There are 
important confounding effects that are not considered such as changes to permeability because of 
multiple fluids present in the formation and changes to permeability because of time varying 
geomechanical effects. This paper is primarily concerned with the influence of small scale 
geological heterogeneities on the estimation of vertical permeability. 

Multiple reservoir parameters should be mapped to assess the economic viability of a particular 
site. These parameters include but are not limited to structure, gross and net thickness, amount of 
contained bitumen, the presence of shale and the presence of water and gas zones. In most cases, 
these geological variables are 2D summaries for particular productive horizons. A complete study 
may require the mapping of 20 to 30 variables. Hydrocarbon resources are calculated as a 
combination of these variables. If 2D models have a good quantitative measure of reservoir 
parameters, we can estimate resources without building 3D models. In addition, 2D modeling is 
simpler and faster than 3D modeling, and especially useful in modeling a large area where the 
complex 3D geostatistical models may not be practical. The regional modeling part of this paper 
demonstrates the reservoir characterization of the McMurray formation by 2D geostatistical 
modeling (Ren, Mclennan, Leuangthong, & Deutsch, 2006). 

2. Installing required software 

In order to do the Geostatistical modeling some software is required. It was decided to use a set of 
free Geostatistical tools as well as general software as mentioned in Table 1. 
 

3. Micro modeling 

For micro modeling, four steps should be done. These steps are as follows (1) process the image to 
create a scaled sand-shale indicator image with known spatial coordinates, (2) assign 3D sand-shale 
indicator, porosity and permeability values, (3) solve for the effective horizontal and vertical 
permeability, and (4) summarize and check the results for subsequent mini modeling. 
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Table 1. Required software 

# Software Name Description Website 

1 Notepad ++ A professional open source text editor http://Notepad-
plus.sourceforge.net 

2 GSView A postscript file viewer http://pages.cs.wisc.edu/~g
host/gsview/ 

3 FSViewer An open source image viewer/editor http://www.faststone.org/F
SViewerDownload.htm 

4 Cygwin A command prompt application based on Linux 
syntax http://www.cygwin.com 

5 SGeMS A free set of Geostatistical tools provided by 
Stanford university 

http://sgems.sourceforge.ne
t 

6 GSLib A free command based set of Geostatistical tools 
by Clayton Deutsch and Manu Schnetzler. http://gslib.com 

7 MS Excel A commercial spreadsheet used for doing some 
statistical operations and charting http://office.microsoft.com 

  

3.1. Facies Modeling 

In the beginning, core photographs or image logs were provided. The image must be cropped and 
saved as a gray scale image for processing. The scale of the image must be recorded for processing. 
Then, the continuous gray scale value must be converted to sand-shale indicator values (C. V. 
Deutsch, 2009). In this case, we have categorical variables. There are only sand and shale. The 
indicator variables are defined by: 

( )
1,  if sand is present at location 

,s                                          
0,  otherwise

u
i u α

α


= 


(1) 

We have usually a set of data provided by labs or machines gathering data on the site. No matter 
whether the data is provided by machines or people, you have to clean some invalid records and 
outliers and select subsets of data for different purposes. The data provided for this project is the 
result of an image processing performed on the FMI data of a drill hole. The image is processed 
and resulted in a set of zero and ones regarding sand and shale. A set of points, which form a 
cylinder of 0.1m in height by 0.12m in radius, is selected for further modeling. The x and y 
coordinates of points are then calculated and the data required for creating the model is prepared by 
Clayton himself. 

After gaining sand-shale indicator values for different slices, they are converted to GSLIB format 
and coordinates of each point with related indicator value is assigned. The sand-shale indicator data 
represents an annular volume. Fig. 1 shows part of preliminary data. 

Fig. 2 shows part of data in GSLIB format. The columns of this figure indicate x, y, z, and facies, 
respectively. The annular volume has been made from 50 slices with 2 mm thickness, thus height 
of the cylinder is equal to 100 mm. For data visualization, Stanford Geostatistical Modeling 
Software (SGeMS) is used, which is a well-prepared package to visualize and manipulate the 

http://www.google.ca/url?sa=t&source=web&ct=res&cd=1&ved=0CAgQFjAA&url=http%3A%2F%2Fsgems.sourceforge.net%2F&rct=j&q=sgems&ei=utpZS5O5OIP8tAPoyISeAw&usg=AFQjCNHlGhpN9Bk8OtylshMObG27GWCL6A�
http://www.google.ca/url?sa=t&source=web&ct=res&cd=1&ved=0CAgQFjAA&url=http%3A%2F%2Fsgems.sourceforge.net%2F&rct=j&q=sgems&ei=utpZS5O5OIP8tAPoyISeAw&usg=AFQjCNHlGhpN9Bk8OtylshMObG27GWCL6A�
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geostatistical data. Two views of FMI data are shown in Fig.  3. Red areas and blue areas indicate 
sand and shale, respectively. Plan view and location of FMI data are shown in Fig. 4. 

In order to have a better understanding of the data, some basic statistical operations has been done 
in MS Excel. The file has been imported into Excel as a space-delimited file. The zero-one values 
regarding sand/shale are average using subtotals in each vertical level and globally. The results can 
be found in Table 2. A global average of 0.6491 and a standard deviation of 0.4772 are the results 
of the calculation. By adding two trend lines to the chart, it can be inferred that there is an obvious 
downward trend in the proportion of sand in each level. As the value for z (which stands for 
elevation) goes up the average amount of sand goes higher with almost less standard deviation. 
Another trend study that seems to be useful is to do the averaging over different sectors of the 
cylinder. The cylinder was divided into four area based on coordinates axes. Fig. 5 shows 
specifications of each region. The percentages of sand and shale within each area are shown in Fig. 
6. The most outstanding feature of Fig. 6 is the percentage of sand within area 1. It can be seen that 
only in the third area, percentage of shale is a little more than sand.   

3.2. Calculate and model variograms 

The variogram is function of distance and direction. Variogram inference proceeds in three main 
steps (Leuangthong, Khan, & Deutsch, 2008): 

1. Calculate the experimental variogram in multiple directions for a number of lags that 
approximately correspond to the average spacing between data, 

2. Interpret the experimental variogram points and supplement them with expert judgment or 
analogue data, 

3. Fit a valid parametric model to the directional variograms in all directions. 

The variogram is needed for distance up to 1m. The vertical variogram is well defined from the 
well logs. According to the given data, the horizontal variogram should look the same as the 
vertical one but with a range five times larger than the vertical one. 

To calculate the vertical variogram, the normal scores of porosity within sandy IHS facies should 
be used; therefore, the porosity values for facies 2 are transferred to normal unit. 
 
The variogram is usually measured in two horizontal and one vertical direction. The data we have 
is distributed over the lateral surface of a cylinder. Thus, calculating vertical variogram would be 
an ordinary job. The variogram is calculated using the “gamv” application available in  GSLib 
(C.V.  Deutsch & Journel, 1998) and the parameter file presented in Table 3. 
The dip tolerance and lag tolerance values have been assumed to be small values to make sure each 
point is paired with only one other point. Since there is enough data and it is regularly spaced, the 
assumption seems to be reasonable. We usually want to have variograms for lags smaller that ¾ of 
the total length of the domain. Consequently, the number of lags and lag separation distance are 

considered 40 and 0.002, respectively (
340*0.002 0.08 *0.1
4

= ≅ ). 

 RADIUS 0.59999999E-01 
NSLICE     1000 
STHICK 0.30000000E-02 
NANG        365 
1111111111111110000000000000000000000000011000000000000000000000000000000000 
1111111111111111000000000000000000001000011000000000000000000000000000000000 
1111111111111111000000000000000000011111111100000000000000000000000000000000 
1111111111111111000000000000000000111111111100000000000000000000000000000000 
1111111111111111000000000000000000011111100000000000000000000000000000000000 

 

Fig. 1. Sand-shale indicator values 
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FMI Data for 615 
4 
X 
Y 
Z 
Facies 
.0600 .1200 .0010 1 
.0610 .1200 .0010 1 
.0621 .1200 .0010 1 
.0631 .1199 .0010 1 

R R 

H R= radius =  0.12 m 
H= height = 0.1 m 

 
Fig.  2. Part of the created FMI.dat file and related coordinates 

Fig.  3. 3D view of FMI data 
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Table 2. Level Based Averages 
Z Facies (Average) Facies (StdDev) 

0.099 0.5781 0.4945 
0.097 0.6137 0.4876 
0.095 0.6411 0.4803 
0.093 0.6411 0.4803 
0.091 0.6192 0.4863 
0.089 0.6027 0.4900 
0.087 0.5890 0.4927 
0.085 0.5616 0.4969 
0.083 0.5699 0.4958 
0.081 0.5781 0.4945 
0.079 0.5616 0.4969 
0.077 0.5671 0.4962 
0.075 0.5562 0.4975 
0.073 0.5671 0.4962 
0.071 0.5671 0.4962 
0.069 0.5918 0.4922 
0.067 0.6000 0.4906 
0.065 0.6000 0.4906 
0.063 0.6384 0.4811 
0.061 0.6795 0.4673 
0.059 0.6740 0.4694 
0.057 0.6685 0.4714 
0.055 0.6630 0.4733 
0.053 0.6548 0.4761 
0.051 0.6521 0.4770 
0.049 0.6822 0.4663 
0.047 0.6575 0.4752 
0.045 0.6411 0.4803 
0.043 0.6740 0.4694 
0.041 0.6740 0.4694 
0.039 0.6822 0.4663 
0.037 0.6685 0.4714 
0.035 0.6795 0.4673 
0.033 0.7096 0.4546 
0.031 0.7205 0.4493 
0.029 0.7233 0.4480 
0.027 0.7315 0.4438 
0.025 0.7233 0.4480 
0.023 0.7068 0.4558 
0.021 0.7041 0.4571 
0.019 0.7096 0.4546 
0.017 0.7315 0.4438 
0.015 0.7068 0.4558 
0.013 0.7233 0.4480 
0.011 0.7589 0.4283 
0.009 0.7205 0.4493 
0.007 0.6548 0.4761 
0.005 0.6438 0.4795 
0.003 0.6164 0.4869 
0.001 0.5781 0.4945 

 

 
Fig. 4. Vertical trends 
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Area Angle (β0 Coordinates ) 

1 0≤ β ≤90 0.06 ≤ X ≤ 0.12   ,   0.06 ≤ Y ≤ 0.12   , 0.00 ≤ Z ≤ 0.1       

2 90≤ β ≤180 0.00 ≤ X ≤ 0.06   ,   0.06 ≤ Y ≤ 0.12   , 0.00 ≤ Z ≤ 0.1       

3 180≤ β ≤270 0.00 ≤ X ≤ 0.06   ,   0.00 ≤ Y ≤ 0.06   , 0.00 ≤ Z ≤ 0.1       

4 270≤ β ≤360 0.06 ≤ X ≤ 0.12   ,   0.00 ≤ Y ≤ 0.06   , 0.00 ≤ Z ≤ 0.1       

 
Fig. 5. Specified areas to determine the proportion of sand to shale 

 

 

 
Fig. 6. Percentage of sand and shale within each area 
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Table 3. Parameter file used for calculating vertical variogram 
Parameters for GAMV 
START OF PARAMETERS: 
fmi.dat 
1   2   3 
1   4 
-1.0e21     1.0e21 
vgamv.out 
40 
0.002 
0.0005 
1 
0.0  90.0 50.0  -90.0 0.1  50.0 
0 

-file with data 
-columns for X, Y, Z coordinates 
-number of variables, col numbers 
-trimming limits 
-file for variogram output 
-number of lags 
-lag separation distance 
-lag tolerance 
-number of directions 
-azm,atol,bandh,dip,dtol,bandv 
-standardize sills? (0=no, 1=yes) 

 

On the other hand, when horizontal variogram is going to be calculated, there would not be enough 
data to judge the maximum and minimum direction of continuity based on the available data. 
Therefore, an omni-directional horizontal variogram is used. The maximum distance between pairs 
of data in horizontal direction is 0.12 meters. Thus, we can consider 40 lags with a distance of 

0.0025 (
340*0.0025 0.1 *0.12
4

= ≅ ). Since the points are not distributed regularly, we have 

considered a larger lag tolerance to make sure there will be enough pairs of data to calculate the 
variogram. Since the FMI data points are aligned in the surface of a completely vertical cylinder, 
the azimuth angle for both directions is set to zero, with the azimuth tolerance equal to 90 degrees 
that covers the whole vertical cylinder surface. The direction of vertical cylinder also implies to set 
the dip angle to -90 degrees for vertical and 0 degree for horizontal directions. Because the data 
points are regularly spaced, a small dip tolerance, 0.1 degree, is suitable for variogram calculation. 

The two experimental variograms can be found in Fig. 7. Red bullets stand for experimental 
vertical variogram whereas blue ones represent the experimental horizontal variogram. 

 

 
Fig. 7. Experimental variogram 
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Looking at variograms in two directions, using two or three nested structures seems to be 
reasonable. In this case, three variance regions can be defined for three horizontal and vertical 
variograms, the first one is a nugget effect, and the second one is exponential variogram structure. 
The last one is spherical variogram structure. The variogram parameters corresponding to the 
variogram shown in Fig. 8 have been summarized in Table 4.  

 

max max

min min

0.08 0.1
0.08 0.1

0.026 0.06

( ) 0.02 0.13 ( ) 0.078 ( )
h h

h h

vert vert

a a
a a
a a

h Exp h Sph hγ = =
= =
= =

= + +                                    (2) 

 
Table 4. Variogram model corresponding to variogram shown on Fig. 8 

Variance 
Contribution 

Type of 
Variogram 

Horizontal Range, m Vertical Range, m 

0.02 Nugget   
0.13 Exponential 0.08 0.026 
0.078 Spherical 0.1 0.06 

 
 

 

 
Fig. 8. Variogram models 

 

3.3. Kriging  

Kriging is the most important one among traditional mapping applications and an essential 
component of geostatistical simulation methods. In this section, we want to construct a model of 
spatial uncertainty characterizing the distribution and occurrence of the facies. There are 18250 
records of data that should be used to estimate unsampled locations inside the domain. Fig. 9 shows 
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the domain and sampled locations. In this case, Simple Kriging (SK) is done using the variogram 
model provided in Eq. (2). For Kriging 50×50×50 grid nodes is used. Size of each cell in X, Y and 
Z directions are 2.4 mm, 2.4 mm, and 1.0 mm respectively. Fig. 9 schematically shows how the 
initial cylinder shape surface, containing well log data, is transferred to a cube through Kriging. In 
order to perform SK estimation, a search ellipsoid is defined with maximum search radius of 90 
mm in all three directions and zero angles. 25 to 35 points are used to estimate the facies of each 
grid cell. 

The result of the 3D SK operation is illustrated in 3D in Fig. 10. Three orthogonal planes in the 
middle of the domain are also presented in Fig. 11. Kriging has been implemented using the 
“kt3d.exe” application in GSLib. Simple Kriging method uses available values at sampled 
locations as well as variogram models to predict values at unsampled locations. In order to check if 
the Kriging procedure is on track, cross validation seems to be useful. In cross validation, values at 
some sampled locations are assumed to be unknown and are predicted using the Kriging equations. 
Afterwards, the difference between actual and predicted values is plotted as shown in Fig. 12. A 
correlation value of 0.938 shows a reasonable estimate. 

 

 
Fig. 9. Cylinder to cube transfer 

 
 
 

 
 

Fig. 10. Kriging 3D illustration 
 
 

 
 
 

Fig. 11. Kriging planes 
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Fig. 12. True versus Kriged values 

 
 
 

3.4. Simulation 

3.4.1 Facies simulation 

The next step is to simulate the facies in the grid. There is a drawback in Kriging which is called 
the smoothing effect. On the other hand, the illustrations in Fig.  3 and Fig. 4 are colored from blue 
to red which represent values between 0 and 1. We know that a special cell of the grid can only be 
zero or one (sand or shale) but these values indicate the chance of being 1 for each cell. In order to 
create realizations of facies values in each cell and also to overcome the smoothing effect of 
Kriging, simulation comes into mind.  

Since the variable is a categorical variable, Gaussian simulation does not seem to be appropriate. 
Hence, Sequential Indicator Simulation is implemented using an application called 
“BlockSIS.exe”. One hundred realizations are generated using this application. The first realization 
is illustrated in Fig. 13 and Fig. 14. Red points stand for sand whereas blue ones represent shale. 

After generating 100 realizations it seems appropriate to compare the average result of the 
simulation with Kriging results. There is an application in GSLib which is responsible for 
averaging different realizations. This program which can calculate different statistics for different 
number of realizations is called “PostSim.exe” (see Fig. 15). In Fig. 16, some slices of Kriging and 
simulation are compared with each other. As it can be seen, the Kriging results are smoother than 
the simulation results. That is mainly because of smoothing effect of Kriging. However, by 
comparing the results of simulation and Kriging, it can be deduced that they are following the same 
pattern. In order to compare the closeness of simulation and Kriging results statistically, a scatter 
plot of post-simulation results and Kriging results is shown in Fig. 16. The correlation coefficient 
of the scattered data is 0.93. It can be inferred that the average of simulations converges to the 
Kriged estimates with an acceptable correlation coefficient. 
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Fig. 13. Simulation result (3D) 

 

 
Fig. 14. Simulation result (Planes) 

 

 

 
 

Fig. 15. 3D views of average of 100 realizations for facies (output of PostSim) 
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Simulation (PostSim output) Simple Kriging 

  

  

  

 
Fig. 16. Comparison between results of simple kriging and simulation of facies 

 



Badiozamani M. M., Pourrahimian Y. & Tabesh M.                                                                      112 - 14 
 

3.4.2 Porosity and Permeability Simulation 

In order to simulate the porosity and permeability, random Gaussian numbers are generated. The 
generated numbers then are transformed to the desired distribution. Permeability values are meant 
to have lognormal distribution with a mean and standard deviation of 4000 mD and 500 mD and 1 
mD and 5 mD for sand and shale respectively. The parameters used to generate one hundred 
realizations for porosity and permeability are presented in Table 5. 

The results of Normal generated numbers for porosity and permeability simulation are averaged 
two times, once before transferring to desired distribution and once after, to enable us to compare 
the statistics of generated data values with what it is supposed to be (Normal distribution with 
mean of 0 and variance of 1). The results are presented in Table 6. 

The deviation of generated data from Normal (0, 1) is mainly because of the range of variogram 
considered in simulations. It is assumed that both porosity and permeability have the same isotropic 
spherical variogram with the range of 100 mm. Maybe with decreasing the range of variogram, 
using an anisotropic variogram or changing its type, the results could get closer to the Normal (0, 
1). 

The simulation results of porosity are used in permeability simulation. In other words, the 
permeability is simulated conditioned to the porosity, using collocated CoKriging. Correlation 
coefficient of 0.75 is used for collocated CoKriging. The results of simulated porosity and 
permeability are presented in Table 7. Fig. 17 shows the average histogram of one hundred 
realizations for porosity and permeability of sand and shale (Relating to Table 7). In addition to the 
histograms, it seems useful to check if the correlation between porosity and permeability values is 
respected. The scatter plot of the two sets of data is shown in Fig. 18. 

 
 Table 5. Parameters for porosity and permeability simulation 

 distribution particles mean STDev 

Porosity Normal 
Sand 0.33 0.015 
Shale 0.01 0.005 

Permeability(mD) Log Normal 
Sand 4000 500 
shale 1.0 5.0 

Table 6. Statistics of generated data values for N (0, 1) 

 distribution particles Mean Std 

Porosity Normal 
Sand 0.01 0.077 
Shale 0.05 0.094 

Permeability(mD) Normal 
Sand 0.00 0.086 
shale 0.01 0.110 

 
Table 7. Statistics of porosity and permeability simulation 

 distribution particles mean STDev 

Porosity Normal 
Sand 0.33 0.001 
Shale 0.01 0.0005 

Permeability(mD) Log Normal 
Sand 3999.39 43.41 
shale 0.958 0.335 
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Simulation of sand porosity Simulation of shale porosity 

  

Simulation of sand permeability Simulation of shale permeability 

 
Fig. 17. Histogram of 100 realizations for porosity and permeability of sand and shale 

 

3.4.3 Merge porosity and permeability realizations with facies data 

The domain we tend to study consists of two different facies. The first set of points is sand and the 
second ones are considered as shale. Each group has its own porosity and permeability values. But 
the final model of study consists of both groups and these values are needed to be merged before 
finding the porosity and permeability values for the whole block. To do so, “mergemod.exe” can 
help. In this application, sets of data are merged together based on different categories from another 
file. The categories are 0 and 1 in our case where 0 stands for shale and 1 for sand.  
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Fig. 18. Porosity versus permeability 

 

Therefore, 100 realizations of porosity values for sand and 100 realizations of porosity values for 
shale are merged using 100 facies realizations. The same approach is taken for permeability values. 
Afterwards, the resulting datasets are averaged using “PostSim.exe” to have a better understanding 
of the results. 

Output of BlockSIS (facies model) 

Model of sand porosity (N(0.33,0.015))            Must be merged  

Model of shale porosity (N(0.01, 0.005)) 

 
Output of BlockSIS (facies model) 

Model of sand permeability (lognormal(4000,500))     Must be merged  

Model of shale permeability (lognormal(1,5)) 

 
Average values for merged porosity and permeability are shown in Fig. 19. It can be seen that ups 
and downs of permeability and porosity values are correlated as expected. In addition, colors show 
significant similarity to average facies values. That happens because of the large difference 
between average porosity and permeability values for sand and shale. Wherever sand exists, higher 
porosity and permeability values are expected and vice versa. 

3.4.4 Flow Simulation and effective permeability calculation 

In order to find the porosity and permeability for the whole domain, the flow is simulated. The 
merged porosity and permeability are used in flow simulation. For this purpose “flowsim.exe” 
program is used. In the output file three directional permeability values, ,x yK K and zK  is 
reported. In addition, the arithmetic, geometric and harmonic averages are also reported in output 
file. Histogram of effective horizontal and vertical permeabilities and arithmetic average of 
porosity are shown in Fig. 20. Table 8 represents summary of permeability results in the three 
principal directions. The arithmetic average of porosity is 0.215 with standard deviation of 0.016. 
According to the obtained results, permeability in vertical direction is higher than horizontal. 
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Porosity 

   

Permeability 

  
 

 
Fig. 19. Average values for merged porosity and permeability 

 
Table 8. Results of permeability in x, y and z directions 

Direction K KX KY KH 

Mean 

Z 

Std. 

Min. 

Max 

1244.70 

383.60 

377.415 

1973.68  

1058.28 

180.047 

589.99 

1534.87  

1137.75 

249.80 

527.78 

1645.18 

1885.37 

258.33 

13.11.46 

2377.65 

 

The relationship between HK  and φ , and the V

H

K
K ratio and  HK  are the important results of 

the micro modeling because of their application in reservoir modeling at a large scale. These 

relationships are shown in Fig. 21. Correlation between V

H

K
K ratio and  HK  is -0.85, that means 

increasing the V

H

K
K ratio, permeability in horizontal direction is reduced. 
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Fig. 20. Histogram of effective horizontal and vertical permeability values and arithmetic average of porosity 
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Fig. 21. Results for the KV/KH

4. Regional modeling 

 ratio versus the horizontal permeability (ρ=-0.85) and porosity versus 
horizontal permeability (ρ=0.91). 

Macro modeling is a tool for studying general properties of a reservoir or mine in macro scale. The 
total amount of bitumen/ore and its distribution over the region are of the great interest in macro 
modeling. In addition, it is interesting to know the distribution of uncertainty and to have optimistic 
and pessimistic estimates on the reservoir. 

McMurray formation is one of the largest oil reservoirs in the world which is estimated to contain 
180 billion barrels. This formation is located in north-east Alberta and covers a region of 120 by 
180 kilometers approximately. Estimating the amount of bitumen in the formation and its 
properties and distribution over the region is the main goal of this section. This estimation can then 
be used for deciding on methods and requirements of the extraction and refinery processes. 

The project is defined with the following steps: 1) initial data processing 2) studying preliminary 
stats 3) model building 4) post processing and reporting the results. . 

4.1. Initial data processing 

Like any other engineering practice, the available data provided by human or machines should be 
preprocessed. This preprocessing step contains tasks taken in order to clean the data, verify its 
consistency and prepare it for further studies. The data provided is obtained from a web database 
containing logs and histories of the wells placed in the McMurray formation. The first step is to 
clean data from invalid records. Duplicate values, null values and outliers are the most famous 
types of invalid records. Unfortunately, in our dataset null values are replaced with zeros which 
force us to make a decision on how to treat them. Consequently, there are two assumptions on zero 
values: first is that no data is collected from the well (null values) or the data was not enough 
reliable to be published and the second type is representing wells where no McMurray were present 
and the real values are zero. 

In order to deal with these invalid records with zero values, the following approach has been taken. 
Wells with zero values where another non-zero record is present at the same location are eliminated 
from the set. Remaining zeros are considered as no McMurray which can be verified using location 
maps. There are other wells which are considered as no McMurray despite the fact that they have 
non-zero values. Records with a net thickness of less than or equal to 2 meters or with a mass 
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fraction of bitumen of less than or equal to 0.05 are considered as now McMurray present. These 
non-zeros are so small that it is not economical to consider them as in bitumen and also there may 
be some measurement errors in them. Fig. 22 shows the distribution of wells with the presence and 
absence of McMurray formation.. Black dots stand for well which have not shown considerable 
values. Table 9 represents the summary statistics of indicators. The next variable defined is 
calculated as multiplication of net thickness and mass fraction of bitumen used for further cross 
checks on the total amount of bitumen present in the region. 

 
Table 9. Indicator variable summary 

Number of 1 Number of 0 Mean Standard deviation Variance 

2280 234 0.9069 0.2905 0.0844 

 

Dealing with duplicates is the next step of data cleaning. An optimistic decision has been made and 
records with higher values are selected whenever duplicated data occurs. 

The initial datasets contains 6839 records but only 2513 records remained after the data cleaning 
process. The other change required to be done is to clip the coordinates to be easier to work with. 
The UTM coordinates in the original data goes from 6095314.34 to 6417698.17m in North 
direction and from 375724.5 to 547494.18m in east direction. In order to have better looking 
coordinates, 6000000 and 300000 units have been subtracted from Y and X values respectively. 

We are not usually interested in an exactly rectangular area in regional modeling. Therefore, the 
model is usually needed to be clipped to avoid misrepresentation of data and biased results. This 
clipping is done by an application called “ClipGrid.exe”. This application clips generated grids 
using a set of vertices provided in the parameter file. The vertices can be introduced by pairs of 
points. In order to find these border points easily an application called “DigXY.exe” is used. The 
program can open a bitmap of the region and save points selected by the user as the digitization 
result. In this case, the area is digitized using 100 points trying not to leave any well with 
McMurray formation present outside the clipped area.  

 
Fig. 22. Indicator map              



Badiozamani M. M., Pourrahimian Y. & Tabesh M.                                                                      112 - 21 
 

In order to have a better understanding of the available well data, there seems to be a need to do 
some preliminary statistical studies on the data. There are four important variables to study. The 
first one is an indicator variable defined to distinguish wells with and without significant 
McMurray formation as defined in the previous section. This indicator has a value of 1 for 2280 
records among the 2513 wells with valid data. The next variables of interest are the gross and net 
thickness of the formation and the mass fraction of bitumen. The histograms of these variables are 
shown in Fig. 23 to Fig. 25. As can be seen in the histograms there are still some zeros in different 
variables which show wells with no McMurray formation is present. 

 

 
Fig. 23.Gross Thickness of Formation 

 
Fig. 24.Net Thickness of Formation 

 

 
Fig. 25.Mass Fraction of Bitumen 

 

4.1.5 Kriging indicator variable 

After mapping the indicator variable and finding the borders of the area it seems reasonable to Krig 
the variable and clip it using the boundaries defined to examine the goodness of the borders and 
their relation with the probability of having bitumen inside and outside the boundaries. Kriging is 
one of the most important traditional mapping applications and an essential component of 
geostatistical simulation methods. In this part, a model of spatial uncertainty characterizing the 
distribution and occurrence of the indicator variables is constructed. There are 2514 data points that  
should be used to estimate unsampled locations that are inside the domain. In this case, the simple 
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Kriging was done using the given variogram model. In the given model, nugget effect is equivalent 
to 10 to 20 percent of sill and range is equivalent to a third of area dimension. Thus, nugget effect 
and range are equal to 0.017 and 70000, respectively. For Kriging 325×475 grid nodes were used. 
Size of each cell in X and Y directions are 400 m and 400 m, respectively. Fig. 26 shows a 2D 
view of Kriging result using indicators. Fig. 27 shows the Kriging result after applying the desired 
area.  

 
Fig. 26. Kriging result according to the indicators (Values less than zero has been trimmed) 

 

 

 
Fig. 27. Kriging result after clipping the data which are not in McMurray formation 
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4.1.6 Preliminary statistics 

Wells are often drilled in areas with a greater probability of good reservoir rock. Closely spaced 
data inform fewer grid nodes and, hence, receive lesser weight. Widely spaced data inform more 
grid nodes and, hence, receive greater weight (C.V. Deutsch, 2002). In this project, there are 
clustered data in some areas. Fig. 28 shows location map of wells. It can be clearly seen in the right 
hand side of the map that there are three areas the wells are closer. The summary statistics were 
done under two different condition, equal weights and declustering weights.  

 

 
Fig. 28. Location map of the wells (The filled red circles belong to McMurray) 

 

With declustering technique, a weight is assigned to each datum based on its closeness to 
surrounding data. Then the histogram and summary statistics are calculated with declustering 
weights. The technique of cell declustering is used in this project. For this purpose “declus.exe” 
program is used. The area of interest is divided into a grid of cells, then the occupied cells, and 
number of data in each of them is counted. Finally, weight of each data is calculated according to 
the number of data falling in the same cell. The summary statistics from declustering and equal 
weighted techniques for 2514 well data are shown in Fig. 30 and Table 10. The optimum cell size 
is determined automatically by “declus.exe” program. The plot of declustered mean versus cell size 
is shown in Fig. 29. A cell size of 16000 units with declustered mean of 16 was chosen.  

The relationships between gross interval with net interval and net interval with average mass 
bitumen, with and without declustering were considered. Correlations between these variables have 
been compared in Table 11. It can be clearly seen that correlation of the cell declustering is more 
than equal weighted.   
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Fig. 29. Declustered mean versus cell size for Net interval 

 

 
Table 10.Summary statistics of 2514 well data  

 Minimum Maximum 

Mean Standard deviation 

Equal 
weighted 

Cell 
declustering 

Equal 
weighted 

Cell 
declustering 

Gross Interval 
(m) 0 97.5 35.78 29.17 18.81 19.58 

Net Interval (m) 0 67.04 20.80 16.08 13.47 13.01 

Average mass 
Bitumen (% 

Mass) 
0 0.15 0.09 0.08 0.03 0.04 

  

 

 
Table 11.The comparison of correlations between equal weighted and cell declustering 

 Equal weighted Cell declustering 

Gross-Net (m) 0.804 0.825 

Gross-Bitumen (m) 0.668 0.696 

 

Minimum declustered mean 
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Equal Weighted Cell Declustering 

  

  

 
 

 

Fig. 30. Histogram of Gross interval, Net interval and Average mass of Bitumen with and without weight. 
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For estimating the amount of Bitumen in area of interest, regional area should be calculated. For 
this purpose, points from output of “DigXY.exe” are used and polygon area from joining the points 
is calculated using “Polyar.exe” program. The area of study is equal to 10.2×107 Km2

                                                        

. To calculate 
the amount of Bitumen in the area of interest, Eq. (3) is used. 

A T B C× × ×                                                                 (3) 

Where A is the area of interest, T is the average net thickness of oil sand, B is the average mass of 
Bitumen, and C is a convergence factor. Calculation is done according to Table 12. To calculate 
barrels of bitumen the average net interval after declustering is used. 

 
Table 12.Calculation of amount of Bitumen in study area 

# of row Description Unit formula Value 

(1) Area m ------------------ 2 10,232,151,394.4 

(2) T  m ------------------ 
16.1 

(3) Oil sandV  m (1)×(2) 3 
164,532,994,421.1 

(4) Oil sandDensity  Kg/ m ------------------ 3 
2,160.0 

(5) Oil sandMass  Kg (3)×(4) 
355,391,267,949,680.0 

(6) B  Fraction ------------------ 0.0822 

(7) BitumenMass  Kg (5)×(6) 30,063,156,915,864.6000 

(8) BitumenDensity  Kg/ m ------------------ 3 
1,050.0 

(9) BitumenV  m (7)/(8) 3 
27,808,520,547.4 

(10) Note: 0.159 m3

(11) 

 is equal to 1 bbl 

Bbl of Bitumen ------ (9)/(10) 174,910,656,515.2 

 

4.2. Calculating the variogram 

The variogram is function of distance and direction. Variogram inference proceeds in three main 
steps (Leuangthong, et al., 2008): 

1. Calculate the experimental variogram in multiple directions for a number of lags that 
approximately correspond to the average spacing between data, 

2. Interpret the experimental variogram points and supplement them with expert judgment or 
analogue data, 
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3. Fit a valid parametric model to the directional variograms in all directions. 

Variogram maps are first generated to find the direction of continuity in the area. Variogram maps 
are presented in Fig. 31. 

 

  

  

Fig. 31. Variogram maps for gross and net thickness, mass fraction of bitumen and bitumen per area 

 

Looking at the variogram maps, an azimuth of 150 degrees south-east seems to be the direction of 
continuity but calculating experimental variograms they happened to have almost the same 
variogram range in the mentioned direction and an orthogonal one. Therefore, a horizontal 
variogram is used instead of a directional one for all variables. 

Different variogram models have been tested by accuracy plots and cross validation in Kriging. 
The best resulting variogram models (based on try and error) and the corresponding accuracy plots 
and cross validation scatter plots are shown in the following parts. 

In this part, variograms of gross interval, net interval, and bitumen were calculated. In subsequent 
steps such as Kriging and simulation, we need a parametric variogram model, which is fitted to the 
experimental points. 

Gross interval 

For gross interval, three variance regions can be defined as shown in Eq. (4). The first one is a 
nugget effect; the second one is exponential variogram structure. The last one is spherical 
variogram structure. 
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max max

min min

10000 60000
10000 60000

( ) 0.1 0.87 ( ) 0.03 ( )
h h

h h

a a
a a

h Exp h Sph hγ = =
= =

= + +

(4) 

Net interval 

For net interval, also three variance regions like as gross interval can be defined as in Eq.(5).  

max max

min min

8000 50000
8000 50000

( ) 0.1 0.85 ( ) 0.05 ( )
h h

h h

a a
a a

h Exp h Sph hγ = =
= =

= + +

(5)

 

Average mass Bitumen 

This variable also has variance regions as same as two other variables. Eq.(6) presents the 
variogram for average mass bitumen. 

max max

min min

16000 3200
16000 3200

( ) 0.3 0.45 ( ) 0.25 ( )
h h

h h

a a
a a

h Exp h Sph hγ = =
= =

= + +

(6) 

   

  
Fig. 32.The variogram models of gross interval, net interval, and average mass Bitumen 

 

 
 

Gross 
Net 

Bitumen 
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The variogram parameters corresponding to variogram shown in Fig. 31 have been summarized in 
Table 13. 

 
Table 13.Variogram parameters corresponding to variograms shown on Fig. 32 

Variable Variance 
Contribution 

Type of 
Variogram 

ahmax, ahmin

 

, m 

0.1 Nugget   
Gross interval 0.87 Exponential 10000 

 0.03 Spherical 60000 
 0.1 Nugget   

Net interval 0.85 Exponential 8000 
 0.05 Spherical 50000 
 0.3 Nugget   

Average mass Bitumen 0.45 Exponential 16000 
 0.25 Spherical 3200 

 

4.3. Bootstrap for uncertainty in mean 

Bootstrap is a method developed by Efron. The Monte Carlo simulation is applied in this method. 
It is a statistical resampling technique which permits quantification of uncertainty in statistics by 
resampling from the original data. With this method, the uncertainty in input statistics is known. 
The histograms at the right hand side of Fig. 33 show the uncertainty in the mean of variables for 
5000 realizations. The spatial bootstrap was applied to arrive at the distribution of uncertainty in 
the mean of each input variable. It can be seen that the mean of gross interval, net interval, and 
average mass Bitumen remain unchanged. 

4.4. Trend map 

The trend map is used to provide the overall trend of each variable in the entire study area. This 
map is created by simple Kriging with a variogram designed to reveal large scale features.  
Usually, a long range variogram with modest nugget effect is used (Ren, et al., 2006) . 
In this case, the simple Kriging was done using the given variogram model. In the given model, 
nugget effect is equivalent to 30 percent of sill and range is equivalent to a third dimension area. 
Thus, nugget effect for gross interval, net interval, and average mass Bitumen are considered equal 
to 106.14, 54.43, and 0.00027, respectively. For Kriging 325×475 grid nodes was used. Size of 
each cell in X and Y directions are 400 m and 400 m, respectively. The trend maps of gross 
interval, net interval, and average mass bitumen are shown in Fig. 34. Table 14 shows comparison 
between the results of trend map and cell declustering. The percentage of difference between 
results of trend map and declustering for all variables is more than expected value. This difference 
should be around 5 percent, but here minimum difference is around 12.5 percent.  

4.5. Model building 

4.5.1 Estimation 

In this step variogram models are tested to see how good they fit the data. To do so, a Kriging 
operation is done on the normal score transformed data. The only difference is that instead of 
Kriging the cell, data locations are Kriged. These values are then plotted against their true value to 
see how good they are. Fig. 35 shows the cross plot of true versus estimate for each variable. The 
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correlation of gross interval, net interval and average mass Bitumen are 0.626, 0.632 and 0.568, 
respectively. 

 

Declustered data Spatial bootstrap distribution of mean 

  

  

 
 

 

Fig. 33. Histogram of 2514 data for gross, net, and bit after cell declustering are shown at left hand. 
Histogram of spatial bootstrap results to show the distribution of uncertainty in the mean of each variable are 
shown at right hand. 
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Table 14.The comparison between average of the clipped trend model and declustered 

 Average 
Difference (%) 

 Trend map Cell declustering 

Gross interval (m) 33.37 29.17 14.4 

Net interval (m) 18.27 16.08 13.62 

Average mass Bitumen 
(%Mass) 0.09 0.08 12.5 

 

 

 

  

 

 
Fig. 34.The trend maps of gross interval, net interval, and average mass Bitumen 

Gross 

Bit 

Net 
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Fig. 35.Cross plot of true values versus estimated values for gross and net thickness, mass fraction of 

bitumen and bitumen per area 

 

Another method used for cross validation is plotting the histogram of estimate versus true. This 
histogram should have a mean close to zero and a symmetric shape. Fig. 36 shows this histogram 
for the each variable. 

Location map of error for each variable is also used for cross validation.  Location map of error for 
gross and net intervals are shown in Fig. 37. It can be seen that the distribution of plus and minus 
signs approximately are same and that means there is no bias. 

In the context of evaluating the goodness of a probabilistic model, specific definition of accuracy 
and precision are proposed. For probability distribution, accuracy and precision are based on the 
actual fraction of true values falling with in symmetric probability intervals of varying width p 
(C.V. Deutsch, 2002): 

• A probability distribution is accurate if the fraction of true values falling in the p interval 
exceeds p for all p in [0, 1]. 

• The precision of an accurate probability distribution is measured by the closeness of the 
fraction of true values to p for all p in [0, 1]. 
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A graphical way to check the accuracy is to cross plot actual proportion versus probability interval 
and see that all of the points fall above or on the 45o

The results are ideal if the points fall close to the 45 degree line. The distribution of uncertainty are 
too wide when the points fall above the 45 degree line and too narrow when the points fall below 
the 45 degree line. The range of spatial correlation can control the spread of the distribution of 
uncertainty. Cross plot of actual probabilities versus the predicted probabilities for each variable 
are shown in 

 line. 

Fig. 38. The closeness of the results to the 45 degree line attest to the goodness of the 
probabilities. As it can see in Fig. 38 the closeness of the results to the 45 degree line for net 
interval and average mass Bitumen are better than gross interval.  

 

 

 

 

Fig. 36. Histogram of estimation minus true value for each variable 
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Fig. 37. Location map of estimation minus true value for gross and net intervals 

Gross 

Net 
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Fig. 38. Cross plot of actual probabilities versus the predicted probabilities for gross and net thickness, mass 
fraction of bitumen and bitumen per area 

 

After cross validation, the Kriging was done for each variable. Kriging is one of the most important 
traditional mapping applications and an essential component of geostatistical simulation methods. 
In this case, Simple Kriging (SK) was done using the variogram model provided in Eqs. (4), (5), 
and (6). For Kriging 325×475 grid nodes was used. Fig. 39 shows the results of Kriging for each 
variable after clipping and transforming to the original unit. 

The results of Kriging for each variable were back transformed to the original units. The results 
have been illustrated in Table 15. 
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Fig. 39. Kriged map of different variables 

 
Table 15.The results of kriging for each variable after back transforming 

 Minimum Maximum Mean 

Gross interval (m) 0 74 35.733 

Net interval (m) 0 55.53 18.841 

Average mass bitumen 
(% Mass) 0 0.14 0.0964 

Bitumen per area (% 
Mass by m2 0 ) 7.78 1.82 
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4.5.2 Simulation 

Geostatistical realizations are being used increasingly for uncertainty quantification. In this case, 
for simulating, 325×475 grid nodes were used. To summarize and calculate the point-by-point 
average of the 100 realizations, “postsim.exe” program was used. The correlation between Kriging 
and simulation for gross interval, net interval, and average mass Bitumen in original units were 
0.963, 0.972, and 0.853, respectively. An issue in here is the simulation of net thickness. In both 
simulation and Kriging there is a chance of having net thickness values higher than gross thickness. 
Note that in simulation it is more probable having such points. To deal with the inconsistency 
between net and gross thickness, net thickness is considered equal to gross thickness wherever it 
exceeds. 

In addition to correlation between Kriging and simulation, the correlation between results of 
simulation and true values was calculated for each variable, all correlations were around 0.98. 

The result of simulation for each variable has been illustrated in Table 16. The fluctuations of the 
realization variograms were also investigated. Fig. 40 shows variogram reproduction. The blue is 
the calculated variogram, yellow is average of simulated, and reds are 100 realizations. It can be 
seen that at the short distances, the variograms have been reproduced well. 

To show uncertainty P10 and P90 values were used. The P10 represents there is a 90% probability of 
being larger than this value. It can also be used to identify the high value areas because when the 
P10 value is high then the value is surely high. The P90 represents there is a 90% probability of 
being less that this value. The P90 map can be used to identify the low valued areas because when 
the P90

The P

 value is low then the value is surely low. 

10, P90, and P90-P10
Fig. 41

 maps for gross interval, net interval and average mass Bitumen are shown 
in , Fig. 42, and Fig. 43, respectively. 

 
Table 16.The results of simulation for each variable 

 Minimum Maximum Mean 

Gross interval (m) 0 90.6 33.49 

Net interval (m) 0 67.04 18.71 

Average mass bitumen 
(%Mass) 0 0.15 0.082 

Bitumen per area 
(%Mass by m2 0 ) 7.34 1.87 

 

4.6. Comparison 

In this section, the results of estimation and simulation are compared with true values. Fig. 44 
shows comparison between true values and results of estimation and simulation. In addition, the 
amount of Bitumen according to the different methods has been summarized in  

Table 17. It can be seen that the obtained results for amount of Bitumen from estimation and 
simulation are more than declustering.    
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Fig. 40.Histogram and variogram reproduction (yellow line is the average variogram of 100 realizations and blue 
line is the calculated variogram) 
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Fig. 41.The P10, P90, and P90-P10

 
 maps of gross interval 
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Fig. 42.The P10, P90, and P90-P10 

 

maps of net interval 
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Fig. 43.The P10, P90, and P90-P10 

 
maps of average mass bitumen 
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Fig. 44. Comparison of true values with the results from estimation and simulation 
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Table 17.of Bitumen in study area based on different methods 

Method Ave. Net 
interval (m) 

Bbl of Bitumen 
×10

Bbl of Bitumen 
×109 

9 
Difference from 
declustering (%) 

(Based on fourth variable) 

Declustering 16.1 175 232 -------- 

Estimation 18.8 240 254 27 

Simulation (avg) 18.7 204 260 14.2 

Simulation (P10) 6.41 48 91 -------- 

Simulation (P90) 30.93 494 459 -------- 

 

4.7. Sensitivity analysis 

To perform sensitivity analysis, the obtained results for mean uncertainty were used. For this 
purpose, the P10, P50, and P90

Table 18
 values of mean uncertainty were calculated for each variable using 

“quantile.exe” program. The results has been illustrate in . Afterwards, SK was done three 
times for each variable according to the obtained values for P10, P50, and P90.

Table 19
 Average value of 

each variable after clipping has been represented in . It can be clearly seen that there is no 
significant difference between the results of SK with different means belong to uncertainty interval.   

According to the presented value for P10 and P90
Table 20

 of net interval and Average mass Bitumen, 
amount of Bitumen for each of them was calculated. The result has been presented in . It 
can be seen that the amount of bitumen for estimation method and P10 and P90 values varies 
between 229 and 234 billion bbl. 

 

 
Table 18.Obtained result from quantile program for P10, P50, and P90 

 Spatial bootstrap of mean 
P P10 P50 

 
90 

Min. Max. 

Gross interval (m) 22.15 36.30 26.79 29.15 31.62 

Net interval (m) 13.26 19.34 14.93 16.04 17.23 

Ave. mass Bitumen 
(%Mass) 0.068 0.094 0.077 0.082 0.087 
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Table 19.Average of SK after clipping based on P10, P50, and P90  

 

values belong to mean uncertainty 
interval. 

Average after cliping 

 
P P10 P50 

Gross interval (m) 

90 

34.29 34.4 34.51 

Net interval (m) 18.77 18.84 18.93 

Ave. mass Bitumen (%Mass) 0.092 0.0931 0.0934 

 

 
Table 20.Amount of Bitumen for estimation method according to the P10 and P90

 

 values 

P P10 

Net interval (m) 

90 

18.77 18.93 

Ave. mass Bitumen (%Mass) 0.092 0.0934 

Bbl of Bitumen (×109 229 ) 234 

 

4.1. Conclusion 

The predicting of porosity and permeability at unsampled locations of reservoir is one of the 
important problems in petroleum engineering. Micro modeling with core photograph data provides 
an improved understanding of porosity and permeability relationships within facies. The results of 
micro modeling show that in this case, the relationship between horizontal permeability, vertical 
permeability, and porosity are as shown in Eq. (7) to (9) 

 22973ln( ) 5712 ( 0.822)H effectiveK Rφ− = + =       (7)                                       

23099ln( ) 6653 ( 0.835)VK Rφ= + =        (8) 

2998ln( ) 5111 ( 0.812)V H effectiveK K R−= − =  (9)                                            

For regional modeling four steps should be followed. These steps include (1) data assembly, (2) 
Preliminary statistics, (3) model building, and (4) post processing. In this paper reservoir of the 
McMurray was characterized using the regional modeling. Many different maps were created to 
reveal different aspects of the gross interval, net interval, average mass Bitumen and their 
uncertainty. P10 and P90

As can be seen in

 maps provide heterogeneity and uncertainty information on the gross 
interval, net interval and average mass bitumen. 

 Table 17, the calculated values are different. Some sources of errors which have 
caused these differences are mentioned below: 

• Since wells are not distributed evenly, declustered averages are different from the original 
ones. 
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• It is not accurate to average net thickness and mass fraction of bitumen separately and multiply 
them in the rough estimation. Therefore, the rough estimate calculated using net and bit 
averages is not the same as the one calculated based on the fourth variable. 

• The number of estimated points in Kriging where net thickness is larger than gross is not too 
high considering the total number of cells. Therefore, the average net thickness and the 
modified net thickness are almost the same (they are the same after rounding); but in 
simulation two variables vary more. 

• The total estimated bitumen in place is almost the same for the two methods based on Kriging 
as opposed to simulation where the difference is significant. 

• When simulation is applied it is more effective to use either net and bit variables or the bitnet 
in calculating reservoir estimates. 

• P10 estimates show that at least there are 48 to 91 (using two different methods) billion barrels 
of oil in place by 90 percent chance. 

• P90 estimates stand for 10 percent probable optimistic average which shows that there may be 
459 to 494 (using two different methods) billion barrels of oil in place. 

• Generally said, Kriging has resulted in higher estimate than simulation average which can be 
due to the smoothing effect of Kriging. 
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