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Abstract 

The successful implementation of branch and cut algorithms for combinatorial optimization 
problems in mathematical optimizers has reduced the gap between theory and practice in 
optimization of large-scale industrial problems. Mixed integer linear programming (MILP) 
methods are used for optimizing production planning in open pit mines with an objective function 
of maximizing the net present value. Mine production schedules generated by MILP formulations 
occasionally create a scattered block extraction order that cannot be implemented in practice. In 
this paper, two alternative MILP production scheduling formulations are presented with minimum 
mining width integrated into the models as linear constraints. The proposed MILP formulations 
are implemented and tested in a TOMLAB/CPLEX optimization solver. The results show that the 
new formulations   prevent scattering of the excavation sequence in a given scheduling period and 
have an acceptable computing time. 

1. Introduction  

Open pit mine production scheduling can be defined as specifying the sequence in which “blocks” 
should be removed from the mine in order to maximize the total discounted profit from the mine 
subject to a variety of physical and economic constraints. Typically, the constraints relate to the 
mining extraction sequence; mining, milling and refining capacities; mill head grades; and various 
operational requirements such as minimum pit bottom width. Various methods have been used for 
optimization of mining problems (Ramazan et al., 2003; Ramazan et al., 2004a; Ramazan et al., 
2004b; Caccetta, 2007). Some examples include: linear programming and mixed integer linear 
programming (Caccetta et al., 2003; Ramazan et al., 2003; Ramazan et al., 2004a; Ramazan et al., 
2004b), dynamic programming (Tolwinsky et al., 1996), graph and network theory (Fan et al., 
2003), simulation (Dimitrakopoulos, 1998) and artificial intelligence (Denby et al., 1994; Denby et 
al., 1996; Tolwinsky et al., 1996; Askari-Nasab et al., 2008; Askari-Nasab et al., 2009). Among 
these optimization techniques, mixed integer linear programming is recognized as having 
significant potential to optimize production plans in large open pit mines with the objective of 
maximizing the total net present value. 

In this paper, we will present two mixed integer linear programming (MILP) production scheduling 
formulations with minimum mining width integrated into the models as linear constraints. 
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2.  MILP production scheduling formulations  

2.1.  Parameters 

The parameters used in the mine production scheduling are listed in Table 1. 
Table 1. MILP production scheduling parameters 

Parameter Description 
t

nBEV  
block economic value of block n in period t 

T maximum number of scheduling periods 
N number of blocks to be scheduled 
K  number of mining cuts to be scheduled 
i interest rate 

t
nX  binary integer variable controlling the sequence of extraction of blocks, equal to 1 if 

block n is to be mined in period t, otherwise 0 
tgu  upper bound on acceptable average head grade of ore send to the mill in period t 

tgl  lower bound on acceptable average head grade of ore send to the mill in period t 

ng  
average ore grade of block n 

kg  average ore grade in mining cut k 

nOt  
ore tonnage in block n 

kOt  ore tonnage in mining cut k 

nW  tonnage of waste material in block n  

kW  tonnage of waste material in mining cut k 
tPC )( max  upper bound on ore processing capacity in period t 

tPC )( min  lower bound on ore processing capacity in period t 
tMC )( max  upper bound on ore processing capacity in period t 

tMC )( min  lower bound on ore processing capacity in period t 

Wb  working block 
m number of the blocks forced to be mined with working block (8 or 24) 

t
kv  discounted revenue generated by selling the final product within mining cut k in 

period t minus the extra discounted cost of mining all the material in mining cut k as 
ore and processing it 

t
ks  continuous variable, representing portion of mining cut ck

t
nq

 to be extracted as ore and 
processed in period t 

 discounted cost of mining all the material in block n as waste 

t
ky  continuous variable, representing portion of mining cut ck

t
kb

 to be mined in period t 

 binary integer variable controlling precedence of extraction of mining cuts 

 

Each linear programming model includes an objective function and constraints. The open pit mine 
production schedule can be defined as specifying the sequence in which blocks should be removed 
from the mine to maximize the total discounted economic value, or the net present value (NPV) 
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from the mine, subject to a variety of physical and economic constraints. The first model is a 
modification of the approach  used by Ramazan et al.(2004b); in this model, equipment access and 
mobility have been added. The second model (Askari-Nasab et al., 2009) is developed based on a 
combination of concepts from  Caccetta et al. (2003) and Boland et al. (2009). In this model, 
mining and processing are both at mining-cut level. The blocks are clustered prior to schedule 
optimization and the ore processing and mining are controlled by two continuous variables. Blocks 
within the mining bench are grouped into clusters based on their attributes, spatial location, rock 
type, and grade distribution. Similar to blocks, each mining cut has coordinates representing the 
centre of the cut and its spatial location. 

2.2. Model I  
Objective function of model I is: 
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= =

×
+

T

t

t
n

N

n
t

t
n X

i
BEV

1 1 )1(
                                                                                                      (1) 

This objective function is subject to the following constraints: 
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Eqs. (2) and (3) are grade blending constraints; these inequalities ensure that the average grade of 
the material sent to the mill is within the desired range in each period. Eq. (4) imposes processing 
capacity constraints; these inequalities satisfy that the total tonnage of ore processed is within the 
acceptable range of the processing plant capacity. Eq. (5) applies mining capacity constraints; these 
inequalities satisfy that the total amount of material (waste, ore and overburden) mined is within 
the acceptable mining equipment capacity in each period. Eq. (6) is a reserve constraint; this 
constraint is applied to each block such that that all the blocks in the model considered have to be 
mined once. Eq. (7) is equipment access and mobility constraints; these constraints ensure that 
there is sufficient access for equipment for mining a given block and they prevent spreading of 
scheduling pattern over each period. Eq. (7) also minimizes equipment movement in a given 
period. In order to consider equipment access to each block, the optimization model should enforce 
extraction of a working block with a number of surrounding blocks in the same extraction period. 
To perform this, we define a concentric window around a working block (Fig. 1). The number of 
blocks in a window can be 8 or 24. The optimization model should force extraction of a working 
block and blocks numbered 1 to 8 or 1 to 24 in the same scheduling period, with at least m blocks 
within this window. Experience shows that it is better to use 40 percent of blocks in given window, 
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either 8 or 24. Using a higher percentage than 40 percent would tighten up the constraints and most 
of the time the MILP model will not result in a feasible solution. 

  
 
 
 

 
 
 
 
 
 
 
 

Fig. 1. Block configuration around a working block in a working bench 
 

2.3. Model II 

Objective function of model II is: 
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This objective function is subject to the following constraints: 
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Eqs. (9) to (11) control grade blending, processing capacity, and mining capacity constraints at the 
mining-cut level with fractional extraction from mining cuts. Eq. (12) ensures that the amount of 
ore extracted and processed from any mining cut in any given period is going to be less than or 
equal to the amount of rock extracted from that mining cut. Eqs. (13) and (14) check the set of the 
immediate predecessor cut that must be extracted prior to extracting mining cut, k. 

Working bench 
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3.  Application of models to production scheduling in an iron mine 

A TOMLAB/CPLEX environment (Holmstrom, 1989-2009) is used to develop and test the two 
models. The models are then used to schedule a bench of an iron ore mine. The block model 
includes estimated values for percentage of sulphur, phosphor and iron ore. The main mineral 
considered for profit is iron ore. The bench is divided into 415 blocks with 25m×50m×15m 
dimension. The bench contains 11.2 million tonnes of ore, with an average grade of about 72% 
magnetic weight recovery (MWT) of iron ore. A production schedule for the bench is developed to 
maximize the total discounted economic value at a 10% discount rate. Model I and model II 
generated M$531.64 and M$531.21 total discounted economic value for this bench over five 
periods of extractions respectively. To meet the physical mining constraints we have used a mining 
capacity upper bound of five million tonnes per period, whereas the processing capacity is 2.5 
million tonnes per period. In model II, the bench block model is divided into 30 mining cuts. Fig. 2 
shows the extraction sequences of this bench for two models. Model I has created scattered block 
extraction order, while the schedule generated by model II is smooth and feasible to implement in 
practice. The yearly tonnage of ore processed, waste mined, and the total tonnage of material 
mined in each period of production is compared in Fig 3. Fig. 4 and Fig. 5 show average iron ore 
grade and cash flow per period, respectively. There are not significant differences between results 
from the two models, but model I has many binary integer variables and the CPU processing time 
is almost thirty thousand times more, comparing to model II.  

4. Conclusion 

Two mixed integer linear programming (MILP) models were presented. Model I only consists of 
binary integer decision variables. This model generates a production schedule at block level 
resolution. In model II, extraction, processing, and the order of block extraction are controlled at 
the mining-cut level. Model II reduces the size and computational time of the problem. The models 
were compared using block model data from a bench of an iron ore mine. Although, model I 
generates a higher total discounted economic value than model II, the run time for model I is 
30,000 times more than model II. The results show that model II generates a practical mining 
schedule that includes enough space for equipment to maneuver and it prevents scattering of the 
excavation sequence in a given scheduling period. 

 

  

 

 
 

Fig. 2. Extraction sequence for the two models 
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Fig 3. Tonnage of ore and waste per period 

 

 
Fig. 4. Average iron ore (MWT%) grade per period 
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Fig. 5. Comparison between amount of cash flow 
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6. Appendix 

MATLAB and TOMLAB/CPLEX code and documentation for Model I & Model II 
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