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Abstract 

A number of mixed integer linear programming (MILP) formulations have been introduced for 
production scheduling of open pit mines. One of the main obstacles in using MILP formulations for 
open pit production scheduling is the size of the problem. The number of integer and continuous 
decision variables, as well as the number of constraints required to formulate a real-size mine will 
set up a computationally intractable problem. The main objective of this paper is to present a 
practical MILP formulation for open pit production scheduling problem. Also, we highlight the 
achievable economic gains that are possible through production scheduling optimization. We 
present an application of using mixed integer linear programming formulations for the open pit 
long-term production scheduling problem. We verify and validate the MILP production scheduler 
by a comparative case study against Whittle strategic mine planning software. An iron ore deposit 
with 427 million tonnes of rock and 116 million tonnes of iron ore in the final pit limit at an 
average grade of 72.9% magnetic weight recovery is studied. The difference between the 
cumulative discounted cash flow of the MILP schedule and the Whittle Milawa Balanced schedule 
is $50.4 million dollars.  The considerable difference between the two methods, demonstrates the 
importance of production scheduling optimization and the necessity for scheduling optimization to 
turn into a common practice in industry. 

1. Introduction  

The life-of-mine production schedule defines the strategy of displacement of ore, waste, and 
overburden over the mine life. The objective of long-term production scheduling is to determine 
the sequence of extraction and displacement of material in order to maximize or minimize an 
objective function. Commonly, the goal is to maximize the net present value of mining operation 
within the existing economic, technical, and environmental constraints. However, other objectives 
such as cost minimization or reserve maximization could be considered too. Long-term production 
schedules are the backbone of short-term planning and day to day mining operations. The long-
term production schedules determine mine and processing plant capacity and their expansion 
potential. The production schedule also defines the management investment strategy. Deviations 
from optimal plans in mega mining projects will result in enormous financial losses, delayed 
reclamation, and resource sterilization. Current open pit production scheduling methods in the 
literature and industry are not limited to, but can be divided into two main categories: heuristics 
and exact algorithms. The main motivation of this paper is to demonstrate that the economic 
difference between a practical optimal production schedule, generated by exact mathematical 
methods and production schedules generated by common techniques used in industry is substantial. 
Optimization practice is becoming more common in well-built mining companies, but still it is a 
long way until it becomes a common practice in mining industry. 
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Mixed integer linear programming (MILP) mathematical programming has been used by various 
researchers to tackle the long-term open-pit scheduling problem. The MILP models theoretically 
have the capability to model diverse mining constraints such as multiple ore processors, multiple 
material stockpiles, and blending strategies. However, current MILP formulations developed for 
open pit production scheduling have two major shortcomings: (i) the inability to generate the 
global optimal large-scale life-of-mine production schedule within a reasonable timeframe, and (ii) 
the inability to quantify the geological uncertainty inherent within the problem and as a result, the 
associated risk with the mine plans. As the first step, we focus on development of a deterministic 
MILP formulation for large-scale open pit production scheduling problem. We will address the 
stochastic case in our future research.  

The objective of this study is to (i) develop a deterministic MILP formulation for long-term open 
pit production scheduling problem, (ii) implement and document the details of the MILP numerical 
models in TOMLAB/CPLEX (Holmström, 2009) environment, (iii) verify and validate the MILP 
production scheduler by a comparative case study against one of the standard industry tools — 
Whittle strategic mine planning software (Gemcom Software International, 2008), and (iv) 
demonstrate the importance of production scheduling optimization to become a common practice 
industry wide.   

In a typical open pit long-term scheduling problem, the number of blocks is in the order of a couple 
of hundred thousand to millions, and the number of scheduling periods is in the order of twenty 
periods and more. Evidently, the number of integer and continuous decision variables, and the 
number of constraints formulating a problem of this size would exceed the capacity of current state 
of hardware and software. The MILP formulation of open pit production scheduling becomes 
intractable because of the size of the problem. To overcome the size problem, we aggregate blocks 
into larger units, we refer to these units as mining-cuts. We present two MILP formulations at two 
different levels of granularity: (i) processing at block level and mining at mining-cut level; and (ii) 
processing and mining both at mining-cut level.  

The next section of the paper covers the relevant literature to open pit production scheduling 
problem. Section three presents problem definition, notations of variables, and the mixed integer 
linear programming formulations of the problem, while the fourth section presents the numerical 
modeling techniques. The next section represents the verification of the MILP models by a 
comparative mining case study against the Whittle software (Gemcom Software International, 
2008) results. Finally, the last section presents the conclusions and future work followed by the list 
of references. 

2. Literature review 

Current production scheduling methods in the literature are not just limited to, but can be divided 
into two main categories: heuristic and exact algorithms. Some of these algorithms are embedded 
into available commercial software packages. 

Various models based on a combination of artificial intelligence techniques have been developed 
(Askari-Nasab, 2006; Askari-Nasab, et al., 2009; Denby, et al., 1996; Tolwinski, et al., 1996). 
Some of the  artificial intelligence techniques such as intelligent open pit simulator (Askari-Nasab, 
2006) are based on frameworks that theoretically will converge to the optimal solution, given 
sufficient number of simulation iterations. The main disadvantage of artificial intelligence and 
heuristic methods however, is that there is no quality measure to solutions provided comparing 
against the optimum. In addition most of the results are not reproducible.  

A variety of operations research approaches including linear programming (LP) and mixed integer 
linear programming (MILP) have been applied to the mine production scheduling problem. The 
pioneer work of Johnson (1969) used an LP model, which led to the MIP formulations by Gershon 
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(1983) for the production scheduling problem. Every orebody is different, but for a typical open pit 
long-term scheduling problem, the number of blocks is in the order of a couple of hundred 
thousand to millions, and the number of scheduling periods could vary in the order of twenty and 
more periods for a life-of-mine production schedule. Evidently, the number of integer and linear 
decision variables, and the number of constraints formulating a problem of this size would become 
intractable.  

Various models based on mixed integer linear programming mathematical optimisation have been 
used to solve the long-term open-pit scheduling problem (Boland, et al., 2009; Caccetta, et al., 
2003; Dagdelen, et al., 2007; S. Ramazan, et al., 2004). In practice, formulating a real size mine 
production planning problem by including all the blocks as integer variables will become 
computationally intractable. Various methods of aggregation have been used to reduce the number 
of integer variables that are required to formulate the production scheduling problem with MILP 
techniques. Ramazan and Dimitrakopoulos (2004) illustrated a method to reduce the number of 
binary integer variables by setting waste blocks as continuous variables instead of integer variables. 
Ramazan and Dimitrakopoulos (2004) reported a case study on a small single level nickel laterite 
block model with 2,030 blocks over three periods.  

Ramazan et al. (2005) presented an aggregation method based on fundamental tree concepts to 
reduce the number of decision variables in the MILP formulation. The fundamental tree algorithm 
has been used in a case study with 38,457 blocks within the final pit limits. Whittle strategic mine 
planning software (Gemcom Software International, 2008) has been used to decompose the overall 
problem into four push-backs. Subsequently, the blocks within the push-backs were aggregated 
into 5,512 fundamental trees and scheduled over eight periods using the formulation presented in 
Ramazan and Dimitrakopoulos (2004). Information about the run-time of the MILP models are not 
presented in Ramazan (2007); also the breakdown of the problem into four push-backs based on the 
nested pit approach and formulating each push-back as a separate MILP would not generate a 
global optimum solution to the problem.  On the other hand the size of the problem of around thirty 
thousand blocks over eight periods is more a mid-range planning problem rather than a long-term 
life-of-mine schedule. 

Caccetta and Hill (2003) presented a formulation that only used binary integer variables; they 
developed and implemented a personalized branch-and-cut (Horst, et al., 1996) method in C++ 
using CPLEX (ILOG Inc, 2007) to solve the relaxed LP sub-problems. Boland et al. (2009) have 
demonstrated an iterative disaggregation approach to using a finer spatial resolution for processing 
decisions to be made based on the small blocks, while allowing the order of extraction decisions to 
be made at an aggregate level. Boland et al. (2009) reported notable improvements on the 
convergence time of their algorithm for a model with 96,821 blocks and 125 aggregates over 25 
periods. However, combining 96,821 blocks into only 125 aggregates would reduce the freedom of 
decision variables and the schedule generated could not be considered as an optimal solution in 
comparison to the case that 96,821 blocks had a decision variable defined for them. Moreover, in 
Boland et al. (2009) there is no representation of the generated schedules in terms of annual ore and 
waste production, average grade of ore processed, cross sections, and plan views of the schedules 
to assess the practicality of the solutions from mining operational point of view.  

MineMax (Minemax Pty Ltd, 2009) is a commercially available strategic mine scheduling 
software, which uses MILP formulation solved by ILOG CPLEX (ILOG Inc, 2007) solver.  Given 
that, MineMax is a commercial software we couldn’t find detailed information about the approach 
and formulation, but our understanding from the evaluation of the demo tutorial version of 
MineMax is that it initially decomposes the final pit into nested pit shells based on parametric 
analysis concepts represented by Lerchs and Grossmann (1965). The pit shells define a pit to pit 
precedence constrained by the minimum and maximum number of benches by which the mining of 
one specified pit shell is to lag behind the previous one. The other option to define rules for 
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precedence of extraction is either by proportions mined on each bench or by block precedence 
based on the overall pit slopes. Then, each pit shell is formulated as a separate MILP model which 
can contribute to the overall quantity of mining and processing targets within the grade and 
precedence constraints; this approach results in MILP formulations for each pit shell with smaller 
size which will converge faster, but it could not be considered a global optimization of the problem 
since the pit shells are defined by the parametric analysis initially. Another optimization strategy is 
using sliding windows which are sub-problems tackled on a period by period basis. Other well 
known proprietary software which tackle the strategic mine production scheduling by MILP 
techniques are Blasor (Stone, et al., 2007), Prober (Whittle, 2007), and OptiMine (Dagdelen, et al., 
2007).   

Production scheduling optimization techniques are still not widely used in the mining industry. 
There is a need to improve the practicality and performance of the current production scheduling 
optimization tools used in mining industry. Also, to gain more common recognition in industry, 
there is a need to highlight the considerable achievable economic gains that are possible through 
production scheduling optimization. 

3. Mixed integer linear programming model for open pit production scheduling  

The basic problem of concern in its simplest form is finding a sequence in which ore and waste 
blocks should be removed from the predefined open pit outline and their respective destinations 
over the mine life, so the net present value of the operation is maximized. The production schedule 
is subject to a variety of physical and economic constraints. The constraints enforce the mining 
extraction sequence, overall pit slopes, mining, milling, and refining capacities, blending 
requirements, and minimum mining width. The problem presented here involves scheduling of N 
different ore and waste blocks within a predetermined final pit outline over T different periods of 
extraction. Blocks within the same mining bench are aggregated into clusters. Aggregation is based 
on the block attributes such as, location, rock type, and grade distribution. We refer to these 
clusters of blocks as mining-cuts. Similar to blocks, each mining-cut has coordinates representing 
the centre of the cut and its location.  

As a general assumption for our formulation we define that a parameter f can take four indices in 
the format of ,

,
e t

k nf . Where: 

{1,...., }t T∈    index for scheduling periods.  

{1,..., }k K∈   index for mining-cuts.  

{1,..., }n N∈    index for blocks.   

{1,..., }e E∈   index for elements of interest in each block. 

The objective function of the MILP formulation is to maximize the net present value of the mining 
operation. Hence, we need to define a clear concept of economic block value based on ore parcels 
which could be mined selectively. The profit from mining a block depends on the value of that 
block and the costs incurred in mining and processing the block. The cost of mining a block is a 
function of its location, which characterizes how deep the block is located relative to the surface 
and how far it is relative to its final dump. The spatial factor can be applied as a mining cost 
adjustment factor for each block according to its location to the surface. The discounted profit from 
block n  is equal to the discounted revenue generated by selling the final product contained in 
block  minus all the discounted costs involved in extracting block , this is presented by Eqs. 
(1) and (2). 

n n
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discounted profit = discounted revenue - discounted costs  (1) 

, , , ,

1 1

cos

[ ( ) ] [( ) ]
E E

t e e t e t e t e t t
n n n n n n

e e

discounted revenues discounted ts

d o g r p cs o cp o w cm
= =

= × × × − − × − + ×∑ ∑
 

 (2) 

Where  
• t

nd  is the discounted profit generated by extracting block n  in period t ,  

• no  is the ore tonnage in block n ,  

• nw is the waste tonnage in block n ,  

• e
ng  is the average grade of element e in ore portion of block n ,   

• ,e tr  is the processing recovery, which is the proportion of element e  recovered in time period 
t,  

• ,e tp is the price in present value terms obtainable per unit of product (element e ), 

•  ,e tcs  is the selling cost in present value terms per unit of product (element e ), 
• ,e tcp  is the extra cost in present value terms per tonne of ore for mining and processing, 

• tcm  is the cost in present value terms of mining a tonne of waste in period t . 

For simplification purposes we denote:  

, , , ,

1 1
[ ( ) ]

E E
t e e t e t e t e t
n n n n

e e
v o g r p cs o cp

= =

= × × × − − ×∑ ∑  (3) 

( )t t
n n nq o w cm= + ×   (4) 

Where  

• t
nv  is the discounted revenue generated by selling the final product within block n  in period t  

minus the extra discounted cost of mining all the material in block n  as ore and processing it; 
and  

• t
nq  is the discounted cost of mining all the material in block n as waste.  

We present two different formulations for the open pit production scheduling problem. The 
objective function is to maximize the NPV of the mining operation. We used the concepts 
presented in Boland et al. (2009) as the starting point of our development. We have developed, 
implemented, and tested a new MILP formulation taking into account practical shovel movements 
by controlling the maximum number of extraction periods for a mining-cut. 

3.1. MILP formulation one - extraction at mining-cut level and processing at block level 

In the proposed model, processing is controlled at block level, whereas the extraction is controlled 
at mining-cut level. The amount of ore processed is controlled by the continuous variable t

nx , and 
the amount of material mined is controlled by the continuous variable t

ky . Using continuous 
decision variables allows fractional extraction of mining-cuts in different periods. {0,1}t

kb ∈ is the 
binary integer variable controlling the precedence of extraction of mining-cuts. {0,1}t

kb ∈  is equal 
to one, if extraction of mining-cut  has started by or in period t ; otherwise it is zero. The objective 
function is to maximize the net present value of mining operation. 
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Objective function: 

1 1
max ( )

k k

T K
t t t t
n n n k

t k n c n c
v x q y

= = ∈ ∈

 
× − ×  

 
∑∑ ∑ ∑   (5) 

Where 
• T is the maximum number of scheduling periods, where T {1,..., }T= is the set of all the 

scheduling time periods in the model,  
• K is the total number of mining-cuts to be scheduled, where K {1,..., }K= is the set of all the 

mining-cuts in the model,  
• kc  represents set of blocks within mining-cut k ,  
• [0,1]t

nx ∈  is a continuous decision variable, representing the portion of block n  to be extracted 
as ore and processed in period t , 

• [0,1]t
ky ∈  is a continuous decision variable, representing the portion of mining-cut k  to be 

mined in period , fraction of y  characterizes  both ore and waste included in the mining-cut. 

It should be mentioned that in the objective function given by Eq. (5), mining is controlled at the 
mining-cut level, whereas the processing is at the higher resolution of block level.  The objective 
function is subject to the following constraints. 

Mining capacity constraints: 

1
( )

k

K
t t

n n k
k n c

o w y mu
= ∈

 
+ × ≤  

 
∑ ∑  { }1,...,t T∀ ∈  (6) 

1
( )

k

K
t t

n n k
k n c

o w y ml
= ∈

 
+ × ≥  

 
∑ ∑  { }1,...,t T∀ ∈  (7) 

Where  

• tmu is the upper bound on mining capacity in period t (tonnes),  
• tml is the lower bound on mining capacity in period t (tonnes).  

Eq. (6) ensures that the total amount of ore and waste mined in each period is equal to or less than 
the targeted maximum mining capacity of equipment. The constraints are controlled by the 
continuous variable t

ky  at the mining-cut level.  Eq. (7) on the other hand, ensures that the 
minimum amount of material that needs to be mined is achieved; Eq. (7) is useful in achieving a 
constant stripping ratio over the mine life.  A production schedule with an invariable stripping ratio 
would have significant savings potential by ensuring that fleet size required is matched to targets 
for material movement. The decision of the proper production rate which leads to the boundaries 
on mining capacity is an important stage of the production scheduling of open pit mines. Different 
scenarios of annual ore production rates must be examined and the one with highest NPV and 
uniform mill feed must be chosen. The mining capacity boundaries are a function of the ore 
reserve, overall stripping ratio, designed processing capacity, targeted mine-life, and the capital 
investment available for purchasing equipment. The upper and lower bounds of mining capacity 
could vary by scheduling periods, allowing the designer to use variable mining capacities 
throughout the mine life. The shortage of equipment in specific periods could be compensated with 
contract mining. Eqs. (6) and (7) will generate one constraint per period. 

t
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Processing capacity constraints: 

1

N
t t

n n
n

o x pu
=

× ≤∑  { }1,...,t T∀ ∈  (8) 

1

N
t t

n n
n

o x pl
=

× ≥∑  { }1,...,t T∀ ∈  (9) 

Where  

• N is the number of blocks in the block model, where N {1,..., }N=  is a set of all the blocks in 
the model, 

• tpu  is the upper bound on processing capacity of ore in period t (tonnes),  

• tpl is the lower bound on processing capacity of ore in period (tonnes). 

Eqs. (8) and (9) represent inequality constraints controlling the mill feed or processing capacity; 
These constraints assist the mine planners to achieve an overall mine-to-mill integration by 
providing a uniform feed throughout the mine-life. Constraints (8) and (9) are at block level, which 
means the decisions are made based upon the tonnage of ore above the cut-off grade within 
individual blocks.  In practice, the processing capacity constraints must be set within a tight upper 
and lower bounds to provide a uniform feed to the mill. Based on the shape of the orebody and 
distribution of ore grades, these constraints might not be honoured under some circumstances, 
which will lead to an infeasible problem. Pre-stripping could be achieved by setting the upper and 
lower bounds of processing capacity constraints equal to zero for the desired periods. This 
approach would enforce the optimizer to only mine waste blocks in the early periods. Eqs. (8) and 
(9) will generate one constraint per period per processing path. 

Grade blending constraints: 

,

1 1

N N
e t t e t
n n n n n

n n
g o x o x gu

= =

× × × ≤∑ ∑  { }1,..., , {1,..., }t T e E∀ ∈ ∈  (10) 

,

1 1

N N
e t t e t
n n n n n

n n
g o x o x gl

= =

× × × ≥∑ ∑  { }1,..., , {1,..., }t T e E∀ ∈ ∈  (11) 

Where 

• e
ng  is the average grade of element e in ore portion of block n , where E = {1,..., }E  is the set of 

all the elements of interest in the model, 
• ,e tgu , is the upper bound of acceptable average head grade of element e in period t , 

• ,e tgl , is the lower bound of acceptable average head grade of element in period . 

Production scheduling is concerned with the inherent task of blending the run-of-mine materials 
before processing. The objective is to mine in such a way that the resulting mix meets the quality 
specifications of the processing plant. The blending problem becomes more important as the design 
moves towards mid-range to short-range planning, where the planner is concerned with reducing 
the grade variability. Constraints (10) and (11) are at block level and there would be one equation 
per element per scheduling period for both upper and lower bounds. 

Ore processed and material mined constraints: 
t t
n kx y≤  {1,..., }n N∀ ∈ , { }, 1,...,kn c t T∈ ∈  (12)   

t

e t
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Where t

nx  is the portion of block n  to be extracted as ore and processed in period t , and t
ky  is 

representing the portion of mining-cut k  to be mined in period , where fraction of y  
characterizes  both ore and waste included in the mining-cut. Eq. (12) demonstrates inequalities 
that ensure the amount of ore in any block which is processed in any given period is less than or 
equal to the amount of rock extracted from the mining-cut k in any given scheduling period. A 
very important assumption in the formulation is that each mining-cut is extracted homogeneously; 
this means that t

ky illustrates the fraction of mining-cut k  to be extracted in time period t  and all 
the blocks within the cut kn c∈  are extracted with the same proportion of t

ky . Eq. (12) generates 
one equation per block per period. 

Precedence of mining-cuts extraction and slope constraints 

1
0

t
t i
k s

i
b y

=

− ≤∑  { }{1,..., }, 1,..., , ( )k K t T s H S∀ ∈ ∈ ∈  (13)

1
0

t
i t
k k

i
y b

=

− ≤∑  { }{1,..., }, 1,...,k K t T∀ ∈ ∈  (14) 

1 0t t
k kb b +− ≤  { }{1,..., }, 1,..., 1k K t T∀ ∈ ∈ −  (15) 

Where 

• {0,1}t
kb ∈ is a binary integer decision variable controlling the precedence of extraction of 

mining- cuts. t
kb  is equal to one if extraction of mining-cut k has started by or in period t , 

otherwise it is zero,  
• ( )kH S is a set ( )kH S ⊂K for each mining-cut k , defining the immediate predecessor cuts that 

must be extracted prior to extracting mining-cut k , where S is the total number of cuts in set 
( )kH S . 

For each mining-cut k , Eqs. (13) to (15) check the set of immediate predecessor cuts that must be 
extracted prior to mining-cut k .  This precedence relationship ensures that all the blocks above the 
current mining-cut are extracted prior to extraction of mining-cut. As it could be deduced from Eq. 
(15), the formulation is based on the temporal sequence of extraction rather than checking for all 
the periods. Eqs. (13) to (15), represent one equation per mining-cut per period.  

For each block n  there is a set ( )nC L ⊂N, which includes all the blocks that must be extracted 
prior to mining block n  to ensure that block n  is exposed for mining with the desired overall pit 
slopes, where L is the total number of blocks in set ( )nC L . We use a directed graph to model the 
precedence of extraction between blocks. We define a directed graph bG (N, A) by the set of 
vertices, N (blocks); connected by ordered pairs of elements called arcs, A. More detailed 
information about directed graphs could be reviewed in (Siek, et al., 2002). 

During the clustering of blocks into mining-cuts, another directed graph at mining-cut level is 
constructed capturing the precedence relationship of mining-cuts.  This directed graph is denoted 
by cG (K, B) where B {1,..., }B= is the set of all edges in the mining-cuts precedence directed 
graph. The directed graph cG (K, B) is constructed in a way that while satisfying the order of 
extraction at mining-cut level, it would also satisfy the relationships defined by the graph bG (N, 
A) at block level. This approach of defining two directed graphs at mining-cut and block level 
enables us to model variable pit slopes with small acceptable slope errors in the different regions of 
the open pit. In other words, mining is controlled at the mining-cut level, while the slopes are 
modelled at the block level. 

t
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3.2. Alternative MILP formulation 

Eqs. (5) to (15) represent the MILP formulation for long-term open pit production scheduling. The 
proposed formulation requires (2 )K N T× + ×  number of decision variables, where K T×  of these 
variables are binary integers. One of the major obstacles in using the MILP formulations for mine 
production scheduling is the sheer size of the problem. The number of blocks, N, in the model is 
usually between tens of thousands to millions. Moreover, the main physical constraint in open pit 
mining is the block extraction precedence relationship modelled by binary integer variables. The 
most common problem in the MILP formulation is size of the branch and cut tree. The tree 
becomes so large that insufficient memory remains to solve an LP sub-problem. The number of 
binary integer variables in the formulation determines the size of the branch and cut tree. As a 
general strategy in our formulations we aimed at reducing the number of binary integer variables. 
We have reduced the number of binary integer variables to K T× , where to some extent we have 
control over the number of mining-cuts K         created during the clustering algorithm.  

We investigated the effect of using continuous decision variables ( t t
n kx and y ), which leads to 

fractional block extraction on the quality and practicality of the generated schedules. There is a 
possibility that block kn c∈  get extracted over multiple periods. Our computational experiments on 
different models using the formulation presented by Eqs. (5) to (15) shows that block fractions are 
usually scheduled over consecutive periods and in the worst case examined, some blocks were 
extracted over three periods. However, this could not be extended as a general rule. We should also 
emphasize again that blocks are uniformly extracted as part of mining-cuts. The total tonnage of 
ore processed in the MILP formulation presented by Eqs. (5) to (15) is related to how mining and 
processing capacities are set in accordance with the ore reserve total tonnage. There is the 
possibility that quantities of ore above the cut-off grade would not get processed due to the 
processing capacity limitations. It is feasible to overcome the abovementioned problems by adding 
reserve and maximum number of fractions constraints to the MILP formulation presented by Eqs. 
(5) to (15). 

Maximum number of fractions and reserve constraints 

1
1

T
t
n

t
x

=

=∑  {1,..., }n N∀ ∈  (16) 

1
1

T
t
k

t
y

=

=∑  {1,..., }k K∀ ∈  (17) 

1

T
t
k

t
u m

=

≤∑  {1,..., }k K∀ ∈    (18) 

1
1

T
t t
k k

t
u y

=

× =∑  {1,..., }k K∀ ∈   (19) 

Where  

• {0,1}t
ku ∈ is a binary integer decision variable equal to one if mining-cut k is scheduled to be 

extracted in period t , otherwise zero,  
• m is an integer number representing the maximum number of fractions that mining-cuts are 

allowed to be extracted over and the previously defined terms apply. 

Equality constraints presented by Eq. (16) ensures that all the ore within the predefined pit limits or 
the targeted push-back is processed during the optimization. Eq. (16) adds one constraint per block.  
Eq. (17) ensures that all the material within the predefined pit outline is to be mined; this adds one 
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constraint per mining-cut. Eq. (18) and (19) guarantee that the maximum number of fractions of 
mining-cuts in the solution for t

ky  is not going to exceed the integer number m . For large-scale 
models with many scheduling periods m is set equal to two or three. This would ensure that the 
generated schedule is practical from the equipment movement point of view. Eq. (19) is a set of 
non-linear constraints, which introduces a mixed integer non-linear programming (MINLP) 
problem. MINLP problems are very difficult, if not possible, to solve. We   linearize Eq. (19) by 
introducing a new continuous variable, t

ka , to replace the product t t t
k k ka u y= × .  Eq. (19) is replaced 

by 
1

1
T

t
k

t
a

=

=∑  and linear constraints represented by Eqs. (20) to (23) are added to force t
ka to take the 

value of t t
k ku y× . 

t t
k ka u≤  { }{1,..., }, 1,...,k K t T∀ ∈ ∈  (20) 

t t
k ka y≤  { }{1,..., }, 1,...,k K t T∀ ∈ ∈  (21) 

(1 )t t t
k k ka y u≥ − −  { }{1,..., }, 1,...,k K t T∀ ∈ ∈  (22) 

0k
ta ≥  { }{1,..., }, 1,...,k K t T∀ ∈ ∈  (23) 

4. Results and discussion 

A production scheduling case study is carried out to verify and validate the MILP models. An iron 
ore deposit is considered with three types of ore classified as top magnetite, oxide, and bottom 
magnetite. The block model contains the estimated magnetic weight recovery (MWT%) of iron ore. 
The contaminants are phosphor (P%) and sulphur (S%). Blocks in the geological model represent a 
volume of rock equal to 25 25 15m m m× × . We compare our model against Whittle strategic mine 
planning software (Gemcom Software International, 2008). Whittle is one of the tools extensively 
used in industry for open pit optimization and long-term production scheduling. The input 
parameters and the mining strategies in Whittle and MILP scheduler are scrutinized carefully to 
make sure an unbiased comparative study is undertaken. The goal is to maximize the NPV at a 
discount rate of 10%, while assuring a constant uniform feed to the processing plant through a 
21year mine-life. We aimed at generating a practical schedule taking into account the minimum 
operational room required, the number of active benches in each period, the number of benches 
added to the pit in each period, uniformity of processing plant feed, and variability of the stripping 
ratio. The pit includes 427.33 Mt of rock where, 116.29 Mt is iron ore with an average magnetic 
weight recovery grade of 72.9%.  Initially a capacity of 26 Mt/yr was considered as the upper 
bound on mining capacity, subsequently it was reduced to 25 Mt/yr from year 6 to the end of the 
mine life. We use Milawa Balanced scheduling algorithm in Whittle, with minimum lead of 3 and 
maximum lead of 6 benches. The maximum number of active benches is set to 6. In the pit limit 
optimization process a minimum mining width of 100 meters is used for intermediate pits. 
Examination of the orebody and cross sections of the open pit reveals that (Figure 2a) due to the 
shape of the deposit providing a uniform feed to the processing plant is a challenging task. Five 
years of pre-stripping is considered to ensure the deposit is exposed for open pit mining with 
adequate operating room in the future.  Table 1 summarizes the information related to the 
comparative case study.  
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Table 1. Final pit and production scheduling information. 
Description Value Description Value 
Number of mining-cuts  895 Minimum mining width (m) 100 
Total tonnage of rock (Mt) 427.33  Number of periods (years) 21 
Total ore tonnage (Mt) 116.29  Maximum number of active benches 6 
Total tonnage of recovered Fe (Mt) 76.33  MILP sulphur grade constraint (%) 0 ≤ S ≤ 1.9 
Average grade of  MWT%   72.9% MILP phosphor grade constraint (%) 0 ≤ P ≤ 0.2 
Mining capacity (Mt/year) (years 1 to 5) 
                                           (years 6 to 21) 
Processing  (Mt/year)       (years 1 to 5) 
                                        (years 6 to 21) 

26  
25  
0   
8  

MILP MWT grade constraint (%) 
Minimum lead between benches  
Maximum lead between benches 
Total number of blocks in the pit 

60  ≤ MWT ≤ 80 
3 
6 
19,492 

In the MILP model, the mining and processing are both set at mining-cut level. The total number of 
blocks within the final pit limit is 19,492. We use fuzzy logic clustering to aggregate blocks into 
895 mining-cuts to reduce the number of variables required in the MILP model. The clustering 
algorithm, aggregates blocks based on three main criteria: location, rock type, and grade 
distribution. Blocks that have a higher order of similarity are aggregated into mining-cuts. Figure 
1a illustrates the plan view of bench at 1575m elevation; the magnetic weight recovery and rock-
types are shown in Figure 1a. Magnetic weight recovery (MWT%), rock-type code, and location of 
each block is used to aggregate the blocks into mining-cuts, representing a selective mining unit. 
Figure 1b illustrates the result of the clustering at the 1575m bench. The total tonnage (quantity) of 
ore, waste, iron ore (MWT), phosphor, and sulphur are calculated for each mining-cut. The 
aggregated mining-cut model is the input into the MILP scheduler. Aggregation of blocks into 
mining-cuts, also impose the MILP scheduler to generate a mining schedule at the mining selective 
unit (SMU). This is very important in generating a practical production schedule from mining 
operation point of view. Grade blending constraints are set for magnetic weight recovery, sulphur, 
and phosphor as described in Table 1.   

The scheduling of the open pit is carried out using Whittle and the MILP scheduler under the same 
input data and similar mining strategies. Figure 1c shows bench 1575m scheduled with the MILP 
scheduler, the periods of extraction are labelled on each block. Figure 1d illustrates bench 1575m 
scheduled with Whittle Milawa Balanced strategy. Figure2a to 2c demonstrates cross section 
98500m looking east. Figure 2a illustrates the orebody, MWT grade distribution, and rock-types. 
Figure 2b shows the MILP production schedule with periods labelled and Figure 2c demonstrates 
Whittle Milawa Balanced production schedule with periods numbered accordingly. 
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Figure 1. Bench plan view at elevation 1575m. (a) orebody outline and grade distribution with rock-types 

labelled;  (b) clustering results aggregating blocks into mining-cuts; (c) MILP production schedule; (d) 
Whittle production schedule. 
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Figure 2. Cross section 98500m looking east ; (a) orebody, grade distribution, and rock-types; (b) MILP 

production schedule with periods labelled; (c) Whittle production schedule with periods labelled. 

Figure 3a illustrates the yearly ore and waste production generated by MILP scheduler and Whittle 
software. There are 5 years of pre-stripping in both cases. A processing maximum capacity of 
8Mt/yr is set from year 6 to 21. We have tried different scenarios and options with Whittle Milawa 
Balanced strategy and Whittle Milawa NPV strategy to generate a reasonable schedule with the 
least amount of deviation from target production. Figure 3b illustrates that there is a shortfall of ore 
feed in years 6 and 7; this shortfall does not occur in the MILP schedule (Figure 3a), since a 
minimum processing requirement of 6Mt/yr is set for years 6 to 9. The lower bound on processing 
requirements will ensure that ore is going to be delivered to the processing plant in the schedule. 

Figure 4a and 4b illustrate the sulphur and phosphor average grade at the processing plant. The 
contaminant grade constraints for sulphur and phosphor as set up in Table 1 are met in both 
schedules. Figure 5 illustrates the head grade of magnetic weight recovery of iron ore. Comparison 
of Whittle and MILP schedule head grades in  Figure 5 illustrates a higher average head grade by 
the MILP schedule. This is especially notable in the starting years of processing (years 6 to 9), 
which has a higher impact on the NPV of the operation. The higher average head-grade and less 
deviation from the 8 Mt/yr target production, translates into higher cash flows in the early years by 
the MILP schedule. Figure 6 illustrates the annual cash flow generated by MILP scheduler and 
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Whittle software. It is evident that the cash flows generated in years 6 and 7 by the MILP scheduler 
are substantially greater than the Whittle results. In Whittle the mine planner does not have control 
over the lower boundary constraints for mining and processing. Figure 7 illustrates the cumulative 
discounted cash flow of the MILP and Whittle schedule; it also demonstrates the difference 
between the cumulative discounted cash flow at the end of each period. 

 
Figure 3. Yearly production schedule of ore and waste; (a) MILP schedule; (b) Whittle schedule. 

 
Figure 4. Contaminants grade over the mine life for MILP and Whittle schedule; (a) phosphor grade in 

percent; (b) sulphur grade in percent. 

 
Figure 5. Magnetic weight recovery head grade for the MILP and Whittle schedule.  
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Figure 6. Annual cash flow of the MILP and Whittle schedule in million dollars. 

 

 
Figure 7. Cumulative discounted cash flow of the MILP and Whittle schedule- the difference between the 

cumulative discounted cash flows are illustrated on top. 

The discounted cash flow of the MILP scheduler is $1929.4 million dollars; whereas the discounted 
cash flow generated by Whittle Milawa Balanced is $1879.0 million dollars. The discounted cash 
flow is compared over the same mine-life of 21 years and at a discount rate of 10%. We also kept 
all the input scheduling variables and strategies with both models the same. The difference between 
the cumulative discounted cash flow of the MILP scheduler and the Whittle Milawa Balanced 
results is $50.4 million dollars. This is a substantial amount considering the relatively small size of 
the open pit. We emphasize again that our goal was to compare the results under the same mining 
strategies, such as minimum mining width, minimum and maximum lead number, and maximum 
active benches in each period. We examined generating the schedule with Whittle Milawa NPV 
under the exact same input parameters. The cumulative discounted cash flow by Whittle Milawa 
NPV is equal to $1896.3 million dollars over similar mine-life. The generated schedule had a very 
variable stripping ratio through the mine life which makes it almost impossible to implement in 
practice. 
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5. Conclusions and future work 

This paper investigated the development of a mixed integer linear programming (MILP) 
formulation for open pit production scheduling optimization. We developed, implemented, and 
tested practical MILP models for open pit production scheduling in TOMLAB/CPLEX 
(Holmström, 2009) environment. The MILP formulation of open pit production scheduling 
becomes intractable because of the size of the problem. To reduce the number of continuous and 
binary variables in the model, we aggregated blocks into larger units, referred to as mining-cuts 
using clustering algorithms.  

The main objective of this paper was to highlight the considerable achievable economic gains that 
are possible through production scheduling optimization. Also, we aimed at improving the 
practicality and performance of the MILP production scheduling formulations.  We verified and 
validated the MILP production scheduler by a comparative case study against one of the standard 
industry tools — Whittle strategic mine planning software (Gemcom Software International, 2008). 
The input parameters and the mining strategies in Whittle and MILP scheduler were inspected 
cautiously to make sure an unbiased comparative study was undertaken. The goal was to maximize 
the NPV at a discount rate of 10%, while assuring a constant uniform feed to the processing plant. 
We aimed at generating a practical schedule taking into account the minimum operational room 
required, the number of active benches in each period, the number of benches added to the pit in 
each period, uniformity of processing plant feed, and variability of the stripping ratio. The pit 
includes 427.33 Mt of rock where, 116.29 Mt is iron ore with an average magnetic weight recovery 
grade of 72.9%. The discounted cash flow of the MILP scheduler was $1929.4 million dollars; 
whereas the discounted cash flow generated by Whittle Milawa Balanced is $1879.0 million 
dollars. The difference between the cumulative discounted cash flow of the MILP scheduler and 
the Whittle Milawa balanced results is $50.4 million dollars. This is a substantial amount 
considering the relatively small size of the open pit.  

Production scheduling optimization techniques are still not widely used in the mining industry. 
There is a need to improve the practicality and performance of the current production scheduling 
optimization tools used in mining industry. Also, to gain more common recognition in industry, 
there is a need to highlight the considerable achievable economic gains that are possible through 
production scheduling optimization. Further focused research is underway to develop and test 
different clustering techniques that would generate an optimized clustering approach for the 
mining-cuts. Also the next step is to extend the mixed integer linear programming framework into 
stochastic mathematical programming domain to address the grade uncertainty issue. 
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