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Optimizing block extraction sequence with MIP 
method and investigating the effect of road 

condition on truck cycle time 
Yashar Pourrahimian1and Hooman Askari-Nasab 

Abstract 

Mine long-term plans define the complex strategy of displacement of ore, waste, 
overburden, and tailings over the mine life. The objectives of long-term mine plans are to 
manage and maximize the future cash flows and to minimize the environmental footprint of 
mining operations. Among the operation tasks, the haulage is the most expensive 
operation. We have used a mixed integer programming formulation to schedule the order 
of extraction of a mining bench in an iron ore mine. The objective function was to 
maximize the net present value of the operation, while meeting the qualitative and 
quantitative production constraints. Also, we have used simulation to investigate the affect 
of road conditions on truck cycle time.  

1. Introduction  

The operation tasks in open-pit mines consist of drilling, blasting, loading, haulage and 
general services. Among them, the haulage is the most expensive operation that occupies 
more than 50% of the total operation cost in open-pit mines. Therefore, minimizing the 
haulage cost can be one of the most critical factors in ore production.  The shovel-truck 
haulage system is common in open-pit mines due to the flexibility of the fleet. The haulage 
cost of shovel-truck system is dependent on the productivity of an operating truck which 
can be represented by the average truck cycle time.   

1.1. Introduction to linear programming (LP) and integer programming (IP)  

A major element of mine planning is the optimization of long-term production schedule. 
The aim is to maximize the overall discounted net revenue from a mine within operational 
constraints such as mining slope, grade blending, ore production and mining capacity. 
Integer programming (IP) and linear programming (LP) mathematical models are 
considered to be powerful tools in optimizing mine schedules, and there have been major 
efforts in applying them to mining projects (Ramazan et al., 2004). 

Linear programming (LP): Linear programming uses a mathematical model to describe 
the problem of concern. The adjective linear means that all the mathematical functions in 
this model are required to be linear functions. Linear programming involves the planning 
of activities to obtain an optimal result, a result that reaches the specified goal best 
(according to the mathematical model) among all feasible alternatives(Hillier, 2005). 

Integer programming (IP): In many practical problems, the decision variables actually 
make sense only if they have integer values. If requiring integer values is the only way in 
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which a problem deviates from a linear programming formulation, then it is an integer 
programming (IP) problem. The mathematical model for integer programming is the linear 
programming model with the one additional restriction that the variables must have integer 
values. If only some of the variables are required to have integer values (so the divisibility 
assumption holds for the rest), this model is referred to as mixed integer programming 
(MIP). With just two choices, we can represent such decisions by decision variables that 
are restricted to just two values, say 0 and 1. Thus, the jth yes-or-no decision would be 
represented by, say, xj such that 

1    If decision  j is yes. 
 

0    If decision  j is no. 

 
 =jx

 

Such variables are called binary variables (or 0–1 variables). Consequently, IP problems 
that contain only binary variables sometimes are called binary integer programming (BIP) 
problems (or 0–1 integer programming problems) (Hillier, 2005). 

2. An abstract description of open pit mining 

Ore bodies in open pit mines are represented by block models (figure 1). A block model 
divides ore and waste blocks adjacent to each other. The model may have several hundred 
thousand blocks depending on the size of the orebody and the size of the blocks. The size 
of the blocks is a function of the equipment used and the blasting pattern practiced. The 
average ore content of each block is calculated using geostatistical methods. 

Open pit mining is a mineral extraction method by which the ore body is accessed by 
opening a large stretch of ground to expose the ore to air. Mining begins with a small pit in 
the surface, and then proceeds to a larger pit, which encloses the small pit, and the process 
continues until a final pit is reached (figure2). A mining sequence is obtained from a series 
of nested pits (figure3). 

The time it will take to mine all the pits in the sequence will define the mine life, and the 
boundaries of the last pit in the sequence will determine the ultimate pit limits.  

The blocks with average grade less than the cutoff grade are considered as waste blocks, 
and sometimes it is necessary to mine them in order to reach the ore blocks. The material 
mined from waste blocks is sent to the waste dump. On the other hand, some ore blocks 
may have to be left without mining because too many waste blocks must be mined to reach 
those blocks. 

As seen in figure 3, mining in open pits starts from top and proceeds towards the bottom. 
Pit 1 is mined first, and subsequently Pit 2 is reached by mining the incremental blocks 
between Pit 1 and 2. In mining engineering terminology, it is said that Pit 2 is reached by a 
pushback from Pit 1. The most essential problem in long-term production planning is the 
determination of the set of pushbacks, that is, the mining sequence, to maximize the net 
present value (NPV) of the project. The results of the long term production planning are 
used as guides for the short- term production planning which may be for a quarter, a month 
or a week. 
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Fig 1. Diagrammatic view of a 3-D block matrix containing can orebody 

(Hustrulid et al., 2006) 

 

Fig 2. Sungun copper mine pit, Iran 
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Final Pit Final Pit 

Fig 3. Two- dimensional view of nested pits and final pits 

(Pits 1 to 6 are nested pits) (Sevim et al., 1998) 

 

3. MIP formulation for multi-period long-term production scheduling model 

MIP models are generally used to maximize the overall discounted economic value, or net 
present value (NPV), of a mining project. Equation (1) was used as the objective function. 

Maximize  ∑∑
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Where T is the maximum number of scheduling periods, N is the total number of blocks to 
be scheduled,   is block economic value of block n in period t, i is interest rate and 

is a binary variable, equal to 1 if the block  n is to be mined in period t, otherwise 0. 

t
nBEV
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3.1.  Grade blending constraints 

The average grade of the material sent to the mill has to be less than or equal to a certain 
grade value, Gmax , for each period, t (Ramazan et al., 2004).  
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Where is the average grade of block n, and Ot is the ore tonnage in block n. ng n

The average grade of the material sent to the mill has to be greater than or equal to a 
certain grade value, Gmin , for each period, t. 
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3.2.  Reserve constraints 

Reserve constraints are constructed for each of the blocks to state that all the blocks in the 
model considered have to be mined once (Ramazan et al., 2004). 
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3.3.  Processing capacity constraints 

The total tonnage of ore processed cannot be more than the processing capacity in 
any period, t (Ramazan et al., 2004). 
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The total tonnage of ore processed cannot be less than a certain amount in any 
period, t. 
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3.4.  Mining capacity 

 The total amount of material (waste and ore) to be mined cannot be more than the total 
available equipment capacity for each period, t (Ramazan et al., 2004). )( maxMC
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Where  is the tonnage of waste material in block . nW n

To force the MIP model to produce balanced waste production throughout the periods, a 
lower bound  may need to be implemented as follows: )( minMC
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The number of binary variables required for the MIP model is equal to the number of 
blocks multiplied by the total periods to be scheduled, as can be seen in the formulations 
above. 

4. Illustration of an example  

In this section, a scheduling optimization example with 415 blocks has been explained. All 
necessary steps for problem setting have been explained in detail. 

The goal is extraction of all 415 blocks in five periods while maximizing the net present 
value as represented by equation (1). 

Step 1. Analysis of blocks information                                   

Block model is created with GEMS6.1 and Whittle4.1 software. For this suppose the 
drill- holes data are used as input of Gems then the block model is created. After that, 
information is saved in Matlab file format.  

These 415 blocks are a segment of an orebody block model of a real iron ore deposit. 
Information of each block is as follows: 

 

1x415 struct array with fields: 

    XI, YI, ZI: 

    X,Y, Z: 

    MCAF: 

    PCAF:   

    gradeS, gradeP, gradeMWT: 

   OreTonnes: 

    WasteTonnes : 

    OreValue: 

    WasteCosts: 

    BlockTonnage: 

    EBV: 

    P, S, MWT: 

 

      

 Index of each block in the block model 

Coordinates of the block 

Mining cost adjustment factor 

Processing cost adjustment factor 

Grade of Sulphur, Phosphor and Fe 

Total tonnage of ore in the block 

Total tonnage of waste in the block 

Value of ore in the block 

Costs of waste in the block 

Total tonnage of the block(waste + ore) 

Economic block value 

Tonnage of Phosphor, Sulphur and Fe in the block  
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All blocks were analyzed and necessary graphs and statistic analysis carried out using 
Matlab. Figure 4 shows grade distribution histogram. According to this histogram, 
maximum value of grade is equal to 0.8 percent. )( maxG
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Fig 4. Grade histogram for ore blocks 

Step 2. Setting up the problem for solving with Matlab 

The Matlab bintprog function solves binary integer programming problems of the 
form: 

Minimize       such that xf ./

beqxAeq
bxA
=

≤
.

.
 

Where f, b, and beq are vectors, A and Aeq are matrices, and the solution x is required 
to be a binary integer vector—that is, its values can only take on the values 0 or 1. 

To solve this problem in Matlab we have to use following function:    

x = bintprog(f,A,b, Aeq,beq) 
To set the problem in format of Matlab bintprog function the following steps have to be 
followed: 

Step 3. Creating matrix f 

The function that we want to maximize with interest rate equal 15% is as follows: 
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The expanded formats of function for each period are as follows: 
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Function for the third period: )
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In this case, we want to maximize the objective function; therefore, we have to 
multiply the function by a negative sign.  

Where, f is a column matrix with N×T elements that N is number of blocks and T is 
number of periods. 

T
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Step 4. Creating  [A],{x}, {b}, [Aeq] and {beq} 

4.1. Creating coefficients matrix of the linear inequality constraints [A] 

We want to maximize f subject to }{}].{[ bxA ≤ , where [ ] represents a matrix and { } 
represents a vector. A is the matrix containing the coefficients of the linear inequality 
constraints, b is the vector corresponding to the right-hand side of the linear inequality 
constraints and x is solution. 

Matrix A has m rows and n columns that m and n given by m=NC×T and n=N×T. Where, 
NC is number of inequality constraints, T is number of periods that blocks are extracted in 
and N is number of blocks. 

Matrix A is created by following inequality constraint equations: 
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Constraint 6(A6):  min
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Since, constraints must be written in }{}].{[ bxA ≤  form, conditions 2, 4, and 6 are written 
as follows: 
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Table 1 shows summary of inequality constraints and short description about them. 
Table 1. constructing matrix A 

nn OtGg ×− )( max  
This constraint is exerted from first row to Tth row. First, 
value of this equation is calculated for each block, and then, 
they are replaced in row one period 1, row 2 period 2 and so 
to Tth row. 

nn OtgG ×− )( min  
This constraint is exerted from (T+1)th row to (2T) th row. 
Value of this equation is calculated for each block, and then, 
is replaced in row (T+1) period 1, row (T+2) period 2 and so 
to (2T) th row. 

nOt  Ore tonnage of each block is replaced from (2T+1) th row to 
(3T) th row into the related period.  

nOt−  
Ore tonnage of each block is multiplied by (-1) and then is 
replaced from (3T+1) th row to (4T) th row into the related 
period. 

)( nn WOt +  Total tonnage of each block (ore+waste) is replaced from 
(4T+1) th row to (5T) th row into the related period. 

)( nn WOt +−  
Total tonnage of each block (ore+waste) is multiplied by (-1) 
and then is replaced from (5T+1) th row to (6T) th row into the 
related period. 

 

When the values of equation are replaced in related period of each row, other elements in 
those rows have to be zero. Figure 5 shows how matrix A is created.  indicates value 
of constraint C for block n. For instance, A11 is the value of constraint 1 for block 1 and 
A2411 is the value of constraint 2 for block 411. The first number is number of constraints 
and second one number of blocks. 

nAC
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4.1.1 Creating vector x 

Vector x with elements  is the solution of the problem. This vector 
has (T×N) elements. The following relationship governs among elements of vector x. 

}2075,...,3,2,1{ =jx j
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Fig 5. Method of coefficient matrix creation 
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4.1.2 Creating vector b 

b is a vector containing the constants of the linear inequality constraints. Dimension of this 
vector depends on dimensions of matrix A and vector x. 

1)(1)()()( }{}.{][ ××××××× = TNCTNTNTNC bxA  

In this case dimension of b is equal to 30×1. 

4.1.3 Coefficients matrix of the linear equality constraints [Aeq] and vector{beq} 

In addition to linear inequality constraints, there are some equality constraints that we 
cannot replace them into the matrix A. In this case, we know each block can be mined once 
during the mine life.  
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To create matrix Aeq the related coefficient of each block have to be replaced by 1. Matrix 
Aeq is a N×(T×N) matrix. beq is the vector corresponding to the right-hand side of the 
linear equality constraints and x is solution.  

In this case at the following matrix the first row indicates the coefficients of block number 
1 during the scheduling periods (five periods). x1, x416, x831 , x1246 and x1661 are solution of 
problem for block number 1. If x1=1 thus block 1 is extracted in period 1 and x416=x831= 
x1246=x1661=0, if x416=1 thus block 1 is extracted in period 2 and x1=x831= x1246=x1661=0, 
and etc. Figure 6 shows how matrix Aeq is created.   Therefore, the following condition 
must be governed because each block can be mined once. For instance, for block number 
one we can write: 

111111 166112468314161 =×+×+×+×+× xxxxx  

After creating all necessary matrices and vector this problem was solved using Matlab and 
Tomlab toolbox and the answer was as follows: 

bintprog (CPLEX): bintprog converged to a solution X. 

Table 2 shows the summary of important information for each period. Tonnages of ore and 
waste that are extracted in each period are shown in figure 7. 

Figures 8 and figure 9 show the average grade and value of function for each period, 
respectively.  
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Table 2. Summary of obtained answers for each period. 
 Period 1 Period 2 Period 3 Period 4 Period 5 

Waste (t) 1660332 2484400 2498464 2501276 3750976 
Ore (t) 2496000 2496000 2496000 2496000 1244066 

Waste+Ore (t) 4156332 4980400 4994464 4997276 4995042 
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Fig 7. Amount of ore and waste in each period 
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To calculate average grade of each period equation (9) was used: 

∑
∑ ×

= t
n

t
n

t
nt

ave O
Og

g
)(

 (9) 

Where,  is average grade of period t,  grade of block number n that is extracted in 
period t and  ore tonnage of block number n that is extracted in period t. 
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Fig 8. Average grade of  Fe% in each period 
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5. Problem definition of the transportation problem 

Figure 10 shows plan view of the working bench and roads that have been used for 
simulation. Distance between working bench as starting point and destinations are divided 
into two parts. The first part is from each block to the starting point of main road and the 
second part is from the starting point of main road to destinations. The main road is 7 km 
and the coordinates of the starting point of the main road are x=96000, y=600740. Distance 
between each block and destination is given by: 

SBdmD −+= 7000)(  (10) 

Where, D is the total distance and is the distance between each block and the main 
road starting point. 

SBd −

 

 
Waste 
Dump  

 

 

 

 

Fig 10. Plan view of working area 

 

6. Simulation of transportation system with Simulink 

Average truck cycle time is given by equation (11) 

 

temptytunloadingunloadingfillttloadingTruck ADTTSTTLSTT ++++++= −−  (11) 

 

Where,  is the truck cycle time,  is the spot time at loading,  is the loading 
time,  is the travel time to dump or stockpile (fill),  is the spot time at 

unloading ,  is the unloading time,  is the travel time moving to working 
bench (empty) and  is the average delay time including both waits and delays.   

TruckT loadingST tL

filltT − unloadingST

unloadingT emptytT −

tAD

To estimate loading time we can use equation (12) : 

capacity

cyctcapacity
t SH

SHt
L −×

=  (12) 

Stockpile 

Start point of main road 

Working 
Bench 
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Where,  is the loading time of truck,  is the truck capacity,  is the shovel 
cycle time and  is the shovel capacity. 

tL capacityt cyctSH −

capacitySH

In this case, we can use equations (13) and (14) as constitutive relationships for the main 
road: 

fillt
fillt V

xT
−

− =  (13) 

emptyt
emptyt V

xT
−

− =  (14) 

Where, x  is the distance,  is the velocity of truck after loading and  is the 
velocity of truck after unloading. The assumption is that in the working area the velocity of 
truck because of extraction is 85% less than velocity on the main road, therefore equations 
(13) and (14) can be rewritten as follows: 

filltV − emptytV −
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Where,  is the distance between each block and starting point of main road. Using the 
constitutive relationships we can rewrite equation (11) as follows: 

wx

 

tunloadingunloading
emptytfillt

wfilltemptyt

capacity

cyctcapacity
loadingTruck ADTST

VV
xxVV

SH
SHt

STT +++
××

++
+

×
+=

−−

−−−

15.0
)15.0)((

 

A Simulink simulation model was built to capture the truck trave cycle time based on the 
above equation. Figure 11 shows the model. 
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Uniform Random
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Distance(m) = ( 0.15 *7000)

    Xw

   Road condition
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Fig 11. Simulink model for sensitivity analysis 

 

Simulation was carried out for three different road conditions. Table 3 indicates truck 
velocity in fill and empty situation for each condition.  

We assumed that there were 10 available trucks in the mine. Distance between each block 
and starting point of main road is calculated using Matlab code and is inserted as a matrix 
from  entrance. Tonnage of each block that has been calculated using Matlab code is 
inserted from BLton entrance. 

wX

 

                              Table 3. Velocity of truck for different conditions 
Condition )( s

mV fillt−  )( s
mV emptyt−  

1 20 30 

2 14 25 

3 10 18 

 

There are two working shifts, day shift and night shift, which each shift is 8 hours and 
working days during a year is 350 days. 
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Figure 12 shows the necessary working days for blocks in each period under different 
conditions. Sum of the necessary days for each condition per period have been summarized 
in table 4. 

 

Table 4. Duration of each period and project for different conditions 

 
Period 1 

(day) 

Period 2 

(day) 

Period 3 

(day) 

Period 4 

(day) 

Period 5 

(day) 

Duration 
of project 

(day) 

Velocity 
condition1 142 172 170 171 172 826 

Velocity 
condition2 181 219 216 218 219 1054 

Velocity 
condition3 242 294 290 292 294 1411 

 

The results show duration of project for conditions 1, 2 and 3 will be more than 2, 3 and 4 
years, respectively. We want to find the effect of maintenance of road in working area on 
duration of project. For this purpose, the mine maintenance group increased the quality of 
ground for transportation in working area to 50% of main road quality using two dozers.  

Necessary days for extraction of blocks of each period under different conditions after 
maintenance are shown in figure 13. Table 5 shows summary of project duration when 
quality of ground for transportation was increased in working area. 

7. Conclusion 

In the present project, I tried to explain how we could use mixed integer formulation for 
open pit mines production scheduling using Matlab. After finding the blocks extraction 
sequence, effect of road maintenance on duration of project has been considered. For this 
purpose, the truck velocity was considered as a function of road conditions. 

The results show that deterioration of the road conditions has a significant affect on project 
duration. The project time increased from two years under velocity condition one to four 
years under velocity condition two. 

In mines, most of the road problems are within the working areas where the extraction and 
blasting are taken place.  Therefore, two different kinds of road conditions in working 
areas were considered. The results indicate when the quality of road in working area 
increases because of good maintenance, project duration shows a decrease of 32%. 

On the other hand, many mines are paying more attention to tire care programs. For the 
surface mining business, tires represent the largest portion of a haul truck’s hourly 
operating expenses. Good haul roads lead to reduced fuel consumption, higher vehicle 
speed, longer tire life, and more comfortable and safer riding. 
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Fig 12. Necessary days for transportation of each block from working bench to 
destinations per period under different conditions. 
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Fig 13. Necessary days for transportation of each block from working bench to destinations 
per period under different conditions when quality of ground in working area increases to 
50% of main road quality. 
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Table 5. Duration of each period and project for different conditions 

 
period1 

(day) 

period2 

(day) 

period3 

(day) 

period4 

(day) 

period5 

(day) 

duration 
of project 

(day) 

Velocity 
condition1 97 117 117 117 118 566 

Velocity 
condition2 122 147 146 146 147 708 

Velocity 
condition3 159 192 191 192 193 927 

Difference between duration of project for two different road conditions is illustrated in 
figure 14. 
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Fig 14. Duration of project for two different road conditions under different velocity conditions. 
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9. Appendix  

Link to: MATLAB code of MIP model 
 
To run above Matlab code you need Matlab software and Tomlab toolbox. Then to run 
follow the below steps: 
 

1. Copy three files: Blocks.m, MIP_solver_415.m and viewmatrix.m in a same folder  
2. Run Matlab 
3. Select c:\tomlab as current directory 
4. Inside Matlab type startup and press enter (>> startup ) 
5. Change current directory to the folder that you copied three files inside it in step 1 
6. Inside Matlab load Blocks.m      >> load Blocks  
7. Open MIP_solver_415.m and then run it. 

 
 


	Optimizing block extraction sequence with MIP method and investigating the effect of road condition on truck cycle time
	Yashar Pourrahimianand Hooman Askari-Nasab
	1. Introduction 
	2. An abstract description of open pit mining
	3. MIP formulation for multi-period long-term production scheduling model
	4. Illustration of an example 
	5. Problem definition of the transportation problem
	6. Simulation of transportation system with Simulink
	7. Conclusion
	8. References 
	9. Appendix 



