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Abstract 

Mine production scheduling optimization has been a challenging issue for the mining 
industry due to computational difficulties encountered. Currently, some of the mine 
production scheduling algorithms used has limitations in terms of producing a realistic 
production schedule thereby leading to impracticable schedules. In this project, we have 
reviewed the traditional linear programming models for ultimate pit limit optimization. We 
have discussed and modeled the final pit limit optimization problem using transportation 
algorithm. The mining block precedence relationship has been modeled using linear 
constraints.  From the illustrative example and the case study carried out, it was found out 
that the linear programming model has the advantage of optimizing in terms of a large 
number of decision variables and constraints. However, this method in practice results in a 
number of equations which becomes too large to handle. Further studies must therefore be 
carried out to reduce the number of equations formed as well as the method of solving the 
resulting equations for an optimized solution.     

1. Introduction  

Linear Programming has been identified as having many advantages in solving mine 
planning and scheduling problems (Gershon, 1983). However due to computational 
difficulties for real size mining operations, it has not been extensively used in the field of 
mine optimization. Some of the computational difficulties will be outlined as well as the 
advantages of linear programming over other algorithms. This project will investigate the 
formulation of the final pit limit optimization problem using transportation algorithm. The 
extraction precedence of blocks, which is the most important constraint controlling the 
mine production sequencing will also be discussed. 

Heuristic optimization techniques have been one of the most widely used methods for 
ultimate pit limit analysis. However these methods on many occasions fail to produce a 
realistic production planning schedule (Huttagosol and Cameron, 1992). Such 
impracticable schedules lead to overestimation of cash flows which can result in 
inappropriate investments. 

1.1. Problem definition  

Linear Programming Models have been used in solving many problems in the mining 
industry. Popular among them is the transportation algorithm which has been used in 
optimizing mine equipment operations and mine schedules. Using the concept of linear 



Ben-Awuah E. & Askari-Nasab H. 107- 2 
 
 
programming as applied in the transportation algorithm, this project will optimize the 
mining sequence of a deposit which has been modeled in one period. This will involve 
modeling the main constraint that will control the mining sequence in order to obtain the 
ultimate pit limits. 

1.2. Production scheduling optimization 

Production scheduling optimization process is a major step in mine planning. It attempts to 
maximize the net present value of the total profits from the production process while 
satisfying all the operational constraints such as mining slope, grade blending, ore 
production and mining capacity during each scheduling period (Gholamnejad and Osanloo, 
2007). After the optimized production schedule is obtained, it is used to control the mining 
operation sequencing and this eventually results in the ultimate pit limit at the end of the 
mine life.  

1.3. Mining sequence 

A very important aspect of mine scheduling is the taking into consideration the mining 
block locations and not just the tonnages or their economic block value. In generating the 
ultimate pit limit this serves as the main constraint that must be modeled. From Gershon 
(1983), most linear programming applications used for mine production scheduling 
analyses define the production levels in terms of tonnages that will be mined at that level. 
Though this approach has the advantage of reducing the number of constraints thereby 
reducing the computational time, it has a disadvantage of ignoring the detailed mining 
sequence per level which is the most important aspect of production scheduling. All effort 
must be made to ensure that the algorithm being used takes care of the detailed mining 
sequence with respect to the production block precedence relationships.  

1.4. The ultimate pit limit  

The ultimate pit limit can be defined as the determination of the final mining limits of a 
mineral deposit within certain set constraints such that maximum profitability will be 
derived from the mining process (Hartman, 1992). This is basically done by maximizing 
the difference between the revenue generated from mining the desirable mineral and the 
cost of mining the waste material associated with the desirable mineral. In determining the 
ultimate pit limit, one period of mining is usually used and this period is referred to as the 
life of mine. 

There are different methods of designing the ultimate pit limit. The method used may vary 
depending on some factors like the size of the deposit, the reliability and size of the data to 
be used, the cost of data processing time and the experience of the design engineer. 
Obtaining the ultimate pit limit serves as the starting point for short and long term-range 
planning activities. The size, geometry and location of the ultimate pit facilitates the 
planning of important mine infrastructure such as the waste dumps, access roads, 
processing plant, tailings and water dams, reclamation infrastructures and many other 
surface structures.  
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As stated earlier, in modeling the ultimate pit limit certain physical and economic 
parameters will be assigned to the geologic model. The material that falls within the pit 
will have to meet two objectives (Kennedy, 1990). A block cannot be mined unless:  
All blocks overlying it has been mined. 
It is capable of paying for its cost of mining, processing and marketing. 
This will result in an ultimate pit limit that maximizes the total profit of the deposit within 
the physical and economic parameters used. The pit design may change as these design 
parameters change with time. Figure 1 shows a cross section of an ultimate pit limit as 
imposed on a block model. 
 
 
               
               
               
               
               
               
               
               
               
               
               
               

 
Figure 1: Cross sectional area of an ultimate pit limit as imposed on a block model 

1.5. Advantages and disadvantage of using linear programming (LP) to find the 
ultimate pit limit 

1.5.1 Advantages 

LP models can optimize in terms of a large number of decision variables and constraints 
(Gershon, 1983). General sets of LP Models equations can be developed for multiple block 
models without resorting to a complete redesign of the model for each mine (Gershon, 
1983). LP models permits an easy conceptualization for the formulation of the model and 
provide a good platform for additional study (Huttagosol and Cameron, 1992).  
 
The LP matrix resulting from this formulation exhibits a special structure with a property 
known as unimodularity which ensures that our decision variables are integer values of 0 
or 1 in the optimal solution (Gershon, 1983). 

1.5.2 Disadvantages 

This method in practice results in a number of equations which becomes too large to 
handle increasing the cost of processing exponentially (Huttagosol and Cameron, 1992). 
This will be demonstrated in this project. 

results in a number of equations which becomes too large to 
handle increasing the cost of processing exponentially (Huttagosol and Cameron, 1992). 
This will be demonstrated in this project. 
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2. Theoretical framework and models 

2.1. The linear programming model 

Mathematical modeling is usually used to find the best solution to a problem that requires 
that a constraint or sets of constraints about how best to use some given amount of limited 
resources to achieve some given goals or objectives (Ahmed, 2009). The major steps that 
are followed in mathematical modeling are: 

1) Converting the given problem into a mathematical model that depicts all the 
important aspects of the problem. 

2) Exploring the most suitable solution of the problem. 

Linear Programming basically requires that the mathematical model formed has to be made 
up of linear functions (Ahmed, 2009).  The standard form of any linear programming 
model as stated in (Luenberger and Ye, 2008) is represented by equations (1), (2), (3), (4) 
and (5) as: 

maximize       nnxcxcxcZ +++= ....................2211                        (1) 

  subject to the following constraints: 

                (2) 11212111 .............. bxaxaxa nn ≤+++

    2222121 ................ bxaaxa nn ≤+++             (3) 

    .          . 
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Where Z is the objective function representing the parameter to be maximized and x1, x2, 
……..xn are real numbers to be determined and are known as decision variables. The 
decision variables represent levels of n competing activities. The 
variables c1, c2, …………..cn are fixed real constants which represent the coefficient of the 
decision variables in the objective function equation and a11, a21, …………..amn are also 
fixed real constants representing the coefficient of the decision variables in the constraints 
equations. The variables b1, b2, …………bn are fixed real constants in the constraint 
equation. 

,....,,........., 21 nxxx

 

(4) 
 
(5) 
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In a more efficient vector notation, the linear programming model can be written as stated 
by equations (6), (7) and (8) as: 

     maximize               (6) xcT

    subject to: bx ≤A              (7) 

                    (8) 0≥x

Here x is an n-dimensional column vector, cT is an n-dimensional row vector, A is an m x n 
matrix, and b is an m-dimensional column vector (Luenberger and Ye, 2008). 

2.2. The general formulation of a transportation problem 

Consider the transportation of some amount of commodities from m origins to n 
destinations to meet some demand requirements. Origin i contains an amount ai whereas 
destination j has a requirement of amount bj. The unit cost associated with transporting the 
commodities from the origin i to destination j is cij. Our objective is to find the most 
suitable transportation pattern that satisfies all our requirements and minimizes the total 
transportation cost (Luenberger and Ye, 2008). 

This problem can be expressed mathematically in equations (9), (10), (11) and (12) as 
finding a set of xij,  i=1, 2, ……..,m;  j=1, 2, …………n to:  

  minimize               (9) ij

m

i

n

j
ij xc∑∑

= =1 1

  subject to:  ∑  (i=1, 2, …….., m)  (supply constraints)    (10) 
=

≤
n

j
iij ax

1

     (j=1, 2, ………, n)  (demand constraints)  (11) ∑
=

≥
m

i
jij bx

1

         0≥  (i=1, 2, ….., m; j=1, 2, ……, n)                 (12) ijx

In this transportation context, the variables xij refers to the amount of commodities to be 
transported from an origin i to a destination j (Luenberger and Ye, 2008). 

2.3. The ultimate pit limit problem as a transportation problem 

Considering an orebody which has been represented by a geologic and an economic block 
model, the ultimate pit limit problem can be represented by equations (13), (14) and (15) as 
(Luenberger and Ye, 2008): 
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maximize               (13) ∑
=

=
p

k
kk xaz

1

subject to:  for all k and 0≤+− kj xx kDj∈           (14) 

     ( )1,0∈kx  for all k                     (15) 

Where: ak = the economic value of block k, 

  xk = portion of material mined from block k, 

  k = block number (1, 2, ……….p), 

Dk = a set of blocks overlying block k, that is, if kDj∈ , then j must be removed 
first before k is. 

The constraint which controls the mining sequence as defined by the pit slope requirements 
is equation (14). The variable xk can either be zero or one. If block k is to be included in the 
ultimate pit, then  xk = 1 else xk = 0. The ultimate pit limit problem can be written in matrix 
notation as stated in equations (16), (17), (18) and (19) as finding the values of X that 
(Huttagosol and Cameron, 1992): 

  maximize aX               (16) 

  subject to: 0≤AX              (17) 

    1≤IX               (18) 

                  (19) 0≥X

Where:  X = a column vector of the decision variables, 

 A = qxp matrix of the block precedence relationships, 

   I = pxp identity matrix, 

   a = row vector of economic block values, 

   1 = px1 column vector of ones. 

The matrix A has two non-zero elements of +1 and -1 in each row which is equivalent to a 
demand-supply incident matrix in a transportation problem. This equivalent optimization 
model resembles a special structure of minimum cost flow called the transportation 
problem. 

2.4. Formulating the mining sequence constraint 

Let’s consider figure 2 and 3, which is a block model of 18 blocks which are in two layers 
of 9 blocks each. To model a scenario like this we start with a decision variable for each 
block as (Gershon, 1983): 
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 Xijk = 0 if block ijk is not mined and 1 if block ijk is mined 
 
 
 
 
 
 
 
 
 

Figure 2: Plan view of the top blocks and bottom blocks in the model  
(Modified after Gershon, 1983) 

 
 
 
 
 
 
 
 

Figure 3: Cross-section of the block model 
 

To be able to mine any given block on level B, all the nine blocks on level A should be 
mined first. This means nine separate linear constraints has to be developed for every block 
on level B to ensure a proper mining sequence.  
 
Let’s consider the mining of the block XBBB, in figure 2 and 3. To mine this block, the 
blocks XAAA, XABA, XACA, XBAA, XBBA, XBCA, XCAA, XCBA and XCCA must be mined first. 
Following the formulation discussed earlier, this constraint can be represented 
mathematically as in equations (20), (21), (22), (23), (24), (25), (26), (27) and (28) 
(Gershon, 1983): 

-XAAA+XBBB ≤ 0            (20) 

-XABA+XBBB ≤ 0            (21) 

-XACA+XBBB ≤ 0            (22) 

-XBAA+XBBB ≤ 0            (23) 

-XBBA+XBBB ≤ 0            (24) 

-XBCA+XBBB ≤ 0            (25) 

-XCAA+XBBB ≤ 0            (26) 

A B C A B C 

A 

B 

C C 

B 

A 

A B 

Legend: 
mined A 

not mined B 
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-XCBA+XBBB ≤ 0            (27) 

-XCCA+XBBB ≤ 0            (28) 

These set of constraints will have to be written for all the nine blocks on level B. 

3. Methodology  

The principal objective of this project is to carry out a pit limit optimization process that 
will optimize the profit from the orebody.  
 
This project will realize the objectives by: 

• Modeling the equation for the objective function, this is to maximize the net present 
value of the deposit. 

• Modeling the main constraints that will control the mining sequence as defined by the 
pit slope requirements. 

a) Writing a Matlab Code using the optimization toolbox to solve the resulting 
transportation equations for an optimized pit limit. 

4. Illustrative example with 18 blocks  

A computer code was written to implement the design of an ultimate pit limit using the 
transportation algorithm in linear programming. The computer code was written with 
Matlab and small synthetic input data was used to verify the developed code. Attributes are 
associated with each block. These attributes are the 3D location of each block, block 
tonnage, economic block value, grade of magnetic weight recovery, grade of sulphur, 
grade of phosphor, ore tonnes and waste tonnes. The main mineral considered for profit is 
the recoverable Iron which is represented by the grade of magnetic weight recovery. This 
model contains 18 blocks with dimensions of 100m x 100m on 2 levels with each level 
having 9 blocks that are 30m thick. Each block may contain both ore and waste material. 
The model contains a total of 3,116,100 tonnes of ore and a total of 30,347,063 tonnes of 
material. A production schedule for the orebody model is developed to mine the blocks in 
one period to maximize the total economic block value within the binding constraints. This 
results in the geometry of the ultimate pit limit. 
 
A function known as Linprog in Matlab was used for this project. Linprog uses the 
Simplex Algorithm to optimize linear programming models. This algorithm is popular for 
its simplicity and efficiency in solving general transportation problems. The default form 
of the objective function in Linprog is a minimization function. Since our objective 
function is a maximization of the profit, we multiply our resulting objective function 
equation by negative one to convert it to a minimization problem. 
 
Linprog finds the minimum of a problem specified by equations (29), (30), (31) and (32) as 
(Jamshidi et al., 2005): 
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xf Tmin             (29) 

subject to: bAx ≤             (30) 

     beqxAeq =.             (31) 

     ( )ublbx ,∈             (32) 

Where f = the coefficient vector of the decision variables in the objective function, 
 x = the decision variables, 

b = a vector in the inequality constraint, 
beq = a vector in the equality constraint, 
Aeq = the coefficient matrix of the decision variables in the equality constraint, 
A = the coefficient matrix of the decision variables in the inequality constraint, 
lb = the lower boundary constraint of the decision variables, 
ub = the upper boundary constraint of the decision variables. 

4.1. Generating the objective function vector 

The complete Matlab code developed for this study (Blocks18) can be found in Appendix 
1 attached and the symbols used are explained below: 
 
Let Xijk be our decision variable with a 0-1 integer value which represents the decision not 
to mine or to mine a given block respectively. The objective function for this block model 
will be a 1 x 18 row vector, denoted by f, which contains the economic block values. 

4.2. Generating the mining sequence constraint 

The mining sequence constraint per block per level is represented by the matrix y in the 
Matlab code and this is a 9 x 18 matrix. For the first block on level 2 to be mined the 
constraint is that all the 9 blocks on level 1 should be mined first: 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

10......01
..........
..........
..01....01
...01...01

y  

 
This matrix is generated for all the nine blocks on level 2 and vertically concatenated to 
form an 81 x 18 matrix denoted by S in the program. 
 
The other required constraint states that our decision variables should be less than or equal 
to one and greater than or equal to zero. These constraints are represented by the matrix x3 
and x4 respectively and for the 18 blocks on levels 1 and 2, each will have a size of 18 x 
18. 
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These three matrices x3, x4 and S are vertically concatenated to become a 117 x 18 matrix 
denoted by A in the program. The matrix A therefore contains the total number of 
constraints required for the 18 blocks. The remaining matrices are the matrices on the right 
hand side of the inequalities for the constraints. These are an 81 x 1 column vector of zeros 
for the mining sequence matrix represented by x5, an 18 x 1 column vector of ones for the 
x3 matrix denoted by x6 and another 18 x 1 column vector of zeros for the x4 matrix 
denoted by x7. x5, x6 and x7 are vertically concatenated to form the matrix b of size 117 x 
1 used in the program. Table 1 shows the summary of results after the optimization process 
for the 18 blocks. 

Table 1: Summary of results for the 18 blocks 
 

Block ID Decision Variable Economic Block Value ($M) 
XAAA 1 113.3756 
XABA 1 10.0879 
XACA 0 -3.2118 
XBAA 1 15.1904 
XBBA 1 3.2324 
XBCA 1 22.0876 
XCAA 1 18.1649 
XCBA 0 -0.4810 
XCCA 0 -3.2118 
XAAB 1 -3.2118 
XABB 1 -3.2118 
XACB 1 -3.2118 
XBAB 1 -3.2118 
XBBB 1 -3.2118 
XBCB 1 -3.2118 
XCAB 1 -3.2118 
XCBB 1 -3.2118 
XCCB 1 21.0493 

 
Optimized function value = $177.49M 
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4.3. Discussion of results 

It can be seen from the table that the optimized function value is obtained without the 
mining of blocks XACA, XCBA and XCCA on level 2. The system had to mine all the waste 
blocks on level 1 in order to get access to the ore blocks on level 2. The ultimate pit that 
results is shown by figure 4 and 5. 
 

A B C A B C   
 
 
 
 
 
 
 
 
 
 
Figure 4: Plan view of the top blocks and bottom blocks in the model after optimization 
 
 
 
 
 

 
 

 
 
Figure 5: Cross-sectional view of the ultimate pit limit for the model after optimization  

(Not to scale) 

5. Case Study - Application of LP in the optimization of an iron ore deposit (120 
blocks) 

Similar to the first block model, some of the data contained in this second block model 
(Blocks120) used for this project are the 3D location of each block, block tonnage, 
economic block value, grade of magnetic weight recovery, grade of sulphur, grade of 
phosphor, ore tones and waste tones. The main mineral considered for profit in this project 
is the recoverable Iron which is represented by the grade of Magnetic Weight Recovery. 
This orebody model contains 120 blocks with dimensions of 250m x 250m on 4 levels with 
level 1 having 4 blocks, level 2 – 16 blocks, level 3 – 36 blocks and level 4 – 64 blocks. 
Each level is 15m thick. Each block model may contain both ore and waste material. The 
orebody model contains a total of 11,778,000 tonnes of ore and a total of 248,454,068 
tonnes of material. A production schedule for the orebody model is developed to mine the 
blocks in one period to maximize the total economic block value within the binding 
constraints. This results in the geometry of the ultimate pit limit. 
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Legend: mined not mined  
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5.1. Generating the objective function vector 

Let Xijk be our decision variable with a 0-1 integer value which represents the decision not 
to mine or to mine a given block respectively. The objective function for this block model 
will be a 1 x 120 row vector, denoted by f, which contains the economic block values. 

5.2. Generating the mining sequence constraint 

The mining sequence constraint for the model for all the levels are represented by the 
matrix A in the Matlab Code and have a size of 5088 x 120. The remaining matrices are 
those on the right hand side of the inequalities for the constraints. These are vertically 
concatenated to form the matrix b resulting in the size of 5088 x 1. The complete Matlab 
Code for this orebody model containing 120 blocks can be found in Appendix 2 attached. 
The optimized function value is $310.5608M.  

5.3. Discussion of results 

From the results, the optimized function value was obtained without the mining of block 3 
on level 4. The system had to mine all the waste blocks on levels 1 and 2 in order to get 
access to the ore blocks on levels 3 and 4. The ultimate pit is shown in figure 6 and 7. 
 
  
 
 
 
 
 
 
 
 
 
 
Figure 6: Plan view of some of the top blocks mined and the bottom block that was not 
mined in the model after optimization 
 
 
 
 

 
 
 
 
 
 

Figure 7: Cross-sectional view of the ultimate pit limit for the model after optimization 
(Not to scale) 
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6. Conclusions & future work  

The LP model can optimize in terms of a large number of decision variables and 
constraints (Gershon, 1983). In the examples, there was up to 120 decision variables which 
were optimized. General sets of LP Models equations can be developed for multiple block 
models without resorting to a complete redesign of the model for each mine (Gershon, 
1983). Developing the model from optimizing 18 blocks to 120 blocks just involved 
changing the filename and a few other block specific details. The LP matrix resulting from 
this formulation exhibits a special structure with a property known as unimodularity which 
ensures that our decision variables are integer values of 0 or 1 in the optimal solution 
(Gershon, 1983). This was demonstrated in the summary table for the optimized solution. 
 
This method in practice results in a number of equations which becomes too large to 
handle increasing the cost of processing exponentially (Huttagosol and Cameron, 1992). In 
the case of the 18 blocks, the size of the constraint matrix, A was 117 by 18 which last for 
about 30 seconds when solving with Matlab Linprog. The size of the constraint matrix A 
increased to 5088 by 120 for the 120 blocks which also last for about 9 minutes solving 
with Matlab Linprog. The increase in time is very significant compared with the increase 
in the number of blocks. 
 
It is recommended that, though this method of optimizing the pit limit is effective, it is 
computationally very expensive. Further studies must be carried out to reduce the number 
of equations formed as well as the method of solving the resulting equations for an 
optimized solution.  
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8. Appendix 1: Matlab Code for 18 and 120 blocks 

Matlab code for 18 and 120 blocks 

9. Appendix 2: Instructions on running the MATLAB code 

Open Pit Limit Optimization using Linear Programming 

Table of Contents 

------------------ 

1. Introduction 

2. Minimum requirements 

3. Getting started 

4. Results 

1. Introduction 

This package is built for the optimization of open pit limit using linear programming. The 
code was written with Matlab and works with the struct file of the block model. The code 
checks for the number of blocks in the struct file and generate the objective function and 
the mining sequence constraint based on this number.  

After the constraints matrix is generated, a Matlab function known as Linprog is called to 
solve the resulting optimization problem. Linprog uses Simplex Algorithm in solving for 
the optimal solution. For any new set of blocks, the filename of the struct file in the code 
can be altered to be able to read the new file or the new file can be renamed to match the 
name used in the code. 

Matlab Code filename: optimb120G.mat 
Blocks struct filename: Blocks120 
The attached demonstration blocks struct file contains 120 blocks. 

2. Minimum requirements 

Matlab 7.5.0 (R2007b) 

3. Getting Started 

Open/load the matlab struct file containing the blocks. 
Open the matlab file containing the optimization code. 
Ensure that the struct filename is the same as that used in the code on line 6 and 7. 
Change line 3, 4, 5 and 30 to the number of blocks in the struct file. 
Change line 20 to the elevation of the 1st level of blocks at the bottom. 
Change line 26 to the number of levels in the struct file excluding the bottom level. 
Change line 84 to the inter-level elevation difference. 
Once all these parameters are set, execute the optimization from the run icon in Matlab. 
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4. Results 

The results of the optimization will be output to the Matlab workspace. The variable "b" 
displays the number of blocks optimized. The variable "x" displays the decision variables; 
whether to mine or not to mine a given block. The variable "fval" displays the optimized 
function value. 
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