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Abstract 

Long term production scheduling optimization has been a challenging issue for the mining 
industry because of the size and complexity of the problem. The current planning 
algorithms have limitations addressing the stochastic variables underlying the mine 
planning problem. In this paper an intelligent agent-based mine planning framework 
based on reinforcement learning is introduced. The long term mine planning is modeled as 
a dynamic decision network. The intelligent agent interacts with the block model by means 
of stochastic simulation and employs Q-learning algorithm to learn the sequence of push-
backs that maximizes the net present value of the mining operation. The intelligent open pit 
simulator, IOPS, was implemented with an object oriented design in Java®. A comparative 
application case study was carried out to verify and validate the models. The proposed 
method was used in planning an iron ore deposit and the results were compared to the 
Milawa scheduler used in Whittle® software. The outcome of the study demonstrated that 
the intelligent agent framework provides a powerful basis for addressing real size open pit 
mine planning problems. 

1. Introduction  

The mining industry is faced with ever increasing complexities due to intense global 
competition, lower grade mineral deposits, price volatility, and geological uncertainty. 
More rigorous algorithms and enhanced numerical techniques are required to overcome the 
complexities currently facing the mining industry. The mine planning process defines the 
ore body depletion strategy over time. The planning of an open pit mine considers the 
temporal nature of the exploitation to determine the sequence of block extraction in order 
to maximize the generated income throughout the planning period. The optimal plan must 
determine the optimized ultimate pit limits and the mining schedule but such an objective 
results in a computationally intractable problem. Whittle (1989) outlined the complexity of 
the problem as: (i) the pit outline with the highest value cannot be determined until the 
block values are known; (ii) the block values are not known until the mining sequence is 
determined; and (iii) the mining sequence cannot be determined unless a pit outline is 
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available. The optimal final pit limit algorithms conventionally neglect the time dimension 
of the problem and search for an ultimate contour that maximizes the total sum of the 
profits of all the blocks in the contour. The extraction sequence is then decided within the 
predetermined final pit limits. The optimized schedule cannot be attained without 
examining all possible combinations and permutations of the extraction sequence. 
Therefore, the scheduling algorithms must be able to deal with limitations of computing 
resources, time and space. 

Open pit mine planning studies typically have focused on one of two objectives: (i) 
maximization of the discounted present value of cash flows (Tolwinski and Underwood, 
1992; Elveli, 1995; Erarslan and Celebi, 2001; Halatchev, 2005; Dagdelen and Kawahata, 
2007), or (ii) optimization of the plant feeding conditions (Youdi et al., 1992; Chanda and 
Dagdelen, 1995; Rubio, 2006; Yovanovic and Araujo, 2007). Current production 
scheduling methods are not just limited to, but can be divided into: heuristic methods; 
parametric analysis; operations research methods; and artificial intelligence techniques. 
The most common operations research methods include: mixed integer programming 
(MIP) (Gershon, 1983; Dagdelen, 1985; Ramazan and Dimitrakopoulos, 2004; Dagdelen 
and Kawahata, 2007),  dynamic programming (Onur and Dowd, 1993) , goal programming 
(Chanda and Dagdelen, 1995; Esfandiari et al., 2004), and branch and bound techniques 
(Caccetta and Hill, 2003). Mixed integer programming mathematical optimization models 
have the capability to consider multiple ore processors and multiple elements during 
optimization. This flexibility of mathematical programming models result in production 
schedules generating significantly higher net present value than those generated by the 
other traditional methods. However, MIP formulations for optimization of production 
scheduling require too many binary variables, which makes the MIP models almost 
impossible to solve for actual open pit mining operations (Ramazan et al., 2005). Artificial 
intelligence methods such as machine learning expert system concepts (Tolwinski and 
Underwood, 1992; Elveli, 1995); genetic algorithms (Denby and Schofield, 1994; Denby 
et al., 1996; Wageningen et al., 2005); and applications of neural networks (Achireko and 
Frimpong, 1996; Frimpong and Achireko, 1997) have also been used to address the mine 
planning problem.  

The key limitations of current mine planning methods are (i) inability to solve actual size 
mine problems; (ii) limitation in dealing with stochastic processes governing ore reserves, 
commodity price, cut-off grade, and production costs; (iii) inadequacy of the current final 
pit limits optimization techniques in taking into account the time aspect of exploitation; 
and (iv) shortcoming in defining the economics of ore with respect to the economics of the 
entire mining process, from ore to the finished product.  

Research advances have led to concrete proposals and early applications of intelligent 
agents in mine planning and design (Askari-Nasab et al., 2005; Askari-Nasab and 
Szymanski 2007). The primary objective of this paper is to review the development of an 
intelligent agent-based theoretical framework for real size open pit mine planning. The 
study is a hybrid research work comprising algorithm development based on reinforcement 
learning concepts (Watkins, 1989; Sutton and Barto, 1998), and algorithm implementation 
in Java® programming language. A stochastic simulation model based on modified 
elliptical frustum (Askari-Nasab et al., 2004; Askari-Nasab et al., 2007) has been 
developed and used to model the geometry of the open pit layout expansion. The simulator 
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returns the amount of ore, waste and the annual cash flow of the operation. The long term 
planning of the open pit mine is modeled as a dynamic decision network. The intelligent 
agent interacts with the open pit environment through simulation and employs Q-learning 
algorithm (Watkins, 1989) to maximize the net present value of the mining operation. The 
developed algorithms are implemented and applied to a real-world mining operation. The 
numerical applications of the developed models are compared with the results of common 
software used in industry to verify and validate the models. Finally, the potential 
application of the mine planning framework and significance of the research in mine 
planning is discussed.   

2. Intelligent open pit planning theoretical framework 

The reinforcement learning problem is formalized by the interaction of two basic entities: 
the agent and the environment. The agent is the learner and decision-maker. The agent’s 
environment is comprised of everything that it cannot completely control. Thus, the 
environment defines the task that the agent is seeking to learn. A third entity, the 
simulation, mediates the interactions between the agent and the environment. The agent 
takes sensory input from the environment, and produces output actions that affect it. The 
interaction is usually an ongoing non-terminating process (Sutton and Barto, 1998).   

Figure 1 illustrates the intelligent open pit optimal planning conceptual framework based 
on reinforcement learning terminology. The intelligent planning framework comprise 
independent, interactive and interrelated subsystems with processes, using reinforcement 
learning as the main engine to maximize the net present value of mining operations. The 
model illustrated in Figure 1 consists of three main entities of the reinforcement learning 
problem, agent, environment, and simulation. The main integral parts of the theoretical 
framework are as follows: (i) environment: consists of geological block model and 
economic block model; (ii) simulation: open pit production simulator that captures the 
discrete dynamics of open pit layout expansion, and materials transfer with the respective 
annual cash flows. The simulation model consists of a number of interrelated subsystems. 
The development and performance of the simulation components are discussed in (Askari-
Nasab et al., 2004; Askari-Nasab, 2006; Askari-Nasab et al., 2007); (iii) agent: The 
simulated results are transferred to the intelligent open pit agent where Q-learning 
algorithm (Watkins, 1989) serves as the engine. The production simulator passes the 
respective amount of ore, waste, and the cash flows of the production periods to the agent. 
Development of the intelligent agent mine planning architecture is based on 
mathematically idealized forms of the reinforcement learning problem. The main concepts 
of optimality and the models in this study are developed and adapted from Sutton & Barto 
(1998) and Wooldridge (2002).  

The reinforcement learning problem is meant to be a straightforward framing of the 
problem of learning from interaction to achieve a goal. The intelligent planning agent 
interacts with the block model through the production simulator and selects actions that are 
defined in terms of the changes in the push-back parameters and as the result, changes in 
the pit geometry. The simulation and the block model respond to those actions and present 
new possible pit push-backs to the agent. The open pit dynamics simulator in conjunction 
with the block model returns numerical rewards, which is the cash flow of each simulated 
production period. The primary goal of the agent is to maximize the NPV of the operation 
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over time. This means maximizing not only the immediate reward, which is the cash flow 
of the next production period, but also the cumulative reward in the long run, which is the 
NPV. 

  

 
Figure 1- Intelligent open pit optimal planning frame work. 

Figure 2 illustrates the mine planning intelligent agent architecture. The pit geometry 
evolution is viewed as series of snapshots over time. The agent and the simulation interact 
at each sequence of discrete time steps, 1,...,t n= . The simulation of the mining operation 
starts with the initial box cut at state, tt Ss ∈−1 , and the agent responds by choosing the next 
pushback, , to be performed in this stage. Where  is the set of possible push 

backs, and
tt Aa ∈−1 S

( )tA s  is the set of changes possible in the pit geometry in state ts . 

As a result of this action, the simulation and environment can respond with a number of 
possible states. However, only one state will actually result. On the basis of this second 
state of the environment, the agent again chooses an action to perform. The environment 
responds with one of a set of possible actions available, the agent then chooses another 
action, and so on. More specifically, the learning agent and simulation interact at each of a 
sequence of discrete time steps. At each time step , the agent receives some 
representation of the open pit state, 

t

ts S∈ . On the basis of , the agent selects an action, 
, One time step later, in part as a consequence of its action, and interaction with 

the block model the agent receives a numerical reward, which is the cash flow of that 
period of mining operation, . As the result the agent finds itself in a new state, 

S

( )ta A s∈ t

1tr R+ ∈ 1ts + . 
At each time step, the agent implements a mapping from states to probabilities of selecting 
each possible action. This mapping is called the agent's policy and is denoted by, tπ , where 

( , )t s aπ  is the probability that  if ta a= ts s= . 

Reinforcement learning methods specify how the agent changes its policy as a result of its 
experience. The agent's goal, roughly speaking, is to maximize the total amount of reward 
it receives over the long run. The objective is to maximize the expected return, where the 
return (see Figure 2), tR  given by Equation (1), is defined as a specific function of the 
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immediate reward sequence. In Equation (1), γ  is the discount factor and is a number 
between 0 and 1. The discount factor describes the preferences of an agent for current 
rewards over future rewards. When γ  is close to 0, rewards in the distant future are viewed 
as insignificant. i  in Equation (2) is the interest rate for time slice, t . 

 

 
Figure 2 - Intelligent mine planning agent model as reinforcement learning problem. 
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Almost all reinforcement learning algorithms are based on estimating value functions--
functions of states that estimate how good it is for the agent to be in a given state or how 
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good it is to perform a given action in a given state. The notion of "how good" here is 
defined in terms of expected return. Accordingly, value functions are defined with respect 
to particular policies. Figure 3 illustrates a schematic of the open pit simulation at a 
discrete time step  and the open pit current status of . For clarity of illustration it is 
assumed that there are just three possible push-backs  that satisfy the targets of the 
next production period. Following one of the push-back designs the open pit will expand to 
the status of , , or . The value of state under policy 

t S
1 2 3, ,a a a

'
1s

'
2s '

3s s π , denoted by , is the 
expected return or the NPV, when starting in  and following the policy thereafter, until 
reaching the final pit limits. For the Markov Decision Process representing the open pit 
dynamics in Figure 2, can be defined as Equation (3). 

( )V sπ

s

( )V sπ

10
( ) { | } { | }k

t t t k tk
V s E R s s E r s sπ

π π γ∞
+ +=

= = = ∑ =  (3) 

 
Figure 3 - Schematic of open pit simulation at a discrete time step t . 

{ }Eπ denotes the expected NPV given that the agent follows policy π , and  is any time 

step. The policy 

t

π  is the current production schedule. The function V π is called the state-
value function for policyπ . Similarly, the value of taking action  in state  under a 
policy 

a s
π , denoted  is defined as the expected NPV of the operation starting from 

, taking the action a , and thereafter following the current schedule (policy 
( , )Q s aπ

s π ).  Qπ  is 
called the action-value function for policyπ given by Equation (4).  

10
( , ) { | , } { | ,k

t t t t k t tk
Q s a E R s s a a E r s s a aπ

π π γ∞
+ +=

= = = = = }=∑  (4) 

The Q-learning algorithm (Watkins, 1989) is used in this study to directly approximate Qπ, 
the optimal mine pushback design.  
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3. Algorithm development 

Figure 4 illustrates the detailed flow chart of the intelligent optimal mine planning 
algorithm based on   Q-learning algorithm (Watkins, 1989).  The steps of the algorithm are 
as follows: 

Step 1 

The algorithm starts with (i) arbitrarily initializing the , which is the expected 
discounted sum of future monetary returns of expanding the open pit from status to 
the by choosing the push-back  and following an optimal policy thereafter; (ii) set the 
number of simulation trials that the algorithm is run. In other words the number of times 
that the open pit dynamics are being simulated from the initial box cut to the final pit 
limits. 

( , )Q s a
S

'S a

Step 2 
The push-back simulator captures the open pit layout evolution as a result of the material 
movement. At this stage the algorithm stochastically simulates a number of practical push-
back designs for the next production period. The result of the simulation is  push-backs 

 that satisfy the tonnage production of the next period. Following each of these 

push-backs , the open pit will expand to the status of 

k

1 2, ,..., ka a a

1 2, ,..., ka a a ' ' '
1 2, ,..., ks s s . The value of 

state s under policy π , denoted  is the expected return or the NPV of the sequence, 
when starting in 

( )V sπ

s  and following the policy thereafter until reaching the final pit limits. 

Step 3 

Simulated push-backs  are fitted on the economic block model, where the cash-
flows of each push-back are returned to the program. 

1 2, ,..., ka a a

1 2, ,..., kr r r

Step 4 
The epsilon greedy algorithm is called.  The action selection rule is to select the action or 
one of the actions with highest estimated action value, that is, to select the push-back at 
time step  with the highest cash flow. The algorithm behaves greedily most of the time, 
which means it will select a push-back with the highest cash-flow among . But 
every once in a while, say with small probability

t

1 2, ,..., kr r r
ε , instead the algorithm selects an action 

at random, independently of the action-value estimates of the push-back. Subsequently the 
chosen push-back is implemented and the agent finds itself in pit status and observes the 
cash flow . 

'S
r

Step 5 

After being initialized to arbitrary numbers in step 1, Q-values are updated based 
upon previous experience as follows: 

( , )Q s a

'1 1 1( , ) ( , ) [ max ( , ) ( , )]t t t t t t t t ta
Q s a Q s a r Q s a Q s aα γ+ + +← + + −  (5) 
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Figure 4 - Open pit Q-learning algorithm. 
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where: Q is the action-value function; α  is a step-size parameter set to 0.01;  is the open 
pit geometrical state; is a possible push-back at stage S ;  is the cash flow of the 
simulated push-back; and 

tS

ta 1+tr
γ  is the discount factor. After updating the Q-values the 

algorithm moves to the next push-back and this process continues until it reaches the final 
pit limits. The algorithm will start the next episode of the push-back simulation by a 
random initial starting point in the pit. The number of iterations of simulation is controlled 
by the user. The algorithm is guaranteed to converge to the correct Q-values with the 
probability one under the assumption that the environment is stationary and depends on the 
current state and the action taken in it. Every state-action pair continues to be visited. Once 
these values have been learned, the optimal action from any state is the one with the 
highest Q-value. 

4. Numerical Applications of the Intelligent Open Pit Simulator 

A case study of an iron ore deposit is carried out to verify and validate the models. The 
extraction schedule from the Intelligent Open Pit Simulator is compared to the results of 
the Milawa algorithm and parametric analysis using Whittle® (Gemcom Software 
International, 1998-2006).  The Intelligent Open Pit Simulator application was 
implemented in Java® (Sun Microsystems, 1994-2006) and  MATLAB® (MathWorks, 
2005) environment.  This exercise consisted of class and object identification based on the 
Java Reinforcement Learning Library, JavaRL, (Kerr et al., 2003). The program requires 
the block model file as the input. The block model parameters are set through the block 
model specification tab illustrated in Figure 5(a). The Q-learning parameters and number 
of simulation iterations are set through the learning tab illustrated in Figure 5(b). 

 
(a) 

 
(b)  

Figure 5 - (a) Block model specification (b) Q-learning parameters.  
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The iron ore deposit is explored with 159 exploration drill holes and 113 infill drill holes 
totalling 6,000 meters of drilling. Three types of ore, top magnetite; oxide; and bottom 
magnetite are classified in the deposit. Processing plant is based on magnetic separators so 
the main criterion to send material from mine to the concentrator is weight recovery. 
Kriging is used, to estimate the geological block model grades (Krige, 1951). The small 
blocks represent a volume of rock equal to 20 m×10 m×15 m. The model contains 
114,000 blocks that makes a model framework with dimensions of 95×80×15. Figure 6 
illustrates a multi cross-section of the deposit along sections 100100-east, 600245-north, 
and elevation of 1,590 m. 

 

Northing
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102400 599900
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Figure 6- Three dimensional view of the deposit (coordinates in meters). 
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Figure 7 - Tonnage of ore and grade bench by bench. 
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The block model contains almost 243 million tonnes of indicated resource of iron ore with 
an average grade of 63%. Table 1 summarizes the block model information.  Figure 7 
shows the average grade, total amount of ore, and iron ore concentrate on a bench-by-
bench basis. 

The final pit limits are determined using the LG algorithm (Lerchs and Grossmann, 1965), 
using Whittle (Gemcom Software International, 1998-2006) software. Slope stability and 
geo-mechanical studies recommended a 43º overall slope in all regions. The average slope 
error in Whittle model is 0.9 degree and there are 35 possible structure arcs per block in the 
model which in total makes 3,075,666 arcs or edges in the graph model. The Pit Shells 
node in Whittle represents a set of pit shells generated by economic parametric analysis 
using the LG algorithm. This process reads in the block model from the Block Model node, 
pit slope constraints from Slope Set node, calculates block values using the economic and 
operational data contained in this node, and produces optimal pit outlines. The economic 
and mining parameters are based on: (i) mining cost = $2/tonne; (ii) processing cost = 
$2/tonne; (iii) selling price = $15/tonne (Fe); (iv) maximum mining capacity = 20 Mt/year; 
(v) maximum milling capacity = 15 Mt/year; (vi) density of ore and waste = 4.2 tonne/m3; 
and (vii) annual discount rate = 10%. 

 
Table1- Summary of the ore and waste in the geological block model. 

Rock Type Blocks in 
model Total (Mt) 

Total Fe 
element  

(Mt) 

Grade % 

Min  

Grade % 

Avg  

Grade % 

Max 

Ore  19328 243.533 159.140 13 63.5 89 

Waste 94672 1192.867 - - - - 

 

It is usual to produce multiple pit outlines in a single run and this process is controlled by 
the revenue factors in the optimization tab. The program finds a sequence of optimal push-
backs based on varying the profitability of the deposit. In the generation of the pit shells, 
revenue factors in the range of 0.45 to 1.4 were used with variable geometric step sizes to 
scale base case price up and down, in order to control what nested pits are to be produced. 
It should also be considered that selection of a final pit has direct impact on the expected 
economic ore reserve. In terms of maximizing NPV, the lowest revenue factor that 
produces a pit sufficiently large to justify mining should also be the portion of the deposit 
to be mined first. Estimation of a project’s NPV requires that timing of cash flow be 
accurately known so that an appropriate discount factor can be applied. This immediately 
introduces a problem for pit optimization software because the year of mining for any 
block of ore or waste will not be known until the mine production has been scheduled. The 
LG algorithm, which is the basis for Whittle software treats all mining activities as though 
it occurs simultaneously, with no discount factor applied. This usually results in selection 
of a final pit that is larger than the true maximum NPV pit.  

Calculating the NPV requires knowing the relative time difference between blocks mined 
within a particular pit shell. This is dependent on the mill and mine capacities, practical 
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sink rate (benches mined per year) and the equipment that can be practically operated 
within a specific cutback. Whittle provides a number of methods that work with the set of 
nested pits to provide a feasible production schedule. In this study the Milawa NPV 
algorithm was used. Milawa defines a variable bench interval between subsequent push-
backs such that once a fixed number of benches have been mined out in the interior push-
back then mining can commence on the next pushback. Thus, there is always a vertical lag 
of so many benches between push-backs. Milawa allows the lag to vary between push-
backs and then searching for the combination of lags which is optimal either with respect 
to cash flow or managing stripping ratio.  

The results of the Shells Node generated 77 nested pits with the respective total amount of 
ore, waste, and the NPV shown by Figure 8 for the best case, worst case, and Milawa 
algorithm. The appropriate push-backs are chosen in a way that the annual production 
targets are met in the long-term plan. The selected phases are represented by pits 17, 25, 
43, 59, 65 and the final pit expected around pit 70. Successive schedules are run to 
different final pits from the first push-back to the pit shell number 77 in incremental steps 
of one. Pit shell number 68 with 209 million tonnes of ore and 182 million tonnes of waste 
has the highest NPV among all other pit shells and was chosen as the final pit limits for the 
production scheduling stage. 

 

 
Figure 8 - Pit by pit graph. 

The final pit outline in the previous section is the input for the comparison of Milawa NPV 
schedule and the Intelligent Agent algorithm. The comparative study is based on the 
following assumptions: (i) no stockpiles or materials re-handling was considered; (ii) 
blending of materials was not considered; (iii) the mill head grade and the annual mill feed 
was not set as a rigid constraint. The mill feed requirements are not the governing variables 
of the optimization in this case study; and (iv) all the planning parameters are kept the 
same in IOPS as the Whittle case study. The focus has been just on NPV maximization at 



Askari-Nasab H. &  Awuah-Offei K.  105- 13 
 
 
this stage of the study. The final pit limits imported into IOPS are illustrated in Figure 9 
with the respective dimensions of the major and minor axes of the frustum capturing the pit 
geometry. These dimensions are as follows: 1,050 ;Wa m= 600 ;Ea m= 280 ;Nb m=  

 . 370 ;Sb m= 210 h m=

The minimum mining width for the bottom of the pit was considered as an ellipse with 
major and minor axes of 60 m at any given time. The acceptable annual production targets 
were set to a maximum of 20 Mt; minimum of 19 Mt; and an average yearly production of 
20Mt. IOPS simulates different mining starting points for each simulation episode based 
on a reference starting point coordinate provided by the user. Maximum three benches 
were allowed to be mined per year. The experiment was based on maximum mining 
capacity of 20 Mt/year and maximum milling capacity of 15 Mt/year. IOPS was used to 
run Q-learning algorithm with 3000 iterations with different scenarios of mining starting 
points. The probability that the agent "explores" as opposed to "exploiting" was set to 

0.01ε =  in the epsilon-greedy algorithm. The learning rate for the intelligent agent, 
0.01α = ; and the discount rate for delayed rewards, 0.1γ = . 

 
Figure 9 - Three-dimensional view and plan view of the final pit limits (meter). 

5. Summary of results  

The annual production schedule generated by IOPS compared to the results of Milawa 
NPV schedule are illustrated in Figure 10 and 11. From the analysis and comparisons of 
the results the following conclusions were drawn: (i) the optimized final pit limits show the 
total amount of 391 million tonnes of material consisting of 209 million tonnes of ore and 
182 million tonnes of waste; (ii) Whittle 4-X yielded an NPV of $430 million over a 21-
year of mine life at a discount rate of 10% per annum; (iii) IOPS yielded in an NPV of 
$438 million under the same circumstances and over the same mine life; (iv) The  IOPS 
results proposed a starting point at 10160-east and 600340-north, which is located inside 
the smallest pit generated with nested pits in Whittle; (v) the fluctuations of annual 
production in both methods are caused by not setting the annual mill feed as the governing 
variable; (vi) IOPS shows a more consistent annual ore production compared to the 
Milawa NPV; and (vii) the Milawa NPV algorithm in Whittle 4-X  is one of the standard 
tools widely used in industry.   
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Figure 10- Comparative annual production schedule. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11- IOPS vs. Milawa results. 

6. Conclusions 

An intelligent agent theoretical framework for real size mine planning was developed 
based on reinforcement learning algorithms. The long term planning of the open pit mine is 
modelled as a dynamic decision network. The intelligent agent interacts with the open pit 
environment through simulation and employs Q-learning algorithm to maximize the net 
present value of the mining operation. An intelligent open pit production simulator, IOPS, 
is developed and implemented in Java® and MATLAB®. A stochastic simulation model 
captures the dynamics of open pit layout expansion. The developed algorithms are applied 
to a real-world mining operation. The numerical applications of the developed models are 
compared with the industry standard algorithms used in Whittle software.  

The optimized final pit limits show the total amount of 391 million tonnes of material 
consisting of 209 million tonnes of ore and 182 million tonnes of waste. Whittle® software 
yielded an NPV of $430 million over a 21-year of mine life at a discount rate of 10% per 
annum. IOPS generated an NPV of $438 million under the same conditions. The focus of 
the case study at this stage has been on verifying and validating the models, which has 
been successful. The NPV from the IOPS schedule shows that the intelligent agent 
framework provides a powerful basis for addressing the real size open pit mine planning 
problem. Further focused research is required to develop and test the models based on 
intelligent agents to include more critical mine planning variables such as: variable 
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optimized cut-off grades, constant annual mill feed, blending parameters, and stockpiles. 
Stochastic simulation as one of the major entities of the developed models has the strength 
to address the random field and dynamic processes involved in mine planning. The 
intelligent agent framework has the potential to be used for the optimal integration of 
mining and mineral processing systems, and development of a framework to quantify 
uncertainty relevant to mine planning and engineering design. 
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