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Abstract 

Development of new optimization techniques and uncertainty quantification for long-term 
mine planning plays a vital role in reducing environmental footprint and financial risk of 
mining projects. Deviations from optimal plans in mega mining projects will result in huge 
financial losses, delayed reclamation, and resource sterilization. In this research we 
developed a mathematical methodology for optimal large-scale open pit mine production 
scheduling. The deterministic mathematical models developed in this project will pave the 
way for the uncertainty quantification associated with mine plans by means of stochastic 
mathematical programming. We have developed a mixed integer linear programming 
model based on mining-cuts with reduced number of binary integer variables. The 
numerical modeling techniques are illustrated in details and a mining case study with 
around twenty thousand blocks over seventeen periods have been  scheduled.     

1. Introduction  

Mixed integer linear programming mathematical optimization have been used by different 
researchers to tackle the long-term open-pit scheduling problem (2003; Ramazan and 
Dimitrakopoulos, 2004; Dagdelen and Kawahata, 2007). The MILP models theoretically 
have the capability to consider diverse mining constraints such as multiple ore processors, 
multiple material stockpiles, and blending strategies. The applications of MILP models 
result in production schedules generating near theoretical optimal net present values for 
mining ventures. The number of binary variables required in formulations presented by 
Caccetta and Hill (2003) and Ramazan and Dimitrakopoulos (2004) is equal to the number 
of blocks in the block model multiplied by the total number of scheduling periods. For a 
typical real size open pit scheduling problem number of blocks is in the order of couple of 
hundred thousands to millions and the number of scheduling periods usually varies 
between twenty to thirty years for a life-of-mine schedule. Evidently, a problem of this size 
is numerically intractable with current state of hardware and commercial optimization 
solvers. Ramazan and Dimitrakopoulos (2004) presented a method to reduce the number of 
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binary integer variables by setting waste blocks as linear variables. Setting waste blocks as 
linear variables will cause a block to be extracted in multiple periods, generating a 
schedule which is not feasible from practical equipment access point of view. Also, notable 
is work by Dagdelen, who applied the Lagrangian relaxation technique and sub-gradient 
methods to solve the mine production scheduling MILP problem (Dagdelen and Kawahata, 
2007).  

Boland et al. (2007) extended the formulation of Caccetta and Hill (2003) based on strict 
temporal sequence of blocks rather than assigning blocks to periods of extraction. Boland 
et al. (2007) reduced the number of decision variables by eliminating a number of variables 
presented in Caccetta and Hill (2003) formulation prior to optimization. This was achieved 
by combining the block precedence constraints with the production constraints, aggregated 
over a sequence of time periods. The numerical results illustrated a decrease in 
computational requirements to obtain the optimal integer solution. Boland et al. (2009) 
have demonstrated an iterative disaggregation approach to using a finer spatial resolution 
for processing decisions to be made based on the small blocks, while allowing the order of 
extraction decisions be made at an aggregate level. Boland et al. (2009) reported notable 
improvements on the convergence time of their algorithm. Boland et al. (2009) id not 
present enough information on their method of aggregation and assumed that some 
aggregation technique already exist.  

We have used Boland et al. (2009) general formulation as our starting point of analysis. 
We divided the major decision variables into two categories, continuous variables 
representing the portion of a block that is going to be extracted in each period and binary 
integer variables controlling the order of extraction of blocks through a dependency graph 
using depth-first-search algorithm. We have  implemented our new optimization 
formulation in TOMLAB/CPLEX environment (Holmström, 1989-2009). The models 
were verified and validated through synthetic data and a mining case study on an iron ore 
mine.  

1.1. Economic block value modeling  

Assumption: a general parameter f can take four indices in the format of ,
,
e t

k nf . Where: 
{1,...., }t T∈    index for scheduling periods.  
{1,..., }k K∈   index for mining-cuts.  
{1,..., }n N∈    index for blocks.  
{1,..., }e E∈   index for elements of interest in each block. 

The objective functions of the MILP formulations are to maximize the net present value of 
the mining operation. Hence, we need to define a clear concept of economic block value 
based on ore parcels which could be mined selectively. The profit from mining a block 
depends on the value of that block and the costs incurred in mining and processing it. The 
cost of mining a block is a function of its spatial location, which characterizes how deep 
the block is located relative to the surface and how far it is relative to its final dump. The 
spatial factor can be applied as a mining cost adjustment factor for each block according to 
its location to the surface. The discounted profit from block  is equal to the discounted n
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revenue generated by selling the final product contained in block minus all the discounted 
costs involved in extracting block , this is presented by Eqs. 

n
n

nue - discounted costs

) ]n n n n n n
e e

discounted revenues discounted ts

d o g r p cs o cp o w
= =

= × × × − − × − + ×∑ ∑
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(1) and (2). 
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Where  
• t

nd  is the discounted profit generated by extracting block n  in period t ,  

• no  is the ore tonnage in block n  and ore tonnage in mining-cut k ,  

• nw is the waste tonnage in block n ,  

• e
ng  is the average grade of element e in ore portion of block n ,   

• ,e tr  is the processing recovery, which is the proportion of element e  recovered in 
time period t,  

• ,e tp is the price in present value terms obtainable per unit of product (element e ), 

•  ,e tcs  is the selling cost in present value terms per unit of product (element e ), 
• ,e tcp  is the extra cost in present value terms per tonne of ore for mining and 

processing, 
• tcm  is the cost in present value terms of mining a tonne of waste in period t . 

 For simplification purposes we denote:  

, , ,

1 1
[ ( )

E E
t e e t e t e t e t
n n n n

e e
v o g r p cs o cp

= =

= × × × − − ×∑ , ]∑
t

 (3) 

( )t
n n nq o w cm= + ×   (4) 

 
Where  

• t
nv  is the discounted revenue generated by selling the final product within block n  

in period t  minus the extra discounted cost of mining all the material in block n  
as ore and processing it; and  

• t
nq is the discounted cost of mining all the material in block n as waste.  

2. Mixed integer linear programming model for open pit production scheduling  

We present two different formulations for the open pit production scheduling problem, 
with the objective function to maximize the NPV of the mining operation.  We extended 
our models based on concepts presented in  Boland et al. (2009) as the starting point of our 
research.   
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2.1. Extraction at mining-cut level and processing at block level  

In the proposed model processing is at block level and extraction is at mining-cut level. 
The amount of ore processed is controlled by the continuous variable t

nx , and the amount of 
material mined is controlled by the continuous variable . Using continuous decision 
variables allows fractional extraction of blocks in different periods. , is the 
binary integer variable controlling the precedence of extraction of mining- cuts. 

is equal to one if extraction of mining-cut  has started by or in period t  , 
otherwise it is zero. 

t
ky

{0,1}t
kb ∈

{0,1}t
kb ∈

Objective function:  

1 1
max ( )

k k

T K
t t t t
n n n k

t k n c n c
v x q y

= = ∈ ∈

⎛ ⎞
× − ×⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑   (5) 

Where  
• T is the maximum number of scheduling periods, where T {1,..., }T= is the set of all 

the scheduling time periods in the model,  
• K is the total number of mining-cuts to be scheduled, where K {1,..., }K= is the set 

of all the mining-cuts in the model,  
• kc  represents mining-cut k ,  

• [0,1]t
n  is a continuous decision variable, representing the portion of block n  to 

be extracted as ore and processed in period t , 
x ∈

• [0,1]t
k  is a continuous decision variable, representing the portion of mining-cut 

kc  to be mined in period t , fraction of y  characterizes  both ore and waste 
included in the mining-cut. 

y ∈

It should be mentioned that in the objective function given by Eq. (5), mining is controlled 
at the mining-cut level, whereas the processing is at the higher resolution of block level.  
The objective function is subject to the following constraints. 

Mining capacity constraints: 

1
( )

k

K
t t

n n k
k n c

o w y mu
= ∈

⎛ ⎞
+ × ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  { }1,...,t∀ ∈ T  (6) 

1
( )

k

K
t t

n n k
k n c

o w y ml
= ∈

⎛ ⎞
+ × ≥⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  { }1,...,t∀ ∈ T  (7) 

Where  

• tmu is the upper bound on mining capacity in period t (tonnes),  
• tml is the lower bound on mining capacity in period t (tonnes).  
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Eq. (6) controls that the total amount of ore and waste mined in each period to be within 
the targeted maximum mining capacity of equipment. The constraints are controlled by the 
continuous variable  at the mining-cut level.  Eq. t

ky (7) controls the minimum amount of 
material that needs to be mined; Eq. (7) is useful in achieving a constant stripping ratio 
over the mine life.  A production schedule with an invariable stripping ratio would have 
significant savings potential by ensuring that fleet size required is matched to targets for 
material movement. The decision of the proper production rate which leads to the 
boundaries on mining capacity is an important stage of the production scheduling of open 
pit mines. Different scenarios of annual ore production rates must be examined and the one 
with highest NPV and uniform mill feed must be chosen. The mining capacity boundaries 
are function of the ore reserve, overall stripping ratio, designed processing capacity, 
targeted mine-life, and the capital investment available for purchasing equipment. As it is 
illustrated by Eqs. (6) and (7), the upper and lower bounds of mining capacity could vary 
by scheduling periods, this flexibility allows the designer to target on replacing the fleet 
with different mining capacities at different stages of mine-life.  The shortage of equipment 
in specific periods could be compensated with contract mining. Eqs. (6) and (7) will 
generate one constraints per period.   

Processing capacity constraints: 

1

N
t t

n n
n

o x pu
=

× ≤∑  { }1,...,t∀ ∈ T  (8) 

1

N
t t

n n
n

o x pl
=

× ≥∑  { }1,...,t∀ ∈ T  (9) 

Where  
• N is the number of blocks in the block model, where N {1,..., }N=  is a set of all the 

blocks in the model, 
• tpu  is the upper bound on processing capacity of ore in period t (tonnes),  

• tpl is the lower bound on processing capacity of ore in period t (tonnes). 
Eqs. (8) and (9) represent inequality constraints controlling the mill feed or processing 
capacity; These constraints assist the mine planners in achieving an overall mine-to-mill 
integration by providing a uniform feed throughout the mine-life. Constraints (8) and (9) 
are at block level, which means the decisions are made based upon the tonnage of ore 
above the cut-off grade within individual blocks.  In practice, the processing capacity 
constraints must be set within a tight upper and lower bounds to provide a uniform feed to 
the mill. Depending on the shape of the orebody and distribution of ore grades in the 
orebody, these constraints could not be honored under some circumstances, which will 
lead to an infeasible problem. Pre-stripping could be achieved by setting the upper and 
lower bounds of processing capacity constraints equal to zero for the desired periods; this 
would enforce the optimizer to only mine waste blocks in the early periods that would 
open up the orebody for later mining. Eqs. (8) and (9) will generate one constraints per 
period per ore type. 
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Grade blending constraints: 

,

1 1

N N
e t t
n n n n n

n n
g o x o x gu

= =

× × × ≤∑ ∑ e t  { }1,..., , {1,..., }t T e∀ ∈ ∈ E  (10) 

 
,

1 1

N N
e t t
n n n n n

n n
g o x o x gl

= =

× × × ≥∑ ∑ e t  { }1,..., , {1,..., }t T e∀ ∈ ∈ E  (11) 

Where 

• e
ng  is the average grade of element e in ore portion of block n , where E = {1,..., }E  

is the set of all the elements of interest in the model, 
• ,e tgu , is the upper bound on acceptable average head grade of elemente in period t , 

• ,e tgl , is the lower bound on acceptable average head grade of element e in period t .  

Production scheduling is concerned with the inherent task of blending the run-of-mine 
materials before processing. The objective is to mine in such a way that the resulting mix 
meets the quality specifications of the processing plant. The blending problem becomes 
more important as the design moves towards mid-range to short-range planning, where the 
planner is concerned with reducing the grade variability. Constraints (10) and (11) are at 
block level and there would be one equation per element per scheduling period for upper 
and lower bound. 

Ore processed and material mined constraints: 

,
t t
n k nx y≤  {1,..., }n N∀ ∈ , { }, 1,...,kn c t T∈ ∈  (12)   

 
Where t

nx  is the portion of block n  to be extracted as ore and processed in period , and 
 is representing the portion of mining-cut  to be mined in period , fraction of 

t

,
t
k ny kc t y  

characterizes  both ore and waste included in the mining-cut. Eq. (12) demonstrates 
inequalities that ensure the amount of ore of any block which is processed in any given 
period is less than or equal to the amount of rock extracted from the mining-cut that the 
block belongs to in any given scheduling period. A very important assumption in the 
formulation is that each mining-cut is extracted homogeneously; this means that 

illustrates the fraction of mining-cut k  to be extracted in time period t , all the blocks 

within the cut, are extracted with the same proportion of . This assumption 
generates production schedules that mimic the real mining operation in the sense that it 
would minimize the jumping movement of the equipment from one point to another. Eq. 

,
t
k ny

kn c∈ ,
t
k ny

(12) generates one equation per block per period.  

Precedence of mining-cuts extraction and slope constraints  

1

0
t

t i
k s

i
b y

=

− ≤∑  { }{1,..., }, 1,..., , ( )k K t T s H∀ ∈ ∈ ∈ S  (13) 

1
0

t
i t
k k

i
y b

=

− ≤∑  { }{1,..., }, 1,...,k K t∀ ∈ ∈ T  (14) 
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1 0t t
k kb b +− ≤  { }{1,..., }, 1,..., 1k K t T∀ ∈ ∈ −  (15) 

Where 

• {0,1}t
k is a binary integer decision variable controlling the precedence of 

extraction of mining- cuts. t
kb  is equal to one if extraction of mining-cut kc  has 

started by or in period t , otherwise it is zero,  

b ∈

• ( )H S is a set ( )H S ⊂K for each mining-cut kc , defining the immediate 
predecessor cuts that must be extracted prior to extracting mining-cut k , where S 
is the total number of cuts in set ( )H S .  

For each mining-cut k  Eqs. (13) to (15) check the set of immediate predecessor cuts that 
must be extracted prior to mining-cut .  This precedence relationship ensures that all the 
blocks above the current mining-cut are extracted prior to extraction of mining-cut. As it 
could be deduced from Eq. 

k

(15), the formulation is based on the temporal sequence of 
extraction rather than checking for all the periods. For Eqs. (13) to (15), there would be 
one equation per mining-cut per period. 

For each block  there is a set N, which includes all the blocks that must be 
extracted prior to mining block  to ensure that block  is exposed for mining with the 
desired overall pit slopes, where J is the total number of blocks in set . We will use a 
directed graph to model the precedence of extraction between blocks. We defined a 
directed graph (N, A) by the set of vertices, N (blocks); connected by ordered pairs of 
elements called arcs, A.  

n ( )C L ⊂
n n

( )C L

bG

During the clustering of blocks into mining-cuts another directed graph at mining-cut level 
is constructed, which captures the precedence relationship of mining-cuts.  This directed 
graph is denoted by (K, B) where B cG {1,..., }B= is the set of all edges in the mining-cuts 
precedence directed graph. The directed graph (K, B) is constructed in a way that while 
satisfying the order of extraction at mining-cut level, it would also satisfy the relationships 
defined by the graph (N, A) at block level. This approach of defining two directed 
graphs at mining-cut and block level enables us to model variable pit slopes with small 
acceptable slope errors in the different regions of the open pit. In other words, mining is 
controlled at the mining-cut level but the slopes are modeled at the block level. 

cG

bG

2.2. Alternative MILP formulation  

Eqs. (5) to (15) represent the MILP formulation for long-term open pit production 
scheduling. The proposed formulation requires (2 )K N T× + ×  number of decision 
variables, where K T×  of these variables are binary integers. One of the major obstacles in 
using the MILP formulations for mine production scheduling is the sheer size of the 
problem. The number of blocks, N, in the model is usually between tens of thousands to 
millions; the numerous number of blocks within the model will lead to a formulation with 
an objective function with many variables. Moreover, the main physical constraint in open 
pit mining is the relationship of precedence of extraction of blocks modeled by binary 
integer variables. The most common difficulty with MILPs is size of the branch and cut 
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tree; the tree becomes so large that insufficient memory remains to solve an LP sub-
problem. The number of binary integer variables in the formulations determines the size of 
the branch and cut tree. As a general strategy in our formulations we aimed at reducing the 
number of binary integer variables, we also focused on developing formulations that will 
mainly use continuous optimization techniques rather than discrete optimization. We have 
reduced the number of the binary integer variables to K T× , where to some extent we have 
control over the number of mining-cuts K , during the clustering process.  

We investigated the effect of using continuous decision variables ( t
n

t
kx and y ), which leads 

to   fractional block extraction on the quality and practicality of the generated schedules. 
There is a possibility that block kn c∈  get extracted over multiple periods. Our 
computational experiments on different orebody models using the formulation presented in 
section 2.1 revealed that the blocks’ fractions are usually scheduled over consecutive 
periods and in the worst case examined, some blocks were extracted over three periods. 
We should also emphasize again that blocks are uniformly extracted as part of mining-cuts 
that means in the worst case observed a mining-cut is extracted over three periods, which is 
not impractical from mining point of view. The total tonnage of ore processed in the MILP 
formulation presented in section 2.1 is related to how mining and processing capacities are 
set in accordance with the ore reserve total tonnage. There is the possibility that quantities 
of ore above the cut-off grade would not get processed due to the processing capacity 
limitations; it is feasible to overcome the abovementioned problems by adding reserve and 
maximum number of fractions constraints to the MILP formulation presented in section 
2.1.   

Maximum number of fractions and reserve constraints    

1

1
T

t
n

t

x
=

=∑  {1,..., }n N∀ ∈  (16) 

1

1
T

t
k

t

y
=

=∑  {1,..., }k K∀ ∈  (17) 

1

T
t
k

t

u m
=

≤∑  {1,..., }k K∀ ∈  (18) 

1

1
T

t t
k k

t

u y
=

× =∑  {1,..., }k K∀ ∈  (19) 

Where  

• {0,1}t
k is a binary integer decision variable equal to one if mining-cut kc is 

scheduled to be extracted in period t , otherwise zero, 
u ∈

• m is an integer number representing the maximum number of fractions that mining-
cuts are allowed to be extracted over.  

Equality constraints presented by Eq. (16) would ensure that all the ore within the 
predefined pit limits or the targeted push-back would be processed during the scheduling. 
Eq. (16) adds one constraint per block.  Eq. (17) would ensure that all the material within 
the predefined pit outline is going to be mined; this would add one constraint per mining-
cut. Eq. (18) and (19) guarantee that the maximum number of fractions of mining-cuts in 
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the solution for  is not going to exceed .  For large-scale models with many numbers 
of scheduling periods could be set equal to two or three fractions maximum.  Eq. 

t
ky m

m (19) 
introduces non-linear constraints into the MILP formulation. The modified model by 
adding Eqs. (16) to (19) even after linearization, would frame a more complicated MILP 
formulation comparing to the MILP formulations without Eqs. (16) to (19). 

2.3. Extraction and processing at mining-cut level 

The formulation of the MILP presented in sections 2.1 and 2.2 has reduced the required 
numbers of binary integer variables for controlling the precedence relationships drastically. 
Nevertheless, for large-scale production scheduling models with millions of blocks and 
decades of mine life the size of the LP sub-problems represented by the t

nx  continuous 
decision variables would be intractable with the current state of the optimization 
technology. To be able to overcome this obstacle, we present an MILP formulation which 
both mining and processing are at the mining-cut level. This approach makes it possible to 
formulate a tractable MILP model for even very large-scale open pit mines with millions of 
blocks over decades of mine life. We introduce a continuous processing decision variable 
at mining-cut level.  The blocks are aggregated prior to optimization into mining-cuts with 
clustering algorithms. the MILP formulation of the model is as follows: 

Objective function:  

1 1

max ( )
T K

t t t t
k k k k

t k

v s q y
= =

× − ×∑∑   (20) 

Subject to: 

, ,

1 1

K K
t e e t t t e

k k k k k
k k

gl g o s o s gu
= =

≤ × × × ≤∑ ∑  { }1,..., , {1,..., }t T e∀ ∈ ∈ E

t

 (21) 

1

K
t t

k k
k

pl o s pu
=

≤ × ≤∑  { }1,..., , {1,..., }t T e∀ ∈ ∈ E

t

 (22) 

1
( )

K
t t

k k k
k

ml o w y mu
=

≤ + × ≤∑  { }1,...,t∀ ∈ T  (23) 

t t
k ks y≤  {1,..., }k K∀ ∈ , { }1,...,t∈ T  (24)    

Eqs. (13)  to  (15). 

Where 
• [0,1]t

k  is a continuous variable, representing the portion of mining-cut kc  to be 
extracted as ore and processed in period t , 
s ∈

• ko  is the ore tonnage in mining-cut k ,  

• kw  is the waste in mining-cut k . 

Constraints similar to what is presented by Eqs. (16) to (19) for reserve constraints and 
maximum number of mining-cuts is optional in this formulation as well. 
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3. Numerical modeling  

In most linear optimization problems, the variables of the objective function are continuous 
in the mathematical sense, with no gaps between real values. To solve such linear 
programming problems, ILOG CPLEX implements optimizers based on the simplex 
algorithms (Winston, 1995) (both primal and dual simplex) as well as primal-dual 
logarithmic barrier algorithms.  

Branch and cut is a method of combinatorial optimization for solving integer linear 
programs. The method is a hybrid of branch and bound and cutting plane methods (Horst 
and Hoang, 1996).  Refer to Wolsey (1998) for a detailed explanation of branch and cut 
algorithm, including cutting planes. In recent years there has been significant 
improvements in mathematical programming optimizers such as ILOG CPLEX (Bixby, 
1987-2009). This optimizer uses branch and cut techniques to solve MILP models and it is 
closing the gap between theory and practice  in optimization of large-scale industrial 
problems. In this study we used TOMLAB/CPLEX version 11.2 (Holmström, 1989-2009) 
as the MILP solver. TOMLAB/CPLEX efficiently integrates the solver package CPLEX 
(ILOG Inc, 2007) with MATLAB environment (MathWorks Inc., 2007). 

An important termination criterion that the user can set explicitly in CPLEX is the MILP 
gap tolerance. We have used the relative MILP gap tolerance, which indicates to CPLEX 
to stop when an integer feasible solution has been proved to be within the gap% of 
optimality. 

3.1. General formulation 

The general formulation in TOMLAB for a mixed integer linear programming problem is 
in the form of:  

min ( ) .T

z
f z = c z    (25) 

Subject to: 

l ≤ ≤z z zu

u

  (26) 

.l ≤ ≤b A z b   (27) 

Where 
• c  is a 1j×  vector, the objective function coefficient, and Tc represents the 

transpose of c .   
• z  is a 1j×  vector, elements of vector z  are the decision variables of the MILP 

formulation.  
• l uand are 1j× vectors, defining the lower and upper bounds on the decision 

variables.  
z z

• A : is a i j× coefficient matrix, representing the constraints of the MILP 
formulations.      
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• l uand b : are 1j×  vectors, defining the lower and upper boundary conditions. 
Equality constraints are defined by setting the lower bounds equal to the upper 
bounds, l u=b b .  

b

3.2. Objective function 

We will formulate the general MILP model presented in section 2.1 with the maximum 
number of fractions and reserve constraints demonstrated by Eqs. (16) to (19). The 
objective of open pit production scheduling problem given by Eq. (5)  is to maximize the 
NPV of the operation. The general format of the MILP formulation in TOMLAB given by 
Eq. (25) is to minimize the objective function. Therefore the objective function coefficient 
vector,c , which is a (4 ) 1K N T+ ×  vector given by Eq. (28) should be multiplied by a 
negative sign, as the result Eq. (25) would change to mi . To simplify the 

notation, we will use the vertical matrix concatenation operator, ‘;’. This operator 
constructs a matrix or vector by concatenating the matrices or vectors along the vertical 
dimension of the matrix or vector. The objective function coefficient vector,  is a vector 
of size (4

n ( ) .T

z
f z = −c z

c
) 1K N T+ ×  given by Eq. (28). 

 [ ](4 ) 1 ; ; ; ;K N T+ × =c v q 0 0 0   (28) 

Where  

• v is an 1NT ×  vector holding the discounted values defined by Eq. (3) where N is 
the maximum number of blocks in the model and T is the number of scheduling 
periods,  

• q  is a 1KT × vector holding the discounted mining costs defined by Eq. (4) where 
K is the number of mining-cuts in the model and T is the number of scheduling 
periods,  

• 0  is 1KT ×  zero vector with all elements equal to zero,  

The coefficients in the objective function and in the constraints matrix have different units 
and dissimilar order of magnitude; it is necessary to transform the objective function and 
the constraints coefficient matrix to unitless matrices and vectors.  To do so we normalize 
the vectors and matrices by dividing them by a norm of its multipliers vectors. Let us 
define =v v v and =q q q , where q  and v  are norm of and . Therefore, the 

coefficient vector is going to be in the form of

q v

; ; ; ;⎡ ⎤= ⎣ ⎦c v q 0 0 0 . We will use the 

notation ‘ ’ to illustrate a normalized vector in the rest of the paper. 

Eq. (29) illustrates how the decision variables vector,  is constructed.  is a z z
(4 ) 1K N T+ ×  vector. 

(4 ) 1 [ ; ; ; ; ]K N T+ × =z x y b u uy   (29) 
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  Where  

• x  is an 1NT × vector with the continuous decision variables, [0,1]t
n  as 

elements, representing the portion of block n  to be extracted as ore and processed 
in period t , 

x ∈

• y is a 1KT × vector with the continuous decision variables, [0,1]t
k  as elements, 

representing the portion of mining-cut kc  to be mined in period t ,  
y ∈

• b  is a 1KT ×  vector holding the binary integer decision variables, {0,1}t
k , these 

decision variables control the precedence of extraction of mining- cuts, 
b ∈

• u  is 1KT ×  vector holding the binary integer variables {0,1}t
k ; t

ku  is equal to 
one if mining-cut kc is scheduled to be extracted in period t , otherwise zero, t

ku  is 
defined in Eq. 

u ∈

(18),  
• uy  is 1KT ×  vector holding the continuous variables {0,1}t

k , defining the 
outcome of t t

k ku y×  defined by Eq. 
uy ∈

(19). 

3.3. Constraints  

In this section, we will develop the numerical models for the equality and inequality 
constraints represented by Eqs. (6) to (19). 

Mining capacity constraints: 

Eqs. (6) and (7) represents the mining capacity constraints, the numerical model is 
represented by Eq. (30), where is a 1A 2 (4 )T K N T× + coefficient matrix and is a 1b 2 1T ×  
boundary condition vector.   

1. ≤A z b1   (30) 

1 2 22 (4 )
1

1 2 2

mT K N T

m

× +
⎡ ⎤

= ⎢
−⎢ ⎥⎣ ⎦

0 A 0 0 0
A

0 A 0 0 0
2

2

⎥   (31) 

2 1
1

uT

l

×
⎡ ⎤

= ⎢
−⎢ ⎥⎣ ⎦

m
b

m
⎥   (32) 

Where  
• mA  is  a T KT× matrix with elements holding the total tonnage of material in each 

mining-cut in each period,  
• um is a 1T ×  vector of mining capacity upper bounds as defined in Eq. (6), 

• lm is a 1T ×  vector of mining capacity lower bounds as defined in Eq. (7), 

• 10  is a T NT×  zero matrix,  

• 20  is a T KT×  zero matrix,  
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Processing capacity constraints: 

Eqs. (8) and (9) represents the processing capacity constraints, the numerical model is 
represented by  Eq. (33), where is a 2A 2 (4 )T K N T× + coefficient matrix and is a 

 boundary condition vector. 
2b

2T ×1

22. ≤A z b   (33) 

2 2 2 22 (4 )
2

2 2 2 2

pT K N T

p

× +
⎡ ⎤

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

A 0 0 0 0
A

A 0 0 0 0
  (34) 

2 1
2

uT

l

×
⎡ ⎤

= ⎢
−⎢ ⎥⎣ ⎦

p
b

p
⎥   (35) 

Where  

• pA  is  a T NT× matrix with elements holding the total tonnage of ore in each block 
in each period,  

• up is a 1T ×  vector of processing capacity upper bounds as defined in Eq. (8), 

• lp is a 1T ×  vector of processing capacity lower bounds as defined in Eq. (9). 

Grade blending constraints: 

Eqs. (10) and (11) represent the grade blending constraints, the numerical model is 
represented by  Eq. (36), where  is a 3A 2 (4 )ET K N T× + coefficient matrix and is a 3b
2 1ET ×  boundary condition vector. 

3. ≤A z b3   (36) 

3 3 3 32 (4 )
3

3 3 3 3

gET K N T

g

× +
⎡ ⎤

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

A 0 0 0 0
A

A 0 0 0 0
  (37) 

2 1
3

uET

l

×
⎡ ⎤

= ⎢
−⎢ ⎥⎣ ⎦

⎥
g

b
g

  (38) 

Where  

• gA  is  an matrix of average grade of each element of interest in each 
block in each period,  

ET NT×

• ug is an 1ET ×  vector of average grade upper bounds on acceptable average head 
grade of the elements of interest as defined in Eq. (10), 

• lg is a 1ET ×  vector of average grade lower bounds on acceptable average head 
grade of the elements of interest as defined in Eq. (11), 

• 30  is an ET KT×  zero matrix. 
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Ore processed and material mined constraints: 

Eq. (12) represents the ore processed and material mined constraints, the numerical model 
is represented by Eq. (39), where  is a 4A (4 )NT K N T× + coefficient matrix and  is an 

 zero boundary condition vector. Eq. 
4b

1NT × (39) inequalities ensure that the amount of ore 
of any block which is processed in any given period is less than or equal to the amount of 
rock extracted from the mining-cut that the block belongs to in any given scheduling 
period. 

4. ≤A z b4

0

  (39) 

(4 )
4 4 4 4
NT K N T

x y
× + ⎡ ⎤= ⎣ ⎦A A A 0 0   (40) 

Where  

• xA  is a matrix with an element of 1 for each block in each period, NT NT×

• yA  is a matrix with an element of -1 per mining-cut for each block in 
each period, 

NT KT×

• 40  is a zero matrix. NT KT×

Precedence of mining-cuts extraction and slope constraints  

Eqs. (13) to (15) represent the precedence of mining-cuts extraction and slope constraints, 
the numerical model is represented by Eq. (41). We will present the construction of slope 
constraints matrix, Eq. (41), with an illustrative example. 

5. ≤A z b5   (41) 

Let’s consider a set of mining-cuts to be scheduled. For the sake of discussion we assume 
that the model consist of five mining-cuts (Fig. 1); the immediate predecessor cuts are 
labeled with directed-arcs pointing from the parent to the child node. A directed graph 
constructs the precedence relationship between mining-cuts, the directed graph tags the 
mining-cuts that must be extracted prior to extracting each mining-cut k . This set is 
denoted by ( )H S ⊂K, where S is the total number of mining-cuts in H(S). 

 
Fig. 1. Schematic view of a mining cut and its predecessors cuts. 
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We start with constructing the required matrices defining Eq. (13). We assume that the five 
mining-cuts ( ) illustrated in 5K = Fig. 1, are scheduled to be extracted over four periods 
( ). The immediate predecessors’ set 4T = ( ) {2,3, 4,5}H S = ; this set represents the 
mining-cuts that must be extracted prior to extraction of mining-cut labeled as one. 

We define  and  as 11vecb 1vecy K× vectors in Eqs. (42) and (43), these vectors are 
subcomponents used in assembling the matrices required to model Eq. (13). and 

are used to assemble matrices and as presented in Eqs. 

1vecb

1vecy 1
mat

b 1
mat

y (44) and (45) for 
each mining-cut; where is a 150 K× vector of zeros. Then, matrices 1syA  and 1sbA , which 
are KT KT× matrices are constructed for all the mining-cuts in the model, where               
K {1,..., }K= , this concatenation is demonstrated by Eqs. (46) and (47). 

11 [1 0 0 0 0]K
vec
× =b   (42) 

11 [0 1 1 1 1K
vec
× = − − − −y ]

⎟
⎟

⎟
⎟

  (43) 

5

5

1
1

1

T KT

mat

vec

vec

×

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

b 0
b

0 b

…
# % #

"
  (44) 

51
1

1 1

T KT

mat

vec

vec vec

×

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

y 0
y

y y

…
# % #

"
  (45) 

( )
1 1 21 ; 1 ; ; 1

sy

KT KT
mat mat matK

× =A y y y""   (46) 

( )
1 1 21 ; 1 ; ; 1

sb

KT KT
mat mat matK

× =A b b b""   (47) 

Subsequently, we will construct the matrices required to capture Eq. (14). We define  
and  as 1

2vecb
2vecy K× vectors in Eqs. (48) and (49), these vectors are subcomponents used in 

assembling the matrices required to model Eq. (14). and vectors are used to 

assemble matrices and as presented in Eqs. 

2vecb 2vecy

2
mat

b 2
mat

y (50) and (51), for each mining-cut. 
Afterward, matrices 2syA  and 2sbA , which are KT KT× matrices are constructed for all the 
mining-cuts in the model, this concatenation is demonstrated by Eqs. (52) and (53). 

12 [ 1 0 0 0K
vec
× = −b 0]

⎟
⎟

  (48) 
12 [1 0 0 0 0]K
vec
× =y   (49) 

5

5

2
2

2

T KT

mat

vec

vec

×

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

b 0
b

0 b

…
# % #

"
  (50) 
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52
2

2 2

T KT

mat

vec

vec vec

×

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

y 0
y

y y

…
# % #

"

⎟
⎟   (51) 

( )
2 1 22 ; 2 ; ; 2

sy

KT KT
mat mat matK

× =A y y y""   (52) 

( )
2 1 22 ; 2 ; ; 2

sb

KT KT
mat mat matK

× =A b b b""   (53) 

Next, we will construct the matrices required to capture Eq. (15). We define  and 
 as 1

3vecb

vecb4 K× vectors in Eqs. (54) and (55), these vectors are subcomponents used in 
assembling the matrices required to model Eq. (15).  and vectors are used to 

assemble matrix as presented in Eq. 

3vecb vecb4

3
mat

b (56), for each mining-cut. Matrix 3sbA , which is 
( 1)K T K− × T

0]

⎟
⎟

)

matrix is constructed for all the mining-cuts in the model, this concatenation 
is demonstrated by Eq. (57). 

13 [1 0 0 0 0]K
vec
× =b   (54) 

14 [ 1 0 0 0K
vec
× = −b   (55) 

( 1)
5

5

4
3

4

T KT

mat

vec vec

vec vec

− ×

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

b3 b 0
b

0 b3 b

…
# % % #

…
  (56) 

(
3

( 1)
1 23 ; 3 ; ; 3

sb

K T KT
mat mat matK

− × =A b b b""  (57) 

Now we can construct the matrix in Eq. 5A (58), the inequality constraints is represented in 
Eq.(41), where  

• 5A  is a [2 ( 1)] (4 )KT K T K N T+ − × + coefficient matrix, 

• 5b  is a [2 zero boundary condition vector, ( 1)] 1KT K T+ − ×

• 60  is a zero matrix, KT NT×

• 70  is a KT KT×  zero matrix, 

• 80  is a ( 1)K T NT zero matrix, − ×

• 90  is a ( 1)K T KT zero matrix. − ×

7 7
⎥
⎥0 0

6 1 1 7 7
[2 ( 1)] (4 )
5 6 2 2

8 9 3 9 9

sy sb
KT K T K N T

sy sb

sb

+ − × +

⎡ ⎤
⎢

= ⎢
⎢ ⎥
⎣ ⎦

0 A A 0 0

A 0 A A

0 0 A 0 0

 (58) 
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Maximum number of fractions and reserve constraints   

The numerical model for the maximum number of mining fractions and reserve constraints 
are represented by Eqs. (16) to (19), where  is a ( 36A ) (4 )N K K N T+ × + coefficient 
matrix and  is an  boundary condition vector.   6b ( 3 )N K+ ×1

6

2

6. ≤A z b   (59) 

2 2 2 2

1 2 2( 3 ) (4 )
6

1 2 2 2

1 2 2 2

rx

ryN K K N T

u

uy

+ × +

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A 0 0 0 0
0 A 0 0 0

A
0 0 0 A 0
0 0 0 0 A

  (60) 

[ ]( 3 ) 1
6 1 2; ; ;N K+ × =b 1 1 m 21   (61) 

Where  
• 1 is a 1N ×  vector with all elements equal to one. 1

• 21 is a 1K ×  vector with all elements equal to one. 

• rxA is a N NT×  matrix with elements of one for each block in each period, these 
equality constraints add one constraints per block as defined by Eq. (16).  

• ryA is a K KT×  matrix with elements of one for each mining-cut in each period, 
these equality constraints add one constraints per mining-cut as defined by Eq. 
(17).  

• uA is a K KT× matrix with elements of one for the periods that a mining-cut is 
scheduled to be extracted as defined by Eq. (18). 

• m is a 1K × vector with elements equal to the number of maximum fractions that 
one mining-cut is allowed to be scheduled as defined by Eq. (18). 

• uyA is a K KT× matrix. 

The equality constraints, in Eqs. (16), (17) and (19) are defined by setting the lower 
bounds equal to the upper bounds. Finally, we concatenate all the matrices and vectors 
representing the constraints and bounds into the coefficient matrix, with the size of  A
[(3 2 4) 2 ] [(4 ) ]K E N T N K K N T+ + + + + × +  and one boundary condition vector, b, with 
the size of (4 ) 1K N T+ × . The concatenation is represented by Eqs. (62) and (63). 

([(3 2 4) 2 ] [(4 ) ]
1 2 3 4 5; ; ; ; ;K E N T N K K N T+ + + + + × + =A A A A A )6A A  (62) 

( )(4 ) 1
1 2 3 4 5 6; ; ; ; ;K N T+ × =b b b b b b b   (63) 

4. Numerical experiments and mining case study 

A case study of scheduling an iron ore deposit was carried out to verify and validate the 
models. The total number of blocks within the final pit limit is 19,492. We used the fuzzy 
logic clustering algorithm to aggregate the blocks into 599 mining-cuts. Fig. 2 illustrates 
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aggregating blocks into mining-cuts using fuzzy logic clustering, blocks are spatially 
grouped together based on rock-type and grade distribution, units in meters. Three types of 
ore; top magnetite, oxide, and bottom magnetite are classified in the deposit.  The block 
model contains the estimated magnetic weight recovery (MWT%) of iron ore and the 
contaminants are  phosphor (P%) and sulphur (S%). The blocks in the geological model 
represent a volume of rock equal to 25 25 15m m m× × .  
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Fig. 2 Aggregating blocks into mining-cuts using fuzzy logic clustering, blocks are spatially 
grouped together based on rock-type and grade distribution, units in meters.  

 
Table 1 summarizes the information related to the case study. The pit includes 427.33 Mt 
of rock where 116.29 Mt is ore with an average magnetic weight recovery of grade of 
72.9%.  Initially a capacity of 30 Mt /year was considered as the upper bound of mining. 
The objective function aimed to maximize the net present value with a discount rate of 
10% per period. TOMLAB/CPLEX was used for implementation and solving the MILP 
formulation. 19,492 blocks were scheduled over 17 periods this made a coefficient 
matrix, A of a size  with 510,094 nonzero elements. The CPLEX 
solver was set to find a solution within 3% gap of the theoretical optimal solution.  

(63, 474 30,549)A ×

Table 2 illustrates the settings for two optimization runs, in the first one we used the 
default CPLEX settings. The upper and lower bound for MWT, S, and P are defined. A ten 
Mt/yr processing capacity was set for this case. In the second test we used four years of 
pre-stripping with setting the upper bound of the processing plant equal to zero. The 
processing capacity was ramped up gradually to ten Mt/yr by year nine.  

Table 1. Final pit and production scheduling information. 
Description Value Description Value 
Number of blocks  19,492 Minimum mining width (m) 150 
Number of mining-cuts  599 Number of periods (years) 17 
Total tonnage of rock (Mt) 427.33  A(rows × columns)  63,474×30,549 
Total ore tonnage (Mt) 116.29  No. Of nonzero elements in A 510,094 
 Total tonnage of recovered Fe (Mt) 76.33  Number of decision variables  30,549 
Average grade of  MWT%   72.9% Number of integer variables  10,183 
Mining capacity (Mt/year) 30   
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Table 2.  Inputs and numerical results for the data set containing 2598 blocks. 

Settings 
Processing capacity 

periods - /t tpu pl (Mt) 
Grade blending   

, /e t e tgu gl ,  (%) NPV ($M) Root node 
gap % 

CPU time 
(S) 

1– default 
 
1to 17 -  10/0 
 

0 ≤ S ≤ 1.8 
0≤ P ≤ 0.14 
55 ≤ MWT ≤ 85 

2,315.29 2.3 15,574 

2- with  
probing  

1 to 4 -  0/0 
5 to 6 -  6/5 
7 to 8 -  8/7 
9 to 17- 10/0 

0 ≤ S ≤ 1.8 
0≤ P ≤ 0.14 
60 ≤ MWT ≤ 85 

2,141.60 2.02 7,957 
 

 
As it was expected the net present value in the second case dropped because of the tighter bounds 

imposed on the model. 114 million tonnes of ore was processed out of 116.29 million tonnes 
available.  

Fig. 3 illustrates the plan view of bench 1567m, the orebody is outlined with the final pit 
and the waste blocks are represented by their rock type color profile. Fig. 4 illustrates the 
generated schedule on bench 1567m with the order of extraction color profiled. Fig. 5 
illustrates the schedule at the block level on bench 1567m. Fig. 6 to 9 represent the 
schedule on cross section 98300m looking east and cross section 600840 looking north.  

Fig. 10 and 11 show the yearly schedule of the ore and waste production along with the 
average grade of MWT, S, and P through out the mine life. 

 
 

Fig. 3. Plan view of bench 1567m, the orebody is outlined, with the MWT grade; the green line 
shows the outline of final pit and the waste blocks are represented by their rock type color profile.  
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Fig. 4. Plan view of bench 1567m schedule, the extraction periods are colored sequentially. 

 

 
Fig. 5. Plan view of bench 1567m schedule, the extraction periods are defined at 

the block level, units in meters. 
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Fig. 6. Cross section 98300m looking east, the orebody is outlined, with the MWT grade, the waste 

blocks are represented by their rock type color, units in meters. 
 

  
Fig. 7. Schedule of cross section 98300m looking east, units in meters. 

 

 
Fig. 8. Cross section 600840m looking north, the orebody is outlined, with the MWT grade, the 
green line shows the outline of final pit and the waste blocks are represented by their rock type, 

units in meters. 
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Fig. 9. Schedule of cross section 600840m looking north, extraction periods are color profiled, 

units in meters. 
 

 
Fig. 10. Ore and waste tonnage schedule (left-a), Average grade MWT% per 

period (right-b), period in years. 
 

 
Fig. 11. Average grade P% per period (left-a), average grade S% 

per period (right-b), periods in years. 
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5. Conclusions  

The applications of the MILP model developed in this study showed that it has the 
capability of generating production schedules within a close gap to the theoretical optimal 
net present values for mining operations. The balance between the number of mining-cuts 
and the total number of blocks in the model is very important. Research is underway to test 
the developed models on large-scale open pit problems with up to two hundred thousand 
blocks within the final pit over thirty years of mine-life. In the future we will focus on 
reformulating the problem with reduced number of integer variables and complexity and 
tackling the geological uncertainty within the mine planning domain.   
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