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= Motivation and Origin

= Nonlinear State Estimation
= Extended Kalman Filter

= Deterministic Derivative-free estimators

= Particle Filters

s Constrained State Estimation

= Estimation under Model-Plant Mismatch

= On-line Model Maintenance

= Future research directions
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| Notation IIT Bombay

T

Mechanistic Model (:I_)t( =f(x,u,d,6)

Measurement Model
y = H|x]

Assumptions

State Dynamics

Manipulated inputs and piecewise constant
u(t)=u(k) for t <t<t =t +T
Unmeasured disturbances are modelled as piecewise constat

random fluctuations in the neighborhood of mean value

dt)=d+w(k) for t <t<t_,



Notation

() = x(t)+ [ F(x(2),u(k),d + w(k),0)dz
t =kT t, =k(k +1T T :Sampling Time
x(k +1) = x(k) + Tf(x(r),u(k),a +w(k),0)dr

= F[x(k),u(k),W(k)’O]

Control Relevant Discrete Time
Representation

May, 12 UBC - UofA Workshop
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Models: mechanistic models of the form

x(k +1) = F[x(k),u(k), w(k),0]

y(K) =H[x(K)]+ v(Kk)
w(k): uncertainty in states due to unknown inputs
v(k): measurement errors (noise)
(stationary random processes with known statistical properties)
Objective
Find the conditional probability density function (PDF),

p| x(K)[Y* |

Yk :set of all the available measurements
up to fime instant k.
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| Nonlinear Bayesian Estimation 17 zombay

T

Alternative Approaches

= Sequential Unconstrained Estimation: Methods
that obtain the conditional density function by
application of Bayes' rule, and then obtain the
estimate using one of the optimization criteria

= Direct Optimization: Methods that assume a
suitable form for the prior probability density
function and convert the estimation problem
directly into an optimization problem.

= Sequential constrained estimators
= Moving horizon estimator
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Sequential Bayesian Estimation  i7eombay

Prediction step: posterior density at previous
time step is propagated into next time step
through state transition density to compute prior

p| x(k) | Y** | =
[ p[x(k) I x(k=D)]p| x(k-1) | Y** |dx(k —1)

Update step: Computation of posterior density from the prior

q_ PYOIXW] o
p[x(K)| Y ]_p[y(k)lYk‘l] p[x(K)| Y**]

The Posterior Density function constitutes the complete
solution to the sequential estimation problem.
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Bayesian Estimation 1T Bombay

= Prediction and update strategy provides an optimal
solution to the state estimation problem
= involves high-dimensional integration.
- exact analytical solution to the recursive propagation of
the posterior density is difficult obtain
= Linear state estimation: possible to compute
analytical solution

= Nonlinear filtering techniques: develop
approximate and computationally tractable sub-
optimal (local) solutions to the sequential
Bayesian estimation problem
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Approxima’rion Appl‘OGChZS 11T Bombay

= Prediction step
- Taylor series approximation
= Deterministic sampling based approximations

= Stochastic sampling (Monte Carlo) based
approximations

= Update step

= Statistical linear regression or linear minimum
mean square estimation

= Monte Carlo sampling based approximations
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j. Most popular and widely used Nonlinear Bayesian Filter
= Propagation step: Predicted Mean

x(k|k—1) = E[x(k) | Y**]
= E[F[x(k 1), u(k-1), w(k-)]| Y**]

Using Taylor series approximation in
the nbhd of (e) = [*(k —1| k —1), u(k —1),0]
F[x(k —1,u(k-1),w(k —1)]z F[i(k —1|k-1),u(k —1),6]
6F} oF
+|— s(k—l|k—1)+{—} w(k —1)
[ (o) od (*)

[6).

{

E[F[x(k-1),uk -1), w(k -D)]|Y**|~ F[&(k -1] k 1), u(k -1),0]
= FlE[xk-1) Y] uk-1),0]
10
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| Extended Kalman Filter (EKF) 17 eombay

» ]

Predicted Covariance

oF oF T T[oF oF T
"(k'k‘”{&lf’("‘”k‘l’[&L ﬁHﬂ

= Update Step: Updated Mean computation using
Statistical Linear Regression

L(K) = P, ([P, (k)]
e(k) =y (k) - H[X(k |k -1)]
x(k | K) =x(k |k -1+ L(k)e(k)

Pee(k)z[@} P(k|k—1)[@} +R Pée(k)zP(k|k—l)[aa—H}
(*) (°)

1). OX X |

11



| EKF: Update Step I Bombay

Updated Covariance

P(k k) = (1 —L(k){a—H} JP(k Ik —1)
(*)

[0).
= Approximates p[x(k)|Y¥] and p[x(k)|Y*!] to be Gaussian i.e.

p[x(k) | Yk_l]z N(x(k |k =1),P(k | k =1))
and
pIx(k) | Yk]z N(x(k k), P(k|k))

Gaussian approximation: simplest method to approximate
numerical integration problem due to its analytical tractability

Local asymptotic convergence of estimation error (in absence of
the state and the measurement noise) has been established
using Lyapunov's second method (Reif at al. 1999)

12
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ﬁ‘ EKF : Plug Flow (Tubular) Reactor (PFR)™ ™

Steam, T,
Tj-l’ TR-l Tj'2, TR-Z

______________ T;-5, Tg-5

CA(lat)s CB(lat)
Cor Ty, Ce(1,0), Tr(1,t)

|:> A —»B —»C |::>

(Endothermic Reaction)

—

T,(0,0)

State Estimation Problem
Estimate concentration profile inside the reactor using
few temperature measurements along the length
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| Fixed Bed Reactor IIT Bombay

‘ Material Balances (Distributed Parameter System)
oC, . 0dC,

a e
5§t|3 ~ v, %_I_ ke 5/""C, —k, e '""C,

= Energy Balances

o _ N, (-AH,)
ot z  p,Cp,

(_AHrz)

~E,/RT
K, "C,

kye T/ FCy + ——Y
Pm pm Pm pmVr

+

oT. . oT.
3 — +

otz p,C

wj

AL

pmj —J
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ﬁ‘ PDE To ODE Model (Finite Differencing)

| Plant

Model
No. of internal discretization points 19 4
No. of states 80 20
No. of jacket side temp. measurements 3 3
No. of reactor side temp. measurements |3 3




| State Estimation using EKF

T

Simulation Parameters

Automation Lab
[IT Bombay

Variable Nominal Value Fluctuations added
Feed Flow 1 m/min 0.01 m/min

Feed Concentration 4 mol/lit 0.14 mol/lit
Temperature measurements | - 0.4 K

Steam flow rate 1 m/min -

= Performance of EKF under the effect of feed flow and
feed concentration fluctuations was studied

= The estimated concentration approaches the true
concentration within 5 minutes
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Fluctuations in Feed Flow and Feed i1 combay
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Actual and Estimated Exi

Concentration of B

I[IT Bombay
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Simulation Result: Concentration profiles 117 Bombay
of product B at different time instants
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State and Parameter Estimation 1 eombay

Estimation of deterministic changes in

unmeasured disturbances / model parameters
(k+1)T

X(k +1) = X(k) + j F[X(7), U(k),0(k)|dz +w(k)
kT

. 0(k+1)=0(k)+w,(k)
7 Y (k) =H[X (K)]+ v(k)

7’
7’
7’
7/

Augment the model with fictitious discrete
evolution equation

0(k):Vector containing unmeasured disturbances /
parameters to be estimated with states
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| State and Parameter Estimation 17 sombay

T

Prediction step:

[X(klk—l)}: 5((/(—1|k—1)+jF[X(T),U(k—1),e(k—1|k—1)]df

N 0
O(k14-1) 0(k -1 k-1)

Correction Step:

x(k | A x(h-1l k-1 )

LA’Ek : kq ) {62/( —1: k —1;} +L(k)|y(k)-Cx(k | k-1)]
Covariance Update

A(k)-[ axl.), B(,(k)—[ L.
() = (X(K 1| k1), U(k—1),0(k —1| k—1))
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T

Covariance Update : using augmented matrices

D (k) = explTAK)] : T, (k) = [explA(K) 18, (K)o

o () {@(k) rg(k)}

0] [0]

State Noise Covarance: {

Q [0]}

0] Q,
. zl

Tuning -7

-

Parameter -~

Fast changing parameter / disturbance : use
high values of co-variance



Experiment: Combined State and Automation Lab
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1 _ \Ijl (T, -T,) + 'BQ(Il) ‘\ Parameter to be estimated
1

dt simultaneously with states
dh 1 . Heat - loss fact
2 _ [F1+F2(I2)—F] p - Heat - loss factor
dt
de = L |:1 (Tl _Tz) + Fz (Ti2 _Tz) - UA(T2 _Tatm)
dt h2A2 IOCp

Q(l,)=7.9791,+0.9891° —0.0073I;
F,(1,)=3.9+271,-0.711; +0.0093I;

U=1395J/m*Ks ; F(h)=kyh,—h

I, : % current input to thyrister power controller
L, :% current input to control valve



Estimation of states and parameters Automation Lab

‘ [IT Bombay
..4:-‘A n'/:
3 using N

» Tank 1 temperature and heat loss
parameter are to be estimated using EKF

= Tank 2 temperature and level are
measured

s The system is kept in perturbed state by
perturbing the inputs (heater input and
tank 2 inlet flow)

= The flow to tank 1 is kept constant.

s The heat-loss parameter (p)is initialized
with a value of 0.8




Experimental result: Tank 1 temperature
and heat loss parameter estimates

Heat loss parameter
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= Nonlinear State Estimation

» Extended Kalman Filter
Deterministic Derivative-free estimators
Particle Filters

27
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*‘ Limitations of EKF

= Covariance update: Using local linearization
(Taylor series approximation) of nonlinear
system equations

= Requires evaluation of Jacobian at each time

step

= Smoothness requirement on system dynamics:
discontinuities not permitted

- Computationally expensive for large dimension
systems

= Propagation step assumes

Mean( Nonlinear Function ) = Nonlinear Function (mean)

E[9(x)] = g[E(X)]

28



Automation Lab
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C o mtanel ~ Acid mtmmtan ~s s L,'.l C..ad ~ onn
ﬁ cXdmpile Autonomous I’1YDT a oysitemnl
Uy
Pump 1 Ebﬁ f[)(]: Pump 2
Valve
U, Ug
<= >
ny A2 Valve hy
h, U
ds !
< <
usl qu Vive ds | H Valve

Discontinuities in state dynamics: EKF cannot be used

29
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‘ Example: Autonomous Hybrid System ' 5om®

iy i A 1<l

M%ZQmaxul_qz_qs_% (32) qz_zlkz\/l (hl h2)|u2
dh? hl =hl-h;; h2 =h2-h;
A2F=q2+q3+q4+q7—q5 (33)
dh3 A, =2,K;/|h2'=h3'[u,
A3~ == OnaUs +0, + 0 (34) | |
h2'=h2-h.;h3 =h3-h,

State
Dependent
Discrete
Variables

May, 12 UBC - UofA Workshop 30
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|  Autonomous Hybrid System IIT Bombay

‘ Autonomous Hybrid System: An example of class of systems
with discontinuities in the dynamics

The state vector consists of continuous as well as discrete
state variables, which can take only integer values.

The function G(.) is expressed as a combination of logic variables
such as OR, AND, XOR, IF. THEN ..ELSE etc.

Difficulty: Jacobian of F[.] cannot be computed due
to discontinuities introduced by the logic variables

May, 12 UBC - UofA Workshop 31
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| Derivative Free Filters 1T Bombay

}. Basic idea: Better estimates of the moments of a
distribution can be obtained using samples rather than using
the Taylor series approximation of the nonlinear function
(that transforms a random variable)

= Statistical linear regression is used instead of Taylor series

approximation

Derivative Free Filters

v

Deterministic Sampling

= Unscented Kalman Filter
= Divided Difference Filter
= Gauss-Hermite filter

= Central difference filter

l

Stochastic Sampling

= Particle Filters
= Ensemble Kalman Filter

32
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| Statistical Linear Regression imeomsa

ﬁ Given a random variable vector, e, and a nonlinear

function of the random vector, say € = F(e)

by statistical linearization approach a linear approximation of
e=F(e) =z Ae+b

is constructed by minimizing E[eT e]

with respect to (A,b)

The optimum is reached for the following choices of (A,b)

A=P..P.} and b=E]e

P.. = E|(e-El[e]) (e-Ele])"]

P..=E

— AE |e]

(e—Ele]) (e—Ele])"|

33
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| Statistical Linear Regression imeomtay

+

For these choice of optimal parameters, we have
Ele]=0

E [eeT] = P;l — PEEP;IPE_;

Identical expressions for optimal (A, b)

L~

~an ha Ao
Ldll UE Uc

l'mllﬂlml—llﬂ

ive Uy minimizing :[ee ]

In the literature, this linear approximation is also
referred to as linear least mean square
(LLMS) estimation.

34
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| Statistical Linearization Based Filters 117 sombay

= Sample generation: Uses a deterministic
sampling technique to select a finite set of
sample points

{i(‘)(k “11k=1), w =1, v o) - :1,2...N}

N
and define associated weights @ such that Z o =1
=1

Prediction: Propagate these samples through the system
dynamics to compute a cloud of transformed points

35
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| Statistical Linearization Based Filters 117 Bombay

+

XD (k| k=1) = F[xD(k-1|k =1),u(k -1), w? (k - 1)

y P (k) = H[RD (k | k —1) |+ v (k)

where j=12,..N

Statistics of nonlinearly transformed points

Sample Means

N N
2k 1k-)=Y oxP(klk-1) Fkik-)=> 03P k|k-1)

j=1 j=1

36
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| tcam mimt e e mea la o

CL_Llar - DA~ C .~ b %
SQIATIsSTicai LIHZUFIZUIIOH DUSZU Frlers

Sample Covariance
P00~ Yok 00w P =Xok 0] (]

£00K) =0 (K [k-D-x(k[k=1) (k) =5 (k| k-D=F(k k=D

Kalman Gain Update

-1

&,e €,e

L(k) =P, (k)| P, (k)|
Updated Mean and Covariance

X(k | k) = X(k [k =1)+ L(K)[y(k) = (k|k —1)]
P(k|k) = P(k |k -1)—L(K)P, (K)L(k)"

37
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|  Methods for Drawing Samples 17 zombay

}Define augmented vector, »°, its mean and covariance matrix, P?, as follows
yk=1)=[xk-1)7 wk-1" v(k)[
F(k=1]k-1) =[x(k-1|k-1)T 0" 0|
P?(k —1| k —1) = BlockDiag[P(k -1|k-1) Q R]

Sigma Point Generation

2M +1samplesare generated where M =dim( y)
7O k-11k-1) = 7(k-1|k 1)
Z(j+1) (k-1|k-1) = y(k-1|k-1) +p\/Pa(k ~1|k _1)@(1')
7UMD(k-1]k-1) = p(k 1] k_l)—P\/Pa(k—ll k -1
1=12,..M

¢ - Unit vector with j'th element equal to 1and rest equal to 0

38
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|  Methods for Drawing Samples 17 zombay

ﬁ Unscented Kalman Filter (UKF)

0 =+M + k where x is a tuning parameter
wi =r/(M+k)and wiyy = wiiper = 1/2(M + k)
tori=1.2..... M
These sample points and associated weights have been chosen such
that their weighted sample covariance matrix equals P*(k —1| k —1)

Divided Difference Kalman Filter (DDKF)

Covariance estimate computed using Stirling's multi-dimensional
polynomial interpolation.
The first and second order terms in Taylor series approximation are

approximated using central difference method with step-size 'h’
p=h
W1 =— (/?..2 — J[)/hz and Wi+l — Wi+ Mm+1 — l/?hz

fore=12,.... M
39
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Statistical Linearization Based Filters 117 sombay

*

UKF results in approximations accurate to third order
for Gaussian inputs for all nonlinearities.

For non-Gaussian inputs, approximations are accurate
to at least the second-order. Accuracy of third and
higher order moments determined by the choice of
tuning parameters

Sampling based filters be applied for state estimation
in systems with discontinuous nonlinear
transformations such as autonomous hybrid systems

Limitation: Do not work well when the conditional
densities of states are skewed, Multi-modal, non-
Gaussian

40
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Example: Autonomous Hybrid System 117 Bombay
0.5 } ‘ } ‘
| A A —— True
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: | . | |
% ' Al | ,z‘“. “\ : ‘{_/' ITALY YV ‘/
- 02 b L B N/ | A -
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0.1 ! \ 1 ! \ 1 ! |
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Example: Autonomous Hybrid System 117 eombay

Discrete State Estimates

I ‘ \ ‘ 1
H : ‘ : ‘ ‘ True
| |
| | |
E JL ———————————— - ﬁ 05 F------—-- == - -+ F-1------------ —
g g |
(NN, |
a a
> T o > Y 1 N
o o ‘ |
0 0
2 2 | |
g 05 True = - g 055 - N -
| ] | L
1 L L L ‘ 1 L \ ‘
0 100 200 300 400 0 100 200 300 400
Sampling Instants Sampling Instants
1 1
— | | |
| | | ~
E 0.5 H-- B R I (| I A - (N OG5 F-——--- - -t HHA--tF---——---—-------
S | | g
8 3
8 ol UL L Lo [ 5
i 0 < oL— e - tHn—
= O
w -
A 057 Estimated ||~~~ """~~~ - é’ 0.5 H------------ H i”ﬂ e R
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| Motivating Example IIT Bombay

ﬁ System with skewed, Multi-modal, non-Gaussian
conditional densities of states

a - ; ] | 25'27(1(5) | (auq a ,tb-r =
Lox(k)?

Measurement noise covariance (R) = 1

State noise covariance (Q) = 10
Initial state:  x(0|0) = O and P(0|0)=10.

May, 12 UBC - UofA Workshop 43
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MOTiVGTing EXGmPIC 11T Bombay

k=17
150 L] L] L] L] L] SI:I
]
., 100} - -
4 4
E £ 40r
m m
“ sop . “
20F
D Il Il Il p— U
-15 -10 -5 ] 5 10 i5 -15 15
X{k)
k=64
100 T T T T T 150
Sl
& 60f 2
(=8 [=%
E £
o 40r P
20F

3 10 12 -95 -10 -5 0 3 10 13

-?5 -10 -5 0
(k) Xik)

Histogram of particle filter generated samples at
few sampling instnat.
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| MOTiVGTing Example IIT Bombay

T

s Histogram indicates that the conditional
density of the states are multi-modal and
Time varying

» Estimators, such as EKF or sigma point
filters, which implicitly assume uni-modal
conditional densities of states, may not be
able to generate accurate state estimates

= This simple example underscores the need
to develop better estimation methods for
dealing with such pathological systems

45
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Gaussian Sum Filters IIT Bombay

Underlying assumption: any arbitrary PDF can be
approximated by a convex combination of Gaussian
distributions (Alspach and Sorenson, 1972)

pw (k)] = > BN[w.Q" ]

Multiple EKFs are run in parallel
Updated state estimate: convex combination of

nAiviAdiAl setimmats
lllUlVlULIUI CDIIIIIUICD

(k1K) = 30, (0RO (K k)

Weights recursively updated by application of Bayes'
rule and assuming that innovations of individual EKFs
have Gaussian distributions.

46
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| Gaussian Sum Filters IIT Bombay

+

L _ )
p [xHYk_l} A2 Zﬁﬂj__k«"'\“ xgji PE}:_IJ and p |x;|Y } ZJ{LJ BN xklk PLM]
— )

The conditional densities are approximated via a
convex combination of multiple Gaussian densities, i.e.

The Gaussian sum assumption implies that
Xl = f Xk [Z wj RN (3 Xk PHE::—I )| dXk = Z Hj, X
Weights are recursively updated by application of Bayes rule

[EEHY;‘:}
Z;L L P E{J)|Yﬂ

i = Hj 1
(7)

where {ek } represents the innovation sequence associated with j'th filter

47



| Particle Filters (PF) T Sombay

1 = Can deal with state estimation problems arising
from multimodal and non-Gaussian distributions

= Excellent reviews: Arulampalam et al., (2002),
Chen, Z. (2003), Bakshi and Rawlings, (2006)

= PF approximates multi-dimensional integration
involved in propagation and update steps using
Monte Carlo sampling.

Integral: j fF(X)p(X)dX = f f (X)dP(X)
Approximated as  f, :%i f[xO]

XD, X@),_ XN} iid. particles drawn from P(X)

48
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| Ensemble Kalman Filter 11T Bombay

}. Proposed by Evensen (1993) and is based on random
sampling of the state and the measurement noise
from their respective distributions

= Can work with arbitrary distributions of the state
disturbance and the measurement noise

= Good combination of stochastic sampling and
statistical linearization based filtering: uses only
first and second order moments, which are
generated using ensemble propagation and update

= Number of samples necessary for generating good
estimates can be large

49
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| Ensemble Kalman Filter 1T Bombay

ﬁ Computation in prediction and observer gain calculation
steps are similar to Statistical Linearization Based Filters.
Significant differences are as follows:

1.Samples are drawn only for w(k —1) and v(k).Samples of x(k —1)
are propagated from the update step at instant (k -1)

2. All samples are assigned equal weights,i.e. @ =1/N

3. Update step is used to generate samples for subsequent computations
RO (k1K) =3 (k| k—12)+ L[y (k) -5 (kIk -1)

N
f((i)(k | k) = %Zﬁ(i)(k | k)
i=1

Thus, no assumption has to be made about the nature of p[x(k) | Yk]
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Importance Sampling I1T Bombay

» Difficulty: PDF p(x) of x(k) is unknown
E[f (x(k))]=[ f(x(k))p(x(k))dx (k)

= Solution: Select importance density q(x)

p(x(k))
E[f(x(k))]=] f (X(k)){ aix (k))h(x(k))dx(k) Weighting

Draw from importance distribution
x (k) ~ q(x)

= Draw samples from proposal (importance) distribution
= Weight them according to how they fit the original
distribution

Function
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Importance Weigh’rs 11T Bombay

= Particles are weighted by /importance weights.
_ 1 N i
fux)=" D of X ® (k)]
=1

Importance weights are updated using Baye's Rule

() . k
o0 PN
q| xP(@:k) | Y* |
p[y()[xV () [p| x (k) |x? (k-1) |
B af xO (k) | x? (k-1), Y* ]
@; (K)

Z(?),-(k)

&,(k—1)

; (K) =
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|  Importance Sampling using EKF 17 eombay

*or example, when EKF is used to generate the importance
distribution, steps involved in importance sampling are as follows

For each particle x” (k —1| k —1) wherei=1,2,...N
1. Implement EKF and estimate X" (k | k —1),x® (k | k) and P® (k | k)
2. Construct importance density as N[i(‘) (k1k),PO(K| k)]and draw a
new sample from this distribution, i.e.x® (k | k) ~ N[g® (k | k), P® (k | k)]

K0 kgk) = K0k + (B (ki) 0
YWO~N(0, 1)
3.Compute the _unnormaized yveight @, using Requires running
ply (k) 1x9 (k) |= Nn(x® (k | K)) R] N EKFs in parallel
p[y(k) | x© (k)]z N[i(" (k |k —2), Q] : Computationally

p[x® (k) | x® (k —1), Y*]= N[x® (k [ k), P® (k | K)] Expensive
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| Particle Filter Algorithm "o

T

Initialization step: Create particles as samples from
the initial state distribution.

As k™ instant:
= Sample each particle from a proposal distribution

- EKF as proposal
= UKF as proposal

= Compute weights for each particle using the
observation value.

= Resample particles generating new particles
according to importance weights
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PF: Schematic Diagram IT Bombay

PF with importance sampling and re-sampling

PXpl¥p1) O Y ' O ' O @@ @ @ particle cloud

{x,"}

correction

P(&Wn) Q .‘ = ) e ‘ @B . resampling

prediction

XAl S .. 0 _ i S {xn+1(i)}

(Figure taken from Chen, Z., 2005)
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ﬁ‘ Motivating Example (Contd.)

Comparison of Mean Sum Squared Estimation
Error (SSEE) values over 25 trials

7]
T
™

Falter SSEE | g

|'_."|
i [ea
|

FF)

First Order EKF | 70011 376

[terated EKF 19932 949

UKF 17727 5.44

EnKkF (N = 1000) | 81025 J.56

SIR PF (N = 1000) | 2100 1
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k)

-25

May, 12

20 30 40 50
Sanpling Instant

Comparison of true states and
states estimated using SIR PF

UBC - UofA Workshop
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PF: Advantages & Limitations i somba

= PF can, in principle, deal with arbitrary probability
distributions of state propagation error

= It suffers from ‘curse of dimensionality' like most
other nonlinear filters developed under Bayesian
framework

= Successful when EKF / UKF can be used to
generate proposal density. If EKF/UKF diverge,
then, most of the samples will be mostly not useful.

= As proposed, it cannot deal with constraints on
states / parameters
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| Constrained State estimation IIT Bombay

T

= Inmost physical systems, states / parameters are
bounded, which introduces constraints on state / parameter
estimates.

= Moving horizon estimation (MHE)
= Constrained Recursive Formulations

= Moving horizon estimation (MHE) (Liebman et al. 1992 , Rao
and Rawlings, 2002):

- State estimation formulated as constrained nonlinear
optimization problem over a moving window [k-N:K]

= Bounds on states/parameters or any other algebraic
constraints can be handled
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| Recursive Constrained Estimation 17 sombay

1MHE formulation

= Easy to handle multi-rate and delayed
measurements.

= Requires a large dimensional nonlinear optimization
problem to be solved at each time step

Recursive constrained formulations

= Based on the premise that the constraint violations
occur mostly in the update step

= Combines computational advantages of recursive
estimation while handling constraints

= Constrained optimization problem solved over single
time step, which make them attractive from the
viewpoint of online computations.
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Recursive Constrained Estimators "' ™™

'

Constrained EKF or Recursive Dynamic data
Reconciliation (RNDDR or C-EKF)

(Vachhani et al., AIChEJ, 2004)

Constrained-UKF (C-UKF) or URNDDR
(Vachhani et al., Journal of Process Control, 2006)
Constrained Ensemble Kalman Filter (C-EnKF)

(Prakash et.al, I.EC.R,, 2010)
Constrained Particle Filter (C-PF)

(Prakash et. al, JPC, 2011)
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| Constrained EKF 1T Bombay

3 RNDDR (or C-EKF)

Prediction Step: State and covariance propagation
steps identical to that of EKF

Update Step: solving constrained optimization
problem over [k-1:Kk]

(k| K) = ”zli;e(m K—D)" P(k |k -1) “e(k |k -1) +e(k)” R e(K)
X

g(k | k=) =x(K)—x(k | k—1)
e(k) =y(K)—H[x(K)]

SUbJZCT to XL < X(k) < XH

63



Automation Lab

Constrained EnKF IIT Bombay

Prediction Step: Ensemble prediction identical to
that of unconstrained EnKF

M

X0 (K | k) = l'(r; e (k |k —1)T.P(k 1k=1)"e® (k | k=1) +e® (k)" R % (k)]
X

(
eV (k|k-1)=x(k)-xO(k[k-1) ; (k) =y(K)-(H[x(k)]+v"K))

Subject to constraints: X, < X(K) < x,
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| Example: Gas-Phase Reaction " imeombay

Bench-mark Problem: Gas-phase irreversible reaction
in a well mixed, constant volume, isothermal
batch reactor (Haseltine and Rawlings, 2003)

2A —>B kK,=0.6
36 O

d _

P _ i p2 P(0]0) { ; 36}
dt

Ps _ g 2 x(010)=[3 1]
dt

| s00-[o1 43
P=[1 1
Ly

Note that the partial pressures should not be negative.
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Unconstrained EnKF

™ N - o

100) _ _
10)

True
—==-=-=- Estimated(N

=-=:=-= Estimated(N

1
[T

V JO 8Inssald [enJed

100

90

70

50

40

30

20

10

Sampling Instants

I I v I I I
| | .\. | | | /
| | A | | >
| A | g
| R | <™
| | T | ,\v
R e e e A HhaC Tt
I | N | I
| o | [
| | oyl | [
k4 \
| | i | | \
| | o | I \
| LN | | )
I T N ﬂ\lww
| [ | | v
| | 21 | |
s 7z
| | SO | | v
| | w, | ,v
| | s | R
\\\T\\\T\m_\ﬂwwwwww\ﬂ\\\\
| | L | ~
I [ | n
| | LA | Y
| | v | &~
| | 4 | ,va
R I N Y R B S
| | J 1
~ [ [l I
o ~| I S |
o O 4
— | N —_, |
11 | S - |
zzZ P ==l
S &l T | \\.,
— — e~ _—_— — g _ - -
gel T S0 T
g < i |
€ E \ 1
L == S ] !
S 0 0 N RS |
= owow N, ,__ |
1! A s | _
L A N I
[ ; 14 I
[ U {
[ z Pl ”
|
|
|
|
1
1

100

90

80

70

60

50

40

Sampling Instants

66

UBC - UofA Workshop

May, 12



Automation Lab
IIT Bombay
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| Moving Horizon Estimation i eomay

Formulate a sequence of optimization problems over
a moving window [k-N K]

, V, oIx(k = N)]
min | ) &
KN xR) 3 N[W(J)] Q'w(j)+ ;N[v(J )] Rv())
K Subject to |

w(j) = x(j +1) = F[x(j),u(/)]
v(§) = y(i) - H[x())]
Bounds on state : x, <x(j)<x,
Solution yields smoothed and current state estimates,
i.e., x(k-N|k),x(1]k),....., x(k-1| k), x(k | k)
under the constraints (bounds on the states)
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Moving Horizon Estimation i eomay

V. o [x(k = N)]: Arrival Cost

‘X(O) -x(0] O)Hp(om)1
V y[x(k=N)|= { kna - o keNAL N
+ > Wil Q*w(i)+ D V(D R™Mv(j)

j=1 j=0

= —log plx(k —N) | Y*™"]

Important to construct reasonably accurate
estimates of the Arrival Cost:
an open issue in MHE literature

Conditional density : difficult to estimate
IN the constrained nonlinear case.
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| Arrival Cost Estimation 1T Bombay

T

Suppose we decide to use the mean squared error type
approximation for the arrival cost, I.e.

A 2
Vi [x(k=N) = (k= N) = R(k =N Tk = N[, o _yie_n-
then, how to estimate P(k — N | k — N) in the presence of consraints?
= Constrained (sampling based) Recursive Bayesian

estimators, such as C-EnKF or C-PF, are better
suited for arrival cost estimation

= Covariance estimate generated from the constrained
samples is used for approximating the arrival cost.

(Lopez-Negrete et al., JPC, 2011)
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| Arrival Cost Estimation: Case Study 117 gombay

ﬁ CSTR System with constraints on states

dC F, .
_d;‘- = (G —G) - 2k(TR)Cs
Ty F,; 2(-AHp)k(TR)C;  UA
d—ﬁ = —(Tg' —Tg) + £ - (Tg — Taw)
i vV OCp VpCy
dTow  Fow UA
— -"T.'J]_ _ TL N+ ."T - T .
dt vm_'l o w) 1'-"'1w.'[?".-_'r.":-ﬁml.apIl : ow)

k(Tp) = ky exp [‘Eﬁ]

RTg
Cae[0,1], Tr €[200, 420], Tay €[200, 420].

If arrival cost is estimated with a constrained recursive filter
instead of EKF, can it reduce the window size and,
in turn, reduce the on-line computations?
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Arrival Cost Estimation: Case Study 117 Bombay

=

0.9+
MHEN
0.8 — % — CEnkF
CEnKFPF
0.7 — 83— UMDDR
— < — UNDDRFF
o OEF —%— wCEnKFPF
=
== 05
=
=2 04f
0.3+
0.2 v

e e e
1 2 3 4 5 6 F) a a 10
Horizon Length (N)

MSE as a function of horizon length when using constrained
filters for the arrival cost approximation for the CSTR example
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Arrival Cost Estimation: Case Study 117 gombay

L

EKF based approximations of the arrival cost introduce
unwanted errors, which require the choice of longer
horizon lengths and a larger optimization problem to be
solved on-line.

Particle-based filters can approximate arrival cost
distributions using samples, and thus require few
assumptions on the type of distribution. Moreover,
CEnKF and constrained C-PF handle bounds on the
states, and thus provide a more consistent
approximation of the arrival cost.

Resulting improvements in the arrival cost
approximation allow us to use a smaller horizon window
for MHE, and a smaller NLP can be solved on-line
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| Estimation with M-P-M

T

s Model-Plant-Mismatch
= Parameter drifts / abrupt changes
= Equipment fouling
= Catalyst degradation
= Leaks
= Sensor / actuator biases / failures

m Is the state estimator "robust” to MPM?

= Is estimation error bounded if MPM is
bounded?

= Can we find which part of the model is bad ?
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= Extended the nominal convergence proof of by
Reif et al. (1999) to show

"If MPM is restricted to a compact set, then the
observer errors are bounded (i.e. input to state
(ISS) stable)”

= Using a EKF in Nonlinear MPC for offset free
control:

"If observer is ISS and NMPC is nominally stable,
then closed loop system obtained by combining
the observer with the NMPC is Input-to-State
practically Stable (ISpS)”

(Huang, Patwardhan, Biegler, JPC, 2011)
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— . . [IT Bombay
estimation

+

= Direct approach (state augmentation)

Augment state vector with extra states corresponding to
faults

Simultaneously estimate state and ‘fault states’

= Advantages

Arbitrary type of fault behavior (step/slow drift) can be
tracked

Magnitude estimate of the is available and can be
used for achieving fault to lerance

-

.C Jdd
1 aull

-y

= Limitation

Number of extra states which can be estimated cannot
exceed number of measurements.
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‘ Fault Diagnosis: Sophisticated schemes for one-
time abnormal behavior identification

Disturbances Faults

Outputs
Model I:

Corrections Lnhputs

_|_

Set of Active
Faults Y

? )
[

L - —
Identified
Faults

Plant-model mismatch

(Deshpande at al., JPC, 2009)
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3‘ Active Model Maintenance

= Objectives

= Online detection of multiple abrupt changes
occurring sequentially in time

= On-line model correction based on diagnosis
= Approach: GLR Method
= Diagnosis: Generalized Likelihood Ratio method

= Innovation sequences generated by KF / EKF
carry signature of change

- Exploits the pattern of innovation to identify
fault magnitude fault type

= Fault that corresponds to maximum value of
likelihood ratio is identified as fault
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Issues in State Estimation i eombay

Robustness to plant-model mismatch: Model accuracy is
critical o state estimation

Noise Model Parameters: Measurement and state noise
co-variances are difficult to estimate. These matrices
are often treated as tuning parameters

Number of extra states (unmeasured disturbances /

parameters) estimated cannot exceed number of
measurements

Computationally efficient methods for irregularly
sampled multi-rate measurement scenario

Conditional density and arrival cost estimation in
presence of constraints on states
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D J L I

¥,

onlinear state estimation: rich and highly active research area

State estimation of systems governed by DAE in Bayesian
framework

Sampling based filters suffer from the curse of
dimensionality: handling computational complexities that can
arise in large scale systems

Optimal state estimation in the presence of inequality
constraints

Integration of fault diagnosis techniques for on-line model
maintenance: isolation of active set of changing parameters
and dealing with structural MPM

Estimation in presence of irregularly sampled and delayed
measurements

Simultaneous state and parameter estimation
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