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Models: mechanistic models of the form 

 (k) H (k) (k)

 θwuxx ),(),(),()1( kkkFk 

w(k): uncertainty in states due to unknown inputs 
(k): m s m nt s (n is ) 

 (k) H (k) (k) y x v

v(k): measurement errors (noise) 
(stationary random processes with known statistical properties) 

ObjectiveObjective
Find the conditional probability density function (PDF),

kp (k)|  x Y

Yk :set of all the available measurements             
up to time instant k. 

p (k)|  x Y
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Alternative ApproachesAlternative Approaches
 Sequential Unconstrained Estimation: Methods 

that obtain the conditional density function by that obtain the conditional density function by 
application of Bayes’ rule, and then obtain the 
estimate using one of the optimization criteria 

 Direct Optimization: Methods that assume a 
suitable form for the prior probability density 
f ti  d t th  ti ti  bl  function and convert the estimation problem 
directly into an optimization problem.

Sequential constrained estimators  Sequential constrained estimators 
 Moving horizon estimator
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Prediction step: posterior density at previous 
ti  t  i  t d i t  t ti  t  time step is propagated into next time step 
through state transition density to compute prior 

k 1 
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Update step: Computation of posterior density from the prior
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The Posterior Density function constitutes the complete 
solution to the sequential estimation problem  
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solution to the sequential estimation problem. 
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P dicti n nd upd t  st t  p vid s n ptim l  Prediction and update strategy provides an optimal 
solution to the state estimation problem

involves high dimensional integration   involves high-dimensional integration. 
 exact analytical solution to the recursive propagation of 

the posterior density is  difficult obtain p y ff

 Linear state estimation: possible to compute 
analytical solution  ana yt ca  so ut on  

 Nonlinear filtering techniques: develop 
approximate and computationally tractable sub-approximate and computationally tractable sub
optimal (local) solutions to the  sequential 
Bayesian estimation problem
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P di ti  st Prediction step
 Taylor series approximation 

D  l  b d  Deterministic sampling based approximations
 Stochastic sampling (Monte Carlo) based 

i ti  approximations 

U d    Update step 
 Statistical linear regression or linear minimum 

  i i  mean square estimation 
 Monte Carlo sampling based approximations
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 Most popular and widely used Nonlinear Bayesian Filter 
 Propagation step: Predicted Mean

 1|)()1|(ˆ  kYkEkk xx

 Propagation step: Predicted Mean
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Gaussian approximation: simplest method to approximate 
numerical integration problem due to its analytical tractability

Local asymptotic convergence of estimation error  (in absence of 
the state and the measurement noise) has been established 

i  L ’ d th d (R if t l  1999) 
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using Lyapunov’s second method (Reif at al. 1999) 
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Steam, TjoTj-1, TR-1 Tj-2, TR-2

CA(1,t), CB(1,t)

T T T Tj-5, TR-5

A                B                  C 

CAo, TRo
CC(1,t), TR(1,t)

(Endothermic Reaction)

Tj(0,t)

State Estimation Problem                               
Estimate concentration profile inside the reactor using 

f  t t  t  l  th  l th    few temperature measurements along the length    
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0 1 2 N N + 1

Plant Model

No. of internal discretization points 19 4p

No. of states 80 20

No  of jacket side temp  measurements 3 3No. of jacket side temp. measurements 3 3

No. of reactor side temp. measurements 3 3
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Simulation Parameters

Variable Nominal Value Fluctuations added

F d Fl 1 / 0 01 /Feed Flow 1 m/min 0.01 m/min

Feed Concentration 4 mol/lit 0.14 mol/lit

T  0 4 KTemperature measurements - 0.4 K

Steam flow rate 1 m/min -Steam flow rate 1 m/min

 Performance of EKF under the effect of feed flow and 
feed concentration fluctuations was studied

 The estimated concentration approaches the true 
concentration within 5 minutesconcentration within 5 minutes
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Actual and Estimated Exit 
Concentration of BConcentration of B
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of product B at different time instants
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Estimation of deterministic changes in 
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Prediction step:
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Covariance Update : using augmented matrices 
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Parameter Estimation on Heater Mixer SetupParameter Estimation on Heater-Mixer Setup

CV-1

Cold Water Flow 3-15 psi
Input

CV-1
CV-2

Cold Water Flow

Tank - 1T
T

L
TTank - 2

Thyrister
Control 
Unit

4-20 mA 
Input 
Signal

TT
T
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IIT BombayExample: Stirred Tank Heater-MixerExample: Stirred Tank Heater Mixer
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Estimation of states and parameters 
using EKF using EKF 

T k 1 t m t  d h t l ss  Tank 1 temperature and heat loss 
parameter are to be estimated using EKF

k   d l l   Tank 2 temperature and level are 
measured

 The system is kept in perturbed state by 
perturbing the inputs (heater input and p g p ( p
tank 2 inlet flow)

 The flow to tank 1 is kept constant. The flow to tank 1 is kept constant. 
 The heat-loss parameter (β)is initialized 

with a value of 0 8with a value of 0.8
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Experimental result: Tank 1 temperature                      
and heat loss parameter estimatesand heat loss parameter estimates
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 Covariance update: Using local linearization p g
(Taylor series approximation) of nonlinear 
system equations  

 l  f b  h   Requires evaluation of Jacobian at each time 
step

Smoothness requirement on system dynamics:  Smoothness requirement on system dynamics: 
discontinuities not permitted 

 Computationally expensive for large dimension p y p
systems 

 Propagation step assumes 

   ( ) ( )

 (mean) Function Nonlinear  ) Function Nonlinear Mean( 
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Example: Autonomous Hybrid SystemExample: Autonomous Hybrid System

u1
Pump 1 Pump 2

u1

Valve 
u2 u6

Valve
u4

h1

h2

h3
q2

q3

Valve
u3

u8

q3

qd q5
Valve 

Discontinuities in state dynamics: EKF cannot be used
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Autonomous Hybrid System: An example of class of systems 
ith di ti iti  i  th  d i

The state vector consists of continuous as well as discrete 
state variables, which can take only integer values.

with discontinuities in the dynamics

state variables, which can take only integer values.
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)(
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The function G( ) is expressed as a combination of logic variables The function G(.) is expressed as a combination of logic variables 
such as OR, AND, XOR, IF..THEN ..ELSE etc.

Difficulty: Jacobian of F[.] cannot be computed due
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Difficulty  Jacobian of F[.] cannot be computed due
to discontinuities introduced by the logic variables 
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 Basic idea: Better estimates of the moments of a 
di t ib ti   b  bt i d i  l  th  th  i  distribution can be obtained using samples rather than using 
the Taylor series approximation of the nonlinear function 
(that transforms a random variable)

 Statistical linear regression is used instead of Taylor series 
approximation 

Derivative Free Filters 

Deterministic Sampling 
 Unsc nt d K lm n Filt r Stochastic Sampling Unscented Kalman Filter
 Divided Difference Filter
 Gauss-Hermite filter 

Stochastic Sampling
 Particle Filters 
 Ensemble Kalman Filter
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The optimum is reached for the following choices of (A,b)
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For these choice of optimal parameters  we haveFor these choice of optimal parameters, we have

 TEminimizingbyderivedbecan
 )( optimalfor  sexpression Identical

ee
b A,

In the literature  this linear approximation is also 

 Eminimizingby derivedbecan ee

In the literature, this linear approximation is also 
referred to as linear least mean square 

(LLMS) estimation.
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 Sample generation: Uses a deterministic  Sample generation: Uses a deterministic 
sampling technique to select a finite set of 
sample pointssample points
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ii 




Prediction: Propagate these samples through the system 
dynamics to compute a cloud of transformed points 
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dynamics to compute a cloud of transformed points 
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Statistical Linearization Based Filters Statistical Linearization Based Filters 
Sample Covariance 
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Unscented Kalman Filter (UKF) 

parameter  tuninga is   where  M

)1|1(equalsmatrixcovariancesampleweightedthat their
such chosen been  have  weightsassociated and points sample These
 kkaP

Divided Difference Kalman Filter (DDKF)

)1|1(equalsmatrix covariancesample weightedthat their kkP

Covariance estimate computed using Stirling’s multi dimensional Covariance estimate computed using Stirling s multi-dimensional 
polynomial interpolation.

The first and second order terms in Taylor series approximation are 
i t d i  t l diff  th d ith t i  ‘h’approximated using central difference method with step-size ‘h’
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UKF results in approximations accurate to third order  UKF results in approximations accurate to third order 
for Gaussian inputs for all nonlinearities. 

 For non-Gaussian inputs  approximations are accurate  For non-Gaussian inputs, approximations are accurate 
to at least the second-order. Accuracy of third and 
higher order moments determined by the choice of g y
tuning parameters

 Sampling based filters be applied for state estimation 
in systems with discontinuous nonlinear 
transformations such as autonomous hybrid systems

 Limitation: Do not work well when the conditional 
densities of states are skewed, Multi-modal, non-
Gaussian

May, 12 UBC - UofA Workshop 40
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State Estimation using UKF
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Discrete State Estimates
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System with skewed, Multi-modal, non-Gaussian y
conditional densities of states

Measurement noise covariance (R) = 1 

St t  i  i  (Q)  10State noise covariance (Q) = 10

Initial state :      x(0|0) = 0 and P(0|0)=10.
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Histogram of particle filter generated samples at 
f  li  i t t
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few sampling instnat.
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Hist m i di t s th t th  diti l  Histogram indicates that the conditional 
density of the states are multi-modal and 
tim  intime varying

 Estimators, such as EKF or sigma point 
f l  h h l l   d l filters, which implicitly assume uni-modal 
conditional densities of states, may not be 
bl      able to generate accurate state estimates

 This simple example underscores the need p p
to develop better estimation methods for 
dealing with such pathological systems g p g y
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 Underlying assumption: any arbitrary PDF can be y g p y y
approximated by a convex combination of Gaussian 
distributions (Alspach and Sorenson, 1972) 

M l i l  EKF    i  ll l

wN
(i)

i
i 1

p[w(k)] N w,Q


    
 Multiple EKFs are run in parallel
 Updated state estimate: convex combination of 

individual estimatesindividual estimates
xN

(i)
i

i 1

ˆ ˆ(k | k) (k) (k | k) x x

 Weights recursively updated by application of Bayes’ 
rule and assuming that innovations of individual EKFs 

i 1
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The conditional densities are approximated via a pp
convex combination of multiple Gaussian densities, i.e.

The Gaussian sum assumption implies that

Weights are recursively updated by application of Bayes rule
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 Can deal with state estimation problems arising p g
from multimodal and non-Gaussian distributions 

 Excellent reviews: Arulampalam et al., (2002),    p , ( ),
Chen, Z. (2003), Bakshi and Rawlings, (2006)

 PF approximates multi-dimensional integration pp g
involved in propagation and update steps using 
Monte Carlo sampling. p g

 
XX

XdPXfdXXpXf )()()()(Integral:

Approximated as  



N

i

i
N Xf

N
f

1

1 )(
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{X(1), X(2),…X(N)}: i.i.d. particles drawn from P(X)
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 Proposed by Evensen (1993) and is based on random p y
sampling of the state and the measurement noise 
from their respective distributions

 Can work with arbitrary distributions of the state 
disturbance and the measurement noise

 Good combination of stochastic sampling and 
statistical linearization based filtering: uses only g y
first and second order moments, which are 
generated using ensemble propagation and update

 Number of samples necessary for generating good 
estimates can be large 
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Computation in prediction and observer gain calculation  
steps are similar to Statistical Linearization Based Filters. 
Significant differences are as follows:

1)-(kinstant at  step update  thefrom propagated are
 )1( of Samples .)( and )1(for only drawn  are Samples 1.  kkk xvw

Ni /1   i.e.  weights,equal assigned are samples All 2. 

 iii k|kkkkkkk yyLxx )1(ˆ)()()1|(ˆ)|(ˆ
nscomputatiosubsequentfor  samplesgeneratetousedis step Update.3

)()()( 

 k

N

i

ii kk
N

kk xx )|(ˆ1)|(ˆ
1

)()( 
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Particle Filter based on Sequential 
Importance SamplingImportance Sampling

 Difficulty: PDF p(x) of x(k) is unknown D ff cu ty  DF p( ) of ( ) s un nown 

   )())(())(())(( kdkpkfkfE xxxx

 Solution: Select importance density q(x) 

  )())((
))((
))(())(())(( xx

x
xxx kdkq

kq
kpkfkfE  




 Weighting 
Function

)(~)(
ondistributi importancefrom Draw

)( xx qki

Function

 Draw samples from proposal (importance) distribution 
 Weight them according to how they fit the original 

di ib i
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 Particles are weighted by importance weights.

 
N

i
iN kf

N
kf 1 )())(( )(xx 

Importance weights are updated using Baye’s Rule 

iN 1

(i) k

i (i) k

p (1: k) |
(k)

q (1: k) |

   
  


x Y

x Y
(i) (i) (i)

i(i) (i) k

q (1: k) |

p (k) | (k) p (k) | (k 1)
(k 1)

q (k) | (k 1)

  
        

  


x Y

y x x x

x x Y

i
i N

q (k) | (k 1),

(k)(k)
(k)

  


 





x x Y
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For example, when EKF is used to generate the importance 
di t ib ti  t  i l d i  i t  li    f ll    distribution, steps involved in importance sampling are as follows   

,...2,1  where)1|1( particleeach For 
(i)(i)(i)

(i) Nikkx 

)|(and)|(),1|(estimateandEKFImplement 1. (i)(i)(i) kkkkkk Pxx 

 
 

      a draw and)|(),|( asdensity  importanceConstruct  2. (i)(i) kkkk PxN
 )|(),|(~)|(i.e. on,distributi  thisfrom sample new (i)(i)(i) kkkkkk PxNx

 using ~ weight dunnormaize  theCompute .3 i Requires running
    
   

   
),1|()(|)(
,)|()(|)(

(i)(i)

(i)(i)

kkkkp
kkkkp

QxNxy
RxhNxy




Requires running
N EKFs in parallel
: Computationally 

Expensive 
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Initi liz ti n st p: C t  p ticl s s s mpl s f m Initialization step: Create particles as samples from 
the initial state distribution.

A  kth i t tAs kth instant:
 Sample each particle from a proposal distribution

 EKF as proposal
 UKF as proposal

C t  i ht f  h ti l  i  th   Compute weights for each particle using the 
observation value.
R l  l   l   Resample particles generating new particles 
according to importance weights
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PF with importance sampling and re-samplingF w th mportanc  samp ng an  r samp ng
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(Figure taken from Chen, Z., 2005) 
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Comparison of Mean Sum Squared Estimation ompar son of M an Sum Squar  Est mat on 
Error (SSEE)  values over 25 trials
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Motivating Example (Contd )Motivating Example (Contd.)

Comparison of true states and 
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states estimated using SIR PF
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 PF can  in principle  deal with arbitrary probability  PF can, in principle, deal with arbitrary probability 
distributions of state propagation error

 It suffers from ‘curse of dimensionality’ like most  It suffers from curse of dimensionality  like most 
other nonlinear filters developed under Bayesian 
framework framework 

 Successful when EKF / UKF can be used to 
generate proposal density  If EKF/UKF diverge  generate proposal density. If EKF/UKF diverge, 
then, most of the samples will be mostly not useful. 

 As proposed  it cannot deal with constraints on  As proposed, it cannot deal with constraints on 
states / parameters  
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 Motivation and Origin   Motivation and Origin  
 Linear State Estimation 

 Kalman filter
 Nonlinear State Estimation  

 Extended Kalman Filter
D t i isti  D i ti f  sti t s Deterministic Derivative-free estimators

 Particle Filters   
 Constrained State EstimationConstrained State Estimation
 Estimation under Model-Plant Mismatch 

 Robustness 
 On-line Model Maintenance  

 Future research directions
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 In most physical systems, states / parameters are p y y , p
bounded, which introduces constraints on state / parameter 
estimates. 
 Moving horizon estimation (MHE)
 Constrained Recursive Formulations

 Moving horizon estimation (MHE) (Liebman et al. 1992 , Rao
and Rawlings, 2002): 
 State estimation formulated as constrained nonlinear 

optimization problem over a moving window [k-N:k]
B d   t t / t    th  l b i   Bounds on states/parameters or any other algebraic 
constraints can be handled
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MHE formulation
 Easy to handle multi-rate and delayed 

measurements. 
R qui s  l  dim nsi n l n nlin  ptimiz ti n  Requires a large dimensional nonlinear optimization 
problem to be solved at each time step 

Recursive constrained formulations
 Based on the premise that the constraint violations 

 tl  i  th  d t  t  occur mostly in the update step 
 Combines computational advantages of recursive 

estimation while handling constraints m g
 Constrained optimization problem solved over single 

time step, which make them attractive from the 
viewpoint of online computations  
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Constrained EKF or Recursive Dynamic data  Constrained EKF or Recursive Dynamic data 
Reconciliation (RNDDR or C-EKF)
(Vachhani et al  AIChEJ  2004)(Vachhani et al., AIChEJ, 2004)

 Constrained-UKF (C-UKF) or URNDDR
( ) (Vachhani et al., Journal of Process Control, 2006) 

 Constrained Ensemble Kalman Filter (C-EnKF)
(Prakash et. al, I.EC.R., 2010) 

 Constrained Particle Filter (C-PF)Constrained Particle Filter (C PF)
(Prakash et. al, JPC, 2011) 
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RNDDR (or C-EKF)
Prediction Step: State and covariance propagation 

steps identical to that of EKF

Update Step: solving constrained optimization 
problem over [k-1:k] problem over [k 1 k] 

)()()1|()1|()1|(
)(

min
)|(ˆ 11 kkkkkkkk

k
kk TT eReεPεx  

 
)1|(ˆ)()1|(

)()()|()|()|(
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)|(

kkkkk
k

xxε
x


 )()()( kHkk xye 

k xxx  )(Subject to
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Prediction Step: Ensemble prediction identical to Prediction Step: Ensemble prediction identical to 
that of unconstrained EnKF

Update Step: solving constrained N optimization 
problems over [k-1:k] 

 )()()1|()1|()1|(
)(

)|(ˆ )(1)()(1)()( kkkkkkkk
k

Min
kk iTiiTii eReεPε

x
x  

. 

)(

  )()()()(;)1|()()1|( )()()()( kkHkkkkkkk iii
c

i vxyexxε 

Subject to constraints: UL k xxx  )(
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Bench-mark Problem: Gas-phase irreversible reaction p
in a well mixed, constant volume, isothermal 
batch reactor (Haseltine and Rawlings, 2003)

12A B k 0.6 

2Adp 2k
36 0

P(0 | 0)
 

  2A
1 A

2B

p 2k p
dt

dp k

  ( | )
0 36 

 

 (0 | 0) 3 1x2B
1 A

p k p
dt

p



 

 (0 | 0) 3 1x

 ˆ(0 | 0) 0 1 4 5x  A

B

p
P 1 1

p
 

  
 

 (0 | 0) 0.1 4.5x
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Note  that the partial pressures should not be negative.
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Sampling Instants

(Prakash, Patwardhan and Shah. I.E.C.R., 2010)
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Formulate a sequence of optimization problems over 

 NkV x   )(

p p
a moving window [k-N,k] 
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Important to construct reasonably accurate 
estimates of the Arrival Cost: estimates of the Arrival Cost: 

an open issue in MHE literature 

casenonlineardconstrainein the
 estimate todifficult :density lConditiona
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error typesquaredmeantheusetodecideweSuppose

  )|(ˆ)()(

i.e. cost, arrival for theion approximat
 error typesquaredmean theusetodecide weSuppose

2NkNkNkNkV  
?consraints of presence in the )|( estimate  tohow then,
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P

xxx
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 Constrained (sampling based) Recursive Bayesian 
estimators, such as C-EnKF or  C-PF, are  better 
suited for arrival cost estimation

 Covariance estimate generated from the constrained 
l  i  d f  i ti  th  i l t    samples is used for approximating the arrival cost.   
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CSTR System with constraints on states 

If arrival cost is estimated with a constrained recursive filter
instead of EKF, can it reduce the window size and, 
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in turn, reduce the on-line computations?
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MSE as a function of horizon length when using constrained 
filters for the arrival cost approximation for the CSTR example
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filters for the arrival cost approximation for the CSTR example
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EKF based approximations of the arrival cost introduce  EKF based approximations of the arrival cost introduce 
unwanted errors, which require the choice of longer 
horizon lengths and a larger optimization problem to be g g p p
solved on-line. 

 Particle-based filters can approximate arrival cost 
dist ib ti s si  s mpl s  d th s i  f  distributions using samples, and thus require few 
assumptions on the type of distribution. Moreover, 
CEnKF and constrained C-PF handle bounds on the 
states, and thus provide a more consistent 
approximation of the arrival cost.
R lti  i t  i  th  i l t  Resulting improvements in the arrival cost 
approximation allow us to use a smaller horizon window 
for MHE, and a smaller NLP can be solved on-linef r MHE, an  a ma r NL  can   n n
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 Motivation  Motivation 
 Linear State Estimation 

 Kalman filterKalman filter
 Nonlinear State Estimation  

 Extended Kalman Filter
 Deterministic Derivative-free estimators
 Particle Filters   

 Constrained State Estimation   
 Robust Estimation and On-Line Model 

MMaintenance
 Future research directions

May, 12 UBC - UofA Workshop 74



Automation Lab
IIT BombayEstimation with M-P-MEstimation with M P M

 Model-Plant-Mismatch  Model Plant Mismatch 
 Parameter drifts / abrupt changes 

Equipment fouling Equipment fouling
 Catalyst degradation

Leaks Leaks
 Sensor / actuator biases / failures

 Is the state estimator “robust” to MPM?
 Is estimation error bounded if MPM is 

bounded? 
 Can we find which part of the model is bad ?
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 Extended the nominal convergence proof of by  Extended the nominal convergence proof of by 
Reif et al. (1999) to show
“If MPM is restricted to a compact set, then the If MPM is restricted to a compact set, then the 
observer errors are bounded (i.e. input to state 
(ISS) stable)”

 Using a EKF in Nonlinear MPC for offset free 
control: 
“If observer is ISS and NMPC is nominally stable, 
then closed loop system obtained by combining  
the observer with the NMPC is Input to State the observer with the NMPC is Input-to-State 
practically Stable (ISpS)”  
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(Huang, Patwardhan, Biegler, JPC, 2011)
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Esti ti  Estimation 

Direct approach (state augmentation) Direct approach (state augmentation)
 Augment state vector with extra states corresponding to 

faults 
 Simultaneously estimate state and ‘fault states’ 

 Advantages 
 Arbitrary type of fault behavior (step/slow drift) can be 

tracked 
 Magnitude estimate of the fault is available and can be  Magnitude estimate of the fault is available and can be 

used for achieving fault tolerance   
 Limitation

 Number of extra states which can be estimated cannot 
exceed number of measurements.  
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Fault Diagnosis: Sophisticated schemes for one-
ti  b l b h i  id tifi ti

Disturbances 
O t t

Faults

time abnormal behavior identification

ProcessInputs 
OutputsModel 

Corrections

Fault-free 
Dynamic 

d l

Set of Active 
Faults 

Model

Plant-model mismatchModel Based 

Identified 
Faults

Diagnosis

Fault Models
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(Deshpande at al., JPC, 2009)
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 ObjectivesO j ct s
 Online detection of multiple abrupt changes

occurring  sequentially in time g q y
 On-line model correction based on diagnosis 

 Approach: GLR Methodpp
 Diagnosis: Generalized Likelihood Ratio method
 Innovation sequences generated by KF / EKF  q g y

carry signature of change 
 Exploits the pattern of innovation to identify p p y

fault magnitude  fault type 
 Fault that corresponds to maximum value of 

May, 12 UBC - UofA Workshop 79

likelihood ratio is identified as fault
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Robustness to plant model mismatch: Model accuracy is  Robustness to plant-model mismatch: Model accuracy is 
critical to state estimation 

 Noise Model Parameters: Measurement and state noise Noise Model Parameters  Measurement and state noise 
co-variances are difficult to estimate.  These matrices 
are often treated as tuning parameters

 f   ( d d  /  Number of extra states (unmeasured disturbances / 
parameters) estimated cannot exceed number of 
measurementsmeasurements

 Computationally efficient methods for irregularly 
sampled multi-rate measurement scenario 

 Conditional density and arrival cost estimation in 
presence of constraints on states 

5/31/2012 State Estimation 80



Automation Lab
IIT BombayResearch Directions Research Directions 

Nonlinear state estimation: rich and highly active research areag y
 State estimation of systems governed by DAE in Bayesian 

framework 
S li  b d filt  ff  f  th   f  Sampling based filters suffer from the curse of 
dimensionality: handling computational complexities that can 
arise in large scale systems g y

 Optimal state estimation in the presence of inequality 
constraints 
I i  f f l  di i  h i  f  li  d l  Integration of fault diagnosis techniques for on-line model 
maintenance: isolation of active set of changing parameters 
and dealing with structural MPM  g

 Estimation in presence of irregularly sampled and delayed 
measurements

i l   d  i i   
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Thank You !

Questions ?
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