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ABSTRACT 

Optimal fleet assignment is crucial for the efficiency and cost-effectiveness of open-pit mining 
operations. Traditional simulation-based or mathematical models often fall short when dealing with 
the complexities of resource assignment, such as fleet diversity, multiple dig and dump points, and 
process uncertainties, due to their high computational time and costs. This study addresses this gap 
by employing a hybrid Discrete Event Simulation-Genetic Algorithm (DES-GA) approach to develop 
an AI-driven Decision Support System (DSS) for optimal fleet assignment. Graph Neural Networks 
(GNNs), an AI-based approach, are utilized to enhance resource assignment decisions, a potential 
that has been overlooked in previous research. The hybrid DES-GA model generates the necessary 
dataset for GNN training, ensuring assignment optimality while addressing the uncertainties 
inherent in the mining process. Key features for GNN training include the road network, available 
fleet, dig and dump points, their adjacency distances, and shovel-to-dig point and truck-to-shovel 
allocations obtained from DES-GA. The results demonstrate that this approach significantly 
enhances real-time dispatching, reduces costs, and minimizes environmental impacts by determining 
the optimal shovel for each dig point and the appropriate truck types and quantities for each shovel. 
This study provides valuable insights and practical solutions for the mining industry. 

Keywords: Discrete Event Simulation, Genetic Algorithm, Decision Support System, Graph Neural 
Networks, optimal fleet assignment, real-time dispatching, open-pit mining, mining operations. 

1. Introduction 

An optimal fleet assignment is a pivotal factor in the efficiency and cost-effectiveness of open-pit 
mining operations [1]. The complex nature of resource assignment in mining, characterized by fleet 
diversity, multiple dig and dump points, and process uncertainties, presents significant challenges. 
Traditional simulation-based or mathematical models often fail to address these complexities due to 
their high computational time and costs [2]. 

Efficient fleet assignment ensures mining operations run smoothly, reducing downtime and 
operational costs. It also minimizes environmental impacts by optimizing resource utilization 
and reducing unnecessary machinery movement. Given the scale and financial investment 
involved in open-pit mining, even marginal improvements in fleet assignment can lead to 
substantial economic benefits [3]. 
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Traditional models, while helpful, are often limited by their inability to adapt to the dynamic and 
uncertain nature of mining operations. These models require extensive computational resources and 
time, making real-time decision-making impractical. Moreover, they may not fully capture the 
interdependencies and interactions between different elements of the mining process [4]. 

GNNs, an AI-based approach, are utilized to enhance resource assignment decisions. GNNs can 
capture the complex relationships between different elements in the mining process, providing a 
more accurate and efficient DSS. This study leverages the potential of GNNs to address the 
uncertainties inherent in the mining process, which have been overlooked in previous research. 

This study proposes a hybrid DES-GA approach to overcome these limitations. DES is employed to 
model the dynamic nature of mining operations, while GA is used to optimize the fleet assignment. 
The hybrid DES-GA model generates the necessary dataset for training a GNN, further enhancing 
the decision-making process. The primary objective of this study is to develop an AI-driven DSS for 
optimal fleet assignment in open-pit mining. The critical features considered for GNN training 
include the road network, available fleet, dig and dump points, their adjacency distances, and shovel-
to-dig point and truck-to-shovel allocations obtained from the DES-GA model. The study aims to 
demonstrate that this approach can significantly enhance real-time dispatching, reduce costs, and 
minimize environmental impacts. 

This paper is structured to thoroughly examine mining fleet assignment methods. It begins with a 
comprehensive literature review of existing approaches in this field. Following this, the methodology 
section delves into the details of the hybrid DES-GA approach and discusses the role of GNNs in 
enhancing these methods. The subsequent section presents an initial data analysis, including a dataset 
description and preliminary findings. Finally, the paper outlines the future steps required to complete 
the research, along with the anticipated outcomes. 

2. Literature Review 

2.1. Existing Methods and Models for Fleet Assignment in Mining 

Fleet assignment in open-pit mining has evolved through various methodologies, including linear 
programming, DES, heuristic and metaheuristic algorithms, and multi-agent systems. Intelligent 
Fleet Management Systems have recently been introduced to enhance efficiency and productivity. 

Linear programming is used extensively for optimizing the allocation of trucks and shovels in mining 
operations, aiming to minimize costs and maximize productivity by optimizing objective functions 
such as profit maximization and cost minimization. For instance, Zhang and Xia developed an integer 
programming approach for truck-shovel dispatching, resulting in significant cost savings and 
improved operational efficiency [4]. 

DES simulates the sequence of mining operations, capturing these processes' dynamic and stochastic 
nature. Meneses and Sepúlveda demonstrated how DES can model the temporary deterioration of 
mining roads, impacting productivity and fuel consumption [5]. Additionally, Awuah-Offei et al. 
evaluated truck-shovel energy efficiency using DES, showing the potential benefits of optimizing 
fuel efficiency [6]. Ben-Awuah et al. developed a hierarchical mine production scheduling model 
using DES to link long-term predictive mine plans with short-term production schedules, accounting 
for constraints and uncertainties in mining and processing capacities [7]. 

Heuristic algorithms, such as GA and Simulated Annealing, are widely used for fleet assignments. 
These algorithms explore vast search spaces to find near-optimal solutions efficiently. Alexandre et 
al. discussed the flexibility of multi-objective evolutionary algorithms in adapting to changing 
conditions in mining operations [8]. 
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Multi-agent systems simulate interactions between autonomous agents representing different 
components of the mining operation. These systems model the complex interactions and coordination 
required for efficient fleet management. Multi-agent systems enhance decision-making by allowing 
for decentralized control and adaptive responses to dynamic operational changes [9]. 

Recent studies have introduced innovative models for fleet assignment in mining. Mirzaei-Nasirabad 
et al. presented a multi-stage optimization model focusing on real-time truck dispatching, which 
minimizes waiting times and deviations from production requirements [10]. Noriega et al. proposed 
a Deep Reinforcement Learning system for real-time truck dispatching, significantly outperforming 
traditional heuristic methods [11]. Upadhyay et al. introduced a simulation-based algorithm 
addressing equipment selection under uncertainty, providing robust estimations of fleet productivity 
[12]. Mohtasham et al. introduced a multi-objective optimization model for fleet allocation 
scheduling, focusing on maximizing production and minimizing fuel consumption [13]. 

Intelligent Fleet Management Systems leveraging advanced technologies can optimize the efficiency 
and productivity of mining operations across various planning horizons. Hazrathosseini and Afrapoli 
discussed the transformative potential of intelligent Fleet Management Systems in mining [14]. 
Bnouachir et al. proposed an intelligent distributed Fleet Management Systems architecture for open-
pit mines, enhancing real-time control and decision-making through AI and IoT technologies [15]. 

2.2. GNNs and Their Potential in Resource Assignment 

GNNs represent a class of machine learning algorithms operating on graph structures, capturing the 
relationships and dependencies between entities. In mining, GNNs can model interactions between 
components like trucks, shovels, and dig points, optimizing resource allocation by considering the 
dynamic nature of mining operations. 

GNNs offer significant potential for improving resource assignment in mining by providing real-
time, adaptive decision-making capabilities. Wang et al. demonstrated the potential of GNN-
enhanced models in real-time fleet dispatching, significantly reducing operational costs [16]. 
Additional studies have explored various applications of GNNs in resource allocation. 

Wang et al. discussed decentralized resource allocation in wireless networks using Aggregation 
GNNs, showcasing their permutation equivariance property and training with an unsupervised 
method [17]. Lima et al. applied GNNs for resource allocation in large-scale wireless control 
systems, enhancing efficiency and scalability [18]. Cranmer et al. proposed the use of GNNs for 
unsupervised resource allocation and learning reward structures for near-optimal allocation policies 
based on interactions between allocation targets [19]. Eramo et al. utilized neural graph-based models 
to predict processing capacities in Virtual Network Function Instances, capturing spatial and 
temporal correlations efficiently [20]. Theodoropoulos et al. demonstrated the application of GNNs 
in resource allocation for multiplayer mobile gaming, improving performance and management 
compared to traditional approaches [21]. 

2.3. Gaps in Current Research 

Despite the advancements in simulation-based and optimization models, there are still significant 
gaps in the current research on fleet assignment in open-pit mining. Traditional models often struggle 
to scale up to large and complex mining operations. As the size and complexity of mining operations 
increase, models' computational requirements and complexity also grow, making it challenging to 
maintain efficiency and accuracy. Existing models typically are not designed for real-time decision 
support, limiting their applicability in dynamic environments. Making timely decisions is crucial in 
mining operations, where conditions can change rapidly, and unexpected events can occur. 
Additionally, the potential of AI techniques, such as GNNs, in enhancing fleet assignment decisions 
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has not been fully explored. While initial studies have shown promise, more research is needed to 
fully understand and harness the capabilities of AI in this context. Furthermore, models need to 
consider the environmental impact of fleet assignment decisions, cost, and productivity. Sustainable 
mining practices are becoming increasingly important, and optimizing fleet assignments to minimize 
environmental impact is a critical area of research. 

This literature review highlights the various methods and models used for fleet assignment in mining, 
the applications of DES and GA, the potential of GNNs, and the gaps in current research. Addressing 
these gaps and leveraging advanced techniques such as GNNs can significantly improve fleet 
assignment efficiency, cost-effectiveness, and sustainability in open-pit mining. 

3. Methodology 

A systematic and multifaceted methodology is required to effectively address the complexities of 
optimal fleet assignment in open-pit mining. This methodology encompasses several critical steps, 
starting with collecting and analyzing detailed operational data and then integrating advanced 
simulation and optimization techniques. The following subsections outline the processes and 
techniques, including data collection and road network mapping. To provide a visual summary of the 
methodology, the flowchart in Figure 1 illustrates the key steps involved: 

 
Figure 1. Flowchart of the methodology 

3.1. Data Collection and Road Network Mapping 

Data collection is the foundational step in developing the hybrid DES-GA model for optimal fleet 
assignment in open-pit mining. This involves gathering comprehensive data on various aspects of 
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the mining operation, including the road network, fleet characteristics, and operational parameters. 
The road network data encompasses the layout of the mining site, distances between nodes (such as 
dig and dump points), and the topology of the routes used by the mining fleet. Accurate road network 
mapping is crucial as it directly impacts the simulation and optimization processes. This data is 
collected from the mine's topography map for each month, ensuring that the model reflects the most 
current operational conditions. 

In addition to the road network, detailed information about the mining fleet is collected. This includes 
the types of trucks and shovels, their capacities, and performance metrics under different conditions. 
Operational parameters such as loading and dumping times, weather conditions, and the types of 
loads carried are also gathered. This data collection phase ensures the simulation model is based on 
realistic and comprehensive input, which is essential for generating accurate and reliable results. 
Furthermore, historical operational data and maintenance records are collected to enhance the 
model's ability to predict equipment performance and maintenance needs. 

Qualitative insights from mining operation experts are also gathered to complement the quantitative 
data. These insights provide contextual understanding and practical considerations that may not be 
captured in numerical data alone. Interviews and questionnaires with site managers, equipment 
operators, and maintenance personnel help to identify potential bottlenecks, inefficiencies, and areas 
for improvement in the current fleet assignment practices. This holistic approach to data collection 
ensures that the model is grounded in empirical data and practical operational knowledge. 

3.2. Data Analysis and Extraction of Probability Distributions 

Once the data is collected, it is analyzed to extract meaningful insights and distributions. This 
involves statistical data analysis to determine the average velocities of different types of trucks under 
various conditions. For instance, a truck's velocity may vary depending on whether it is empty or 
full, its load, and the prevailing weather conditions. Such distributions are critical for modeling the 
dynamic and stochastic nature of mining operations. 

Additionally, the analysis includes determining the loading and dumping times for different 
equipment and under various conditions. These times are influenced by factors such as the type of 
material being handled, the efficiency of the loading and dumping equipment, and external conditions 
like weather. By extracting these distributions, we can accurately simulate the real-world behavior 
of the mining fleet, which is essential for optimizing fleet assignments and improving operational 
efficiency. 

The data analysis process further includes identifying patterns and trends in equipment usage and 
maintenance needs. This involves analyzing historical data to predict future equipment performance 
and maintenance requirements. By understanding these patterns, the model can incorporate 
maintenance schedules and potential downtimes into the simulation, ensuring a more realistic 
representation of the mining operations. This analysis is based on fitting the data to intervals and 
durations of maintenance, ensuring accurate predictions and efficient scheduling, thereby enhancing 
the overall reliability and performance of the mining fleet. 

3.3. Creating the DES Model Based on the Mining Operations 

Developing a DES model tailored to the mine's specific environment is crucial in optimizing fleet 
assignments. The first step in creating the DES model is to define its objectives and scope, which 
includes identifying key performance indicators (KPIs) such as equipment utilization, cycle time, 
and overall productivity. The scope encompasses the processes to be modeled, including loading, 
hauling, and dumping operations, as well as interactions between different types of equipment. 
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Accurately modeling the mine layout and road network is essential. This involves mapping the dig 
and dump points, haul routes, and significant locations within the mine. The collected road network 
data is integrated into the model to ensure realistic simulations, with topology details such as 
gradients and distances being crucial for determining travel times and fuel consumption. 
Additionally, detailed information about the mining equipment, including trucks and shovels, is 
incorporated into the DES model. Each piece of equipment is modeled based on its capacities, 
performance metrics, and operational parameters derived from the earlier data analysis phase, such 
as loading and dumping times. 

The core of the DES model involves simulating the operational processes and interactions within the 
mine, including loading material by shovels, hauling loads by trucks, and dumping material at 
designated points. The model accounts for stochastic elements like equipment breakdowns, 
maintenance activities, and varying loading and dumping times, providing a realistic representation 
of the mining operations. To ensure the accuracy and reliability of the DES model, it undergoes a 
rigorous validation and calibration process. This involves comparing simulation outputs with 
historical operational data and adjusting model parameters to minimize discrepancies, ensuring the 
DES model accurately reflects the real-world behavior of the mining fleet. 

3.4. Optimized Allocation of Shovels and Trucks 

The GA is implemented in two stages to optimize shovel and truck allocation: 

3.4.1. Stage 1: Shovel Allocation 

The first stage of the GA focuses on assigning shovels to dig points based on shovel capacity and dig 
point tonnage. The objective function aims to maximize the sum of the product of shovel capacity 
and assigned dig point tonnage, ensuring high-capacity shovels are assigned to high-tonnage dig 
points. The fitness function is formulated as Eq (1): 

𝐺𝑜𝑎𝑙 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (𝑆𝐶 × 𝐴𝐷𝑇) (1) 

Where: 

 SC is the shovel capacity. 

 ADT is the assigned dig point tonnage. 

This function ensures that resources are allocated efficiently to maximize productivity. 

3.4.2. Stage 2: Truck Allocation 

In the second stage, the GA randomly assigns trucks to shovels. This allocation is evaluated through 
a simulation run in the DES model. The fitness function in this stage aims to maximize the average 
utilization of shovels and trucks. Utilization is calculated by the ratio of active operational time to 
total available time for each piece of equipment. The final objective is to maximize this average 
utilization across all shovels and trucks, ensuring optimal resource usage. 

The flowchart in Figure 2 illustrates the GA process for optimizing shovel and truck allocation: 
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Figure 2. Flowchart of the Integration Process between DES and GA for Optimizing Mining Operations. 

3.5. Training the GNN 

Once the optimal fleet assignments are identified using the DES-GA approach, the next step is to 
train a GNN. The GNN is trained on the dataset generated by the DES-GA simulations, which 
includes detailed information about the road network, fleet characteristics, and optimal assignments. 
The GNN includes two layers: the first layer represents the fleet, and the second layer represents the 
road network. Nodes in the first layer represent components of the mining fleet (e.g., trucks, shovels), 
while nodes in the second layer represent the nodes in the road network (e.g., dig and dump points). 
Edges represent the interactions and assignments between these components. 

Training the GNN involves feeding it with input features such as adjacency distances, fleet capacities, 
performance metrics, and target outputs, which are the optimal fleet assignments from the DES-GA 
model. The GNN learns to predict optimal assignments by minimizing errors between its predictions 
and outputs. This training process enhances the GNN's ability to make accurate and efficient fleet 
assignment decisions, leveraging the complex relationships within the mining operation data. 
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The training process includes multiple stages, including selecting appropriate GNN architectures and 
hyperparameters. The training dataset is divided into training, validation, and test sets to ensure the 
model's generalizability and robustness. During training, the GNN undergoes iterative updates 
through backpropagation, adjusting its weights to improve prediction accuracy. Regularization 
techniques and cross-validation prevent overfitting and ensure the model performs well on unseen 
data. 

Once trained, the GNN is evaluated on the test set to assess its performance and accuracy in 
predicting optimal fleet assignments. Metrics such as mean squared error (MSE), mean absolute error 
(MAE), and R-squared (R²) are used to quantify the model's predictive performance. The trained 
GNN is a powerful tool for real-time decision support, capable of adapting to new data and providing 
accurate fleet assignment recommendations. 

3.6. Using the Trained GNN as a DSS 

The trained GNN is then integrated into the DSS to assist in real-time fleet assignment decisions. 
The DSS leverages the GNN's predictive capabilities to provide adaptive and efficient decision 
support under varying operational conditions. When new data or scenarios arise, the GNN uses its 
trained model to predict optimal fleet assignments, enhancing the mining operation's responsiveness 
and adaptability. 

The use of GNN in DSS allows for real-time updates and refinements to fleet assignments based on 
ongoing operations and new data inputs. This real-time decision-making capability is a significant 
advantage over traditional models, which often struggle to adapt quickly to dynamic changes in the 
mining environment. By continuously learning from new data, the GNN-enhanced DSS ensures that 
the mining fleet is always optimally utilized, improving operational efficiency, and reducing costs. 

In addition to real-time decision support, the DSS provides a user-friendly interface for operators and 
managers to interact with the system. Visualizations and dashboards display key performance 
indicators, fleet assignments, and predictive insights, enabling informed decision-making. The DSS 
also includes features for scenario analysis, allowing users to simulate different operational strategies 
and assess their potential impacts before implementation. This comprehensive DSS enhances mining 
operations' overall management and optimization. 

3.7. Validation 

Validation is a crucial step to ensure the reliability and accuracy of the proposed methodology. This 
involves testing the performance of the integrated DES-GA and GNN model against real-world data 
from mining operations. The validation process will include comparing the predicted fleet 
assignments with actual assignments and evaluating the outcomes based on performance metrics 
such as cost savings and productivity improvements. 

Several key aspects should be considered during the validation process. Inputs such as truck cycle 
times, loading times, travel distances, equipment availability, and the volume of transported material 
will be integral to the validation model. The results should be assessed against historical data to 
ensure accuracy. Key performance indicators (KPIs) like equipment utilization rates, production 
output, and the amount of material transported will be analyzed to measure the model's effectiveness. 
For instance, the model's predictions on fleet allocation and scheduling should be compared with 
actual operations to identify discrepancies and refine the methodology. The performance metrics of 
cost savings, productivity improvements, and transported material will be crucial in assessing the 
benefits of the proposed system. 

While detailed results from our model validation process are not yet available, they will be included 
in future studies to maintain transparency and rigor. Successful validation will confirm the 
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methodology's effectiveness and potential to enhance fleet management in open-pit mining, 
providing a robust tool for industry decision-makers. 

4. Analysis Section 

4.1. Analyzing Data 

The data analysis focused on evaluating the performance of the mining fleet under various 
operational conditions. To maintain confidentiality, all data were standardized using Z-scores, which 
allowed for effective comparison and analysis while maintaining the privacy of the raw data. 

The fleet comprises 164 trucks of varying capacities and thirty-five shovels of varied sizes. The 
distribution of these trucks and shovels is as shown in Table 1 and Table 2: 

Table 1. Fleet composition. 

Truck Type Number of Trucks Capacity (tons) 

Type 1 22 135 

Type 2 93 100 

Type 3 33 60 

Type 4 16 35 

Table 2. Shovel Composition. 

Shovel Type Number of Shovels Bucket capacity (tons) 

Large Shovel 5 12.5 

Medium Shovel 23 8 

Small Shovel 7 4.5 

The initial descriptive statistics provided critical insights into the mining fleet's operational metrics. 
Key variables were carefully analyzed, including truck and shovel capacities, loading, and dumping 
times, and travel distances. Using Z-scores ensured that the data was presented in a manner that 
facilitated clear and accurate interpretation. This approach helped identify performance variations 
and highlighted areas where operational efficiency could be improved. 

Table 3 represents a sample of the descriptive statistics for key variables. It is important to note that 
these values are only a subset of the entire dataset used in this study. 
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Table 3. Sample Descriptive Statistics of Key Variables. 

Description 𝐌𝐞𝐚𝐧 (× 𝟏𝟎 𝟏𝟔) 

Loading time for truck Type 1 with large shovels (waste) -0.12 

Loading time for truck Type 2 with large shovels (waste) 1.80 

Loading time for truck Type 2 with large shovels (ore) 0.18 

Full Haul velocity for truck Type 1 -12.1 

Full Haul velocity for truck Type 2 -6.53 

Dumping time at waste dump 1 for truck Type 1 -2.06 

Dumping time at waste dump 1 for truck Type 2 0.23 

Dumping time at waste dump 2 for truck Type 2 -0.36 

Dumping time at crusher for truck Type 2 -1.45 

Empty Haul velocity for truck Type 1 4.26 

Empty Haul velocity for truck Type 2 3.82 

The data presented in Table 3 is extracted from a comprehensive dataset collected during the study. 
This sample helps illustrate the variability and central tendencies of critical operational metrics in 
the fleet. Each variable's mean and standard deviation values highlight typical performance measures 
and deviations from the mean under different operational conditions. The standardization using Z-
scores allows for an objective assessment of performance across different metrics and facilitates the 
identification of outliers and areas needing improvement. This method provides a clear framework 
for analyzing the performance and efficiency of the mining fleet, serving as a basis for further 
optimization efforts. 

Due to data security concerns, the original data cannot be displayed. Instead, a sample of the data 
was standardized to demonstrate accuracy and validity. Using Z-scores, the mean is near zero, and 
the standard deviation is near one, indicating proper standardization. After this process, the data does 
not have units. 

4.2. Optimizing Fleet Assignments 

The optimization process was conducted in two primary steps to enhance the efficiency of fleet 
assignments. Initially, shovels were assigned to dig points, followed by trucks allocated to these 
optimized shovel-dig point pairs. 

4.2.1. First Optimization Step: Shovel to Dig Point Assignment 

In the first step, shovels were assigned to dig points using a GA to maximize productivity and 
efficiency. The fitness evolution during this process is depicted in the Figure 3: 
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Figure 3. Fitness evolution during shovel assignment optimization. 

This graph shows the optimization process for dig point assignments using a GA. The x-axis 
represents the number of generations, while the y-axis indicates the fitness value. The chart tracks 
the average fitness (blue line), minimum fitness (orange line), and maximum fitness (green line) over 
one thousand generations. The fitness values are in units 10^7, highlighting the optimization's 
progression and stability over time. The fitness values improved significantly during the initial 
generations, indicating rapid convergence toward optimal solutions. As the generations progressed, 
the fitness values stabilized, demonstrating that the algorithm effectively identified near-optimal 
assignments for the shovels to dig points. 

4.2.2. Second Optimization Step: Truck Allocation 

Following the optimal assignment of shovels to dig points, the second step focused on allocating 
trucks to these shovel-dig point pairs. The goal was to maximize the fleet's average utilization rate, 
leading to more efficient use of available resources. The optimization process substantially improved 
the average utilization rate, increasing from 56% to 58.52%. 
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Table 4. Optimization Results. 

Metric 
Before Second 
Optimization 

After Second 
Optimization 

Improvement 
(%) 

Average Utilization 
Rate 

56% 58.52% 2.52% 

The second optimization step builds upon the initial improvements, demonstrating the iterative 
nature of the optimization process. The GA achieved higher efficiency and resource utilization levels 
by continuously refining the strategies and allocations, contributing to the mining operations' overall 
effectiveness. 

 
Figure 4. Fitness evolution during truck assignment optimization. 

This graph in Figure 4 displays the optimization process for truck assignments using a GA. The x-
axis represents the number of generations, while the y-axis indicates the fitness value. The chart 
tracks the average fitness (blue line), minimum fitness (orange line), and maximum fitness (green 
line) over one hundred generations. The fitness values show the gradual improvement and 
stabilization of the truck assignment optimization process. The graph indicates that the fitness values 
show significant fluctuations during the initial generations, gradually improving and stabilizing over 
time. The results suggest that while the algorithm optimizes truck assignments, further refinements 
and iterations may be required to achieve more stable and optimal solutions. 

5. Discussion 

Analyzing and optimizing mining fleet assignments has revealed considerable potential for 
enhancing operational efficiency and reducing costs. The initial steps, which involved assigning 
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shovels to specific dig points and allocating trucks to these shovel-dig point pairs, demonstrated 
promising results. These optimizations led to significant improvements in utilization rates and overall 
operational efficiency. Specifically, the optimization process resulted in a substantial increase in the 
average utilization rates of the fleet, achieved by meticulously assigning shovels to the most suitable 
dig points and optimizing truck allocations. This strategic allocation enhanced operational efficiency 
and led to notable cost savings and environmental benefits. Reduced idle times, optimized travel 
routes, and improved resource utilization contributed to lower operational costs, decreased fuel 
consumption, and reduced emissions. 

The application of GAs proved particularly effective in tackling the complex optimization challenges 
associated with fleet assignments. The fitness evolution graphs indicated a rapid convergence 
towards optimal solutions, underscoring the robustness of this approach. However, the success of 
these optimizations hinges on the quality and standardization of the input data. Ensuring consistent 
and high-quality data collection practices is crucial for future optimizations. Additionally, mining 
operations are subject to dynamic and often unpredictable conditions, necessitating the development 
of algorithms capable of adapting in real-time to maintain and improve operational efficiency. While 
the optimization techniques have shown promising results in controlled environments, scaling these 
solutions to real-world operations requires careful planning and implementation. Ensuring the 
scalability and flexibility of the algorithms will be critical for their successful deployment and 
realizing the full potential of these advancements in mining fleet management. 

6. Conclusions 

The optimization and data analysis conducted thus far has laid a solid foundation for enhancing the 
efficiency and sustainability of mining operations. However, several key areas require further 
research and development to fully realize the potential benefits of these optimizations. The next step 
involves training GNNs using the standardized datasets generated from the current optimization 
processes. GNNs can leverage the complex relationships within mining operation data to provide 
more precise and adaptive fleet assignments, focusing on capturing intricate patterns and 
dependencies to enhance decision-making capabilities. 

Once the GNNs are trained, the subsequent phase will integrate these advanced AI models with 
existing DSS. This integration will facilitate real-time, data-driven decision-making processes, 
allowing for dynamic adjustments to fleet assignments based on current operational conditions. The 
goal is to create a seamless interface between GNNs and DSS, ensuring enhanced decision-making 
capabilities are effectively utilized in daily operations. 

The final step involves rigorous validation and testing of the integrated system. This includes 
conducting pilot tests in real-world mining environments to assess the performance and reliability of 
the GNN-enhanced DSS. Validation metrics will focus on evaluating the system's accuracy, 
efficiency, and scalability, with feedback from these tests used to fine-tune the models and ensure 
robust performance under various operational scenarios. 

Future research will continue to explore integrating advanced AI techniques, such as GNNs and 
developing real-time data integration systems. Enhancing environmental impact analysis and 
predictive maintenance capabilities will also be key focus areas, contributing to more sustainable and 
efficient mining operations. In conclusion, the initial optimization efforts have demonstrated 
significant potential for improvements in mining fleet management. By refining and expanding these 
techniques, there is a strong potential to achieve even greater efficiencies and sustainability in mining 
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operations, with ongoing and future research playing a pivotal role in advancing the field of mining 
optimization. 
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