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ABSTRACT 

Strategic mine planning is a critical aspect of mining, focusing on addressing long-term mining 
challenges to maximize economic or non-economic value while accounting for operational and 
financial constraints. There are two primary methods for modeling mining problems: deterministic 
and stochastic optimization. Deterministic models, or traditional models, are used for problems with 
fixed input parameters. However, these models often fail to consider the inherent uncertainties in 
geological, economic, and operational parameters. In real-world situations, it is essential to account 
for data uncertainty, making the application of stochastic parameters important in mining problems. 
Stochastic optimization is an ideal method for modeling all constraints and objectives of a mining 
problem while considering potential data uncertainties. In stochastic optimization, uncertainties are 
addressed by considering multiple scenarios or probabilistic distributions for the parameters. This 
study provides an overview of the methods, applications and comparisons of stochastic optimization 
and deterministic modeling in strategic mine planning. Evaluating the advantages and limitations of 
these two approaches reveals that stochastic optimization improves problem solutions and enhances 
the sustainability of mining operations under uncertainty, but it involves more computational 
complexity. 

1. Introduction 

Strategic mine planning is a comprehensive problem in the mining industry, involving the design, 
scheduling, and optimization of mining operations to ensure efficient and cost-effective extraction 
of minerals and their processing. This process encompasses various steps, from ore body modeling 
to the final production output. Despite advancements in ore body modeling, a significant gap remains 
in the integration of these models with downstream mining processes. Current approaches often lack 
realistic models of these processes, which are crucial for accurate planning and optimization. This 
gap highlights the need for improved methodologies that can seamlessly incorporate the sequence of 
inputs and outputs from staged processes, ensuring a more realistic and effective mine planning 
strategy to maximize financial, environmental and sustainability values [1]. 

In strategic mine planning there are different methods to model the mining problems, in which the 
ability to effectively manage and mitigate risk and uncertainty is significant. Initial studies on 
applying traditional approaches to production planning and scheduling involved methods based on 
Lagrangian relaxation and the branch-and-cut algorithm. These early methods faced significant 
limitations, primarily their inability to handle large-scale deposits containing millions of blocks. To 
address this issue, extensive research has been conducted to reduce the problem size, leading to the 
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development of various methodologies and techniques [2]. The main advancements and techniques 
to solve the mine production planning problems include the fundamental trees methodology, 
heuristic approaches, dynamic programming and heuristics, and meta-heuristic techniques. However, 
despite these innovations, a common drawback of these methods is their tendency to produce 
unrealistic designs by not considering the inherent uncertainties in mining operations. In the next 
section, each method to solve the traditional model in strategic mine planning is explained in more 
detail.  

After studying traditional models in strategic mine planning studies, researchers recognized the need 
to address the inherent uncertainties and variability in mining data. To mitigate these uncertainties 
and enhance the robustness of planning decisions, stochastic optimization techniques were 
introduced. Stochastic mine planning represents a critical advancement in optimizing mineral 
resource extraction by incorporating the inherent uncertainties of geological data, market prices, and 
operational conditions.  

Recent advancements in stochastic mine planning have been driven by improvements in 
computational power and the development of sophisticated algorithms. These innovations enable the 
processing of large datasets and the simulation of complex models, leading to more accurate 
predictions. For instance, techniques such as Monte Carlo simulation, geo-statistical simulation, 
robust optimization and machine learning algorithms are increasingly being employed to enhance 
the precision and reliability of stochastic models. The mentioned approaches to address stochastic 
conditions of mine planning problems are investigated in the following sections.  Recent studies 
emphasize the growing importance of stochastic models in improving decision-making and 
enhancing the economic viability of mining projects [3]. 

The most stochastic models which are used in mine planning problems consider three primary 
sources of uncertainty including geological, technical, and economic conditions. The uncertainties 
in mining impact the reliability and effectiveness of the mine planning model. To achieve more 
realistic and robust solutions, it is essential to incorporate these uncertainties into the planning 
process [4]. By addressing the uncertainties associated with geological, technical, and economic 
factors, the mining industry can develop more effective and sustainable long-term production plans.  

2. Review of Literature 

In this section, we investigate both stochastic and Traditional (Deterministic) models, exploring the 
primary approaches used to solve them across various scenarios in mining as well as other general 
applications. We begin by examining the fundamental principles and methodologies behind these 
models, highlighting their respective strengths and limitations. Following this, we present some of 
the most effective and widely used examples, providing detailed case studies to illustrate their 
practical applications. Finally, we compare these models in terms of their effectiveness, evaluating 
their performance and suitability for different types of problems. This comprehensive analysis aims 
to offer valuable insights into the advantages and challenges of each approach, guiding the selection 
of the most appropriate model for specific situations. 

2.1. Traditional (Deterministic) Modeling 

Key methods in addressing mine production and schedule planning problems in deterministic 
conditions encompass the fundamental trees methodology, heuristic approaches, dynamic 
programming combined with heuristics, and meta-heuristic techniques. These innovations represent 
significant progress in the field, offering various strategies to enhance the efficiency of mine 
planning. However, a limitation across these methods is their unrealistic designs in which all data is 
deterministic and constant. This shortfall arises from their failure to adequately account for the 
inherent uncertainties present in mining operations, such as variable geological conditions, 
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fluctuating market prices, and unpredictable operational challenges. Addressing these uncertainties 
is crucial for developing more accurate and feasible mine production plans. 

2.1.1. Fundamental Trees Methodology 

The Fundamental Trees methodology is a systematic approach used to understand, analyze, and 
visualize the essential components and relationships within a problem. This method breaks down the 
problem into its fundamental elements, often represented as nodes in a tree structure, and connects 
these elements through branches to illustrate their relationships. The key components of Fundamental 
trees methodology are nodes (root node, leaf node) and branches (connections). 

Mixed integer programming (MIP) and linear programming (LP) mathematical optimization models 
offer the flexibility to incorporate multiple ore processing methods, such as milling and leaching, 
and various elements during optimization. This adaptability can lead to production schedules with 
significantly higher net present values (NPV) compared to traditional non-mathematical 
programming methods. However, MIP formulations for production scheduling often require many 
binary variables, making them challenging or even impossible to solve for real-world open pit mining 
operations. 

Ramazan [5] introduced the Fundamental Tree Algorithm (FTA) for open pit mine production 
scheduling, using an LP model to consolidate blocks and reduce binary variables, making MIP 
models feasible. Also, Ahmad et al.[6] developed random tree and C4.5 decision tree models to 
predict pillar stability in underground mines, showing high accuracy and reliability. In the general 
area, Zhao [7] analyzed the Apriori algorithm for association rule mining, emphasizing its efficiency 
and noise control. Kundu [8] presented a random forest regression methodology for predicting the 
remaining useful life of spur gears, using a correlation coefficient from residual vibration signals, 
validated by five experimental datasets and improved by fusing data from multiple accelerometers. 
Also, deterministic problems can be modeled and solved by a goal programming framework and 
discrete event simulation for optimizing oil sands mining operations, focusing on production 
schedules, dyke construction, and tailings management [9].  

2.1.2. Heuristic Approaches  

Heuristic approaches are problem-solving strategies using practical and efficient methods to generate 
solutions that may not be perfect but are good enough given the constraints and time available. These 
methods rely on experience, and intuition rather than precise algorithms. Heuristic approaches are 
particularly valuable in situations where an exact solution is difficult or impossible to find within a 
reasonable timeframe. The common Heuristic techniques are Greedy Algorithms, Simulated 
Annealing, Genetic Algorithms, and Tabu Search. 

The mixed integer linear goal programming model is useful to optimize extraction schedules, 
maximize net present value and minimize dyke construction costs, which can be solved by an 
agglomerative hierarchical clustering and branch and cut algorithm [12-16].An extraction sequences 
can be applied for an underground lead and zinc mine, reducing model size with exact and heuristic 
methods to solve complex problems quickly, tested on Lisheen mine data [10, 13, 17]. An open-pit 
mining scheduling is able to maximize net present value by hybrid heuristic algorithm[11], 
improving efficiency and solution quality, and solving previously unsolved instances from the 
MineLib library. For incorporating a stockpile and a greedy heuristic to enhance computational 
efficiency, a Simulated Annealing approach in the problem of open-pit mine production scheduling 
works efficiently [18]. To reduce solution time and memory usage in the sublevel stope layout 
problems a dynamic programming method including memorization and a greedy heuristic is 
important[19]. Long-term production scheduling models under grade uncertainty which apply a 
hybrid model using augmented Lagrangian relaxation and the human mental search algorithm are 
capable to improve and achieve higher net present value [20]. The mixed-integer programming 
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models can be solved by tabu search algorithm for optimizing autonomous truck trips and speeds to 
minimize energy consumption, verified in a real-time scheduling system in a coal mine [21]. 

 

Figure 1, Mine planning based on the fundamental tree algorithm [5]. 
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2.1.3. Dynamic Programming 

Dynamic programming (DP) is a powerful algorithmic technique to solve complex problems by 
breaking them down into smaller sub-problems. The key idea behind dynamic programming is to use 
previously computed results to efficiently solve new sub-problems to avoid redundant work.  

A dynamic stochastic programming approach was studied by Rimele [22] for open pit mine planning 
with geological and commodity price uncertainty.  Their optimization method addressed both 
geological and market uncertainties, providing a life-of-mine production schedule that is scenario-
independent regarding geological uncertainty but scenario-dependent concerning commodity price 
non-anticipatively. This allows the model to adapt to commodity price changes within reasonable 
limits for metal production targets and feasible mine designs. The method integrates a two-stage 
stochastic integer program with a stochastic dynamic programming algorithm. They used a case 
study to illustrate how the proposed method identifies policies that correlate price variations with 
metal production targets and consider both geological and commodity price uncertainties. 

2.1.4. Meta-heuristic techniques 

Meta-heuristic algorithms are high-level problem-solving strategies that guide underlying heuristics 
to find, generate, or select a heuristic that may provide a sufficiently good solution to an optimization 
problem. These algorithms are particularly useful for solving complex and large-scale problems 
where traditional methods are impractical due to the size and complexity of the search space. The 
most commonly used meta-heuristic algorithms in mining area in the recent years are Genetic 
Algorithms [23, 24], Simulated Annealing [25, 26], Particle Swarm Optimization [27-29], Ant 
Colony Optimization, Tabu Search [30, 31], and Differential Evolution [32]. These meta-heuristic 
algorithms are used in different mining fields and other areas to solve problems that are difficult to 
tackle using traditional optimization methods. 

Optimization and decision-making in engineering are crucial today, with data processing demands 
escalating due to massive data volumes. Addressing these demands, heuristic and meta-heuristic 
algorithms play a significant role, especially when combined into hyper-heuristic solutions that 
optimize time and space complexities. The study by Chandra [33] explores nature-inspired 
computing, meta-heuristic models, hybrid models, and hyper-heuristics, proposing a hyper-heuristic 
approach derived from meta-heuristic algorithms for general problem domains. They categorize 
heuristic algorithms into population-based, evolutionary-based, swarm-based, agent-based, search-
based, and hybrid-based, with agent-based multi-objective approaches proving efficient for global 
optimal solutions. It reviews various optimization algorithms, emphasizing the transition from meta-
heuristics to hyper-heuristics and demonstrating performance improvements with fine-tuned 
algorithms. The paper highlights the evolution and application of these algorithms, advocating for 
multi-level heuristics to tackle real-world challenges effectively. 

2.2. Stochastic Optimization 

To consider uncertainty of data in mine planning models, and designing stochastic 
models, we can apply several methodologies, where the main methods are stochastic integer 
programming [34] and conditional stochastic [35]. After applying uncertainty in the 
mathematical models, the complexity level of the model is increased. Therefore, recent 
studies in stochastic mine planning have solved their proposed models by advanced 
methodologies reducing complexity and improving solutions. These methods are explained 
in the following. 

 2.2.1. Monte Carlo Simulation 
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Since presenting one method for each problem can exclude valid solutions and results, there is not 
any single and definitive Monte Carlo method.  However, many simulations generally follow this 
pattern. 

1. Model the system using one or more probability density functions (PDFs). 

2. Repeatedly make samples from these PDFs. 

3. Compute and analyze the statistics of interest. 

Harrison [36] indicated the main considerations required to be defined in modeling Monte Carlo 
simulation including desired output, purpose of outputs, accuracy/precision, modeling specificity, 
input definition, and process modeling. 

Figure 2 illustrates a brief introduction to Monte Carlo Simulation. The real-world problem 
represents the initial problem that needs to be solved. It is the starting point of the simulation process. 
By analyzing the data related to the real-world problem and developing a conceptual model, the 
conceptual model can be presented to capture the essential features of the problem. The conceptual 
model is a theoretical framework to outline the system's behavior. Then, with applying computer 
programming and implementing, the conceptual model is translated into a computer model through 
programming. It includes coding the model, implementing algorithms, and setting up simulations. 
Also, in the phase of simulation, the computer model is executed to perform simulations. This 
involves running multiple iterations to explore different outcomes based on varying inputs and 
random variables. 

 

Figure 2. Framework of computer simulation for Monte Carlo simulation [37]. 

2.2.2. Geostatistical Simulation 

Geostatistical simulation methods are valuable tools for generating multiple equally probable 
realizations of a spatial phenomenon, allowing for the quantification of uncertainty in the generated 
patterns. Before selecting a geostatistical simulation method for a specific problem, it is crucial to 
determine the nature of the variables involved. According to Emery [38] and Silva [31], variables 
can be categorized into three main types. Continuous variables typically represent physical properties 
such as percentage of tree cover. Categorical variables which are defined by a fixed number of states 
or categories, such as soil type. Also, objects have varying shapes, locations, and orientations, such 
as buildings, trees, or water bodies. 
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Geostatistical methods have become increasingly practical to predict spatial attributes and model the 
uncertainty of predictions, which are crucial for mineral resource estimation and ore reserve 
evaluation [39]. One of the key geostatistical interpolation methods is the linear robust estimator of 
Kriging [40] which has the drawbacks of smoothing effect with highly skewed data. In contrast, 
Gaussian simulation [41] provides more precise results for many continuous variables by 
transforming them to a Gaussian distribution.  

2.2.3. Robust Optimization  

Robust optimization (RO) does not rely on known probability distributions for uncertain data. 
Instead, it assumes that uncertain data exists within a specified uncertainty set. Basic RO models 
enforce strict constraints, meaning that no constraint violations are allowed for any possible 
realization of the data within the uncertainty set. RO is widely used because it is computationally 
efficient for many types of uncertainty sets and problems [42-44]. 

Robust optimization is a widely used method for handling optimization under uncertainty. The main 
idea is to indicate an uncertainty set containing possible values of the uncertain parameters and then 
optimize for the worst-case scenario within this set. When the uncertainty sets are well-chosen, robust 
models typically result in manageable optimization problems that perform better than other methods. 
However, if the sets are poorly chosen, robust models can become too conservative or difficult to 
solve. Therefore, selecting an appropriate uncertainty set is essential. In the recent studies, several 
theoretically and experimentally validated methods for constructing uncertainty sets are presented 
[43]. 

As illustrated in Figure 3, the optimizer generates solutions for the problem, which operates within 
a specific environment. The problem uses these solutions, and its performance is assessed using 
evaluation methods. This performance evaluation is shown back for the optimizer to inform the 
quality of the solutions. During operation, the system encounters uncertainties from both internal and 
external sources [44]. 

 

Figure 3. Sources of dynamics and uncertainties [44]. 
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2.2.4. Machine Learning Algorithm  

In the era of the Fourth Industrial Revolution (Industry 4.0), vast amounts of data are generated from 
IoT, cybersecurity, mobile devices, business transactions, social media, and healthcare. Effective 
analysis of this data for developing intelligent, automated applications requires knowledge of 
artificial intelligence (AI) and machine learning (ML). Sarker [45] provided an extensive overview 
of machine learning algorithms including supervised, unsupervised, semi-supervised, reinforcement 
learning, and deep learning, and their applications in domains such as cybersecurity, smart cities, 
healthcare, e-commerce, and agriculture. Their study defines the scope by considering the nature of 
real-world data and the capabilities of various learning techniques, enhancing the intelligence of data-
driven applications. It discusses the applicability of ML-based solutions, potential research 
directions, and challenges for intelligent data analysis. The study emphasizes the importance of 
quality data and algorithm performance for successful ML models and highlights how ML methods 
can address real-world issues. By addressing these challenges, the paper opens new avenues for 
research and application development, serving as a valuable reference for academia, industry 
professionals, and decision-makers. Haul trucks in open-pit mines consume significant amounts of 
diesel fuel, resulting in high operating costs and substantial greenhouse gas emissions. Improving 
fuel efficiency is vital for cost reduction and environmental sustainability. Alamdari [46] modeled 
diesel fuel consumption in an iron ore mine using machine learning techniques. Payload was 
identified as the most significant factor, impacting fuel consumption by 47.9%. The study 
emphasizes the need for accurate, data-driven models to reduce costs and emissions in mining 
operations.  

Hazrathosseini [47]explored intelligent Fleet Management Systems (FMSs) in surface mining, using 
SWOT analysis to identify strengths, weaknesses, opportunities, and threats, concluding that benefits 
outweigh drawbacks. Bnouachir proposed a distributed FMS architecture for real-time vehicle 
control using AI and IoT, enhancing agility and interoperability. Zhang [48] developed a 
reinforcement learning approach for vehicle dispatching, improving productivity and learning 
efficiency in dynamic environments. Huo used Q-learning to enhance fleet productivity and reduce 
GHG emissions, showing significant improvements in haulage efficiency. Carvalho[49] presented 
an adaptive truck dispatching policy using deep Q-learning, improving adherence to operational 
plans in mining complexes. Mastui introduced a deep reinforcement learning algorithm for real-time 
dispatching of autonomous haulage trucks, increasing efficiency and reducing fuel consumption. 
Noriega[50] developed a DRL-based dispatching system for open-pit mining, achieving robust 
policy learning and maintaining ore feed quality in a case study. 

2.2.5. Sources of Uncertainty in Stochastic Optimization 

Most stochastic models used in mine planning problems account for three primary sources of 
uncertainty: geological conditions, which involve the variability in mineral deposits and rock 
formations; technical conditions, which pertain to the efficiency and reliability of mining equipment 
and processes; and economic conditions, which encompass fluctuations in market demand, 
commodity prices, and operational costs. 

1. Geological Uncertainty: Geological uncertainty refers to the variability in the spatial distribution 
of mineral resources within the earth. This uncertainty arises due to limited data from exploration 
drill holes, variability in orebody geometry, mineral grade distribution, and unknown geological 
features. 

Brika [51] presented an innovative method for optimizing long-term production scheduling in open 
pit mines, incorporating multiple processing streams and investment decisions under geological 
uncertainty. Their approach begins with solving the linear relaxation using an extended Bienstock-
Zuckerberg algorithm tailored for stochastic optimization. This is followed by a topological sorting-
based rounding heuristic and a parallel multi-neighborhood Tabu search. The model, applied to a 
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multi-product open pit mine, allows investments in shovels, trucks, or crushers to enhance capacity. 
By incorporating capital expenditure options and geological scenarios, the aim is to maximize NPV 
of the mining complex from various customers and the spot market. The research enhances previous 
models by integrating investment options and using a stochastic Bienstock-Zuckerberg 
decomposition method with heuristics. A case study on an iron open pit mine demonstrated the 
model's effectiveness, achieving an optimality gap of 1.5% within 12–22 minutes and showing 
significant NPV improvement through early investment in additional crushing capacity. 

Jelvez [11] introduced a multi-stage methodology for long-term production planning in open-pit 
mines, addressing ore grade uncertainty. The approach integrates geological uncertainty into defining 
the final pit, optimizing pushbacks, and scheduling production, using new mathematical optimization 
models and conditional simulation. The main contributions of their research include a model 
optimizing final pit value while minimizing conditional value at risk (CVaR), a pushback 
optimization model selecting nested pits with similar total tonnages, and a mixed-integer program 
for scheduling bench phases to minimize production target deviations. They revealed that the final 
pit limit stage contributes 31.4%, pushback optimization 12.6%, and production scheduling 56% to 
the overall value. This multi-stage approach helps determine the relative impact of each planning 
stage, guiding efforts to maximize value and minimize uncertainty costs. Results show that 
incorporating uncertainty reduces the risk of failing to meet production goals compared to a 
deterministic approach. 

A comparative study on a gold mining complex proposed by Morales [52], evaluating two stochastic 
mine plans: one using conventional wireframes for geological domains and the other using high-
order simulations. The study found that simulated geological domains produced a 20% higher 
expected net present value (NPV) and a 40% wider risk profile due to reduced waste handling costs 
and a lower environmental footprint. Key contributions include a methodology for simulating 
geological domains using high-order spatial statistics, validated up to the fourth-order statistics, and 
the integration of these simulations into a stochastic optimization framework to produce mine 
schedules. The study highlights the importance of incorporating geological uncertainty in mine 
planning, leading to different extraction sequences, ultimate pit limits, and practical adjustments in 
mine design, such as ramps and waste dump layouts. The 20% increase in expected NPV results from 
reduced waste handling rather than increased metal recovery, emphasizing significant financial and 
environmental benefits.  

Quantitative modeling of geological heterogeneity is crucial for effective resource management in 
mining, particularly when data is limited to exploration drill holes, introducing uncertainty in the 
empirical cumulative distribution function (CDF). Erten [53] addressed this challenge by employing 
a multivariate spatial bootstrap procedure to quantify parameter uncertainty and incorporating it into 
geo-statistical simulations. Using data from the Lisheen lead and zinc mine, they compared three 
scenarios: (1) using all available data, (2) a representative subset without parameter uncertainty, and 
(3) the same subset with parameter uncertainty. The results showed that including parameter 
uncertainty provides a more realistic assessment of resource risk.  

In the area of underground mine design, Noriega [54] introduced a novel approach using deep 
reinforcement learning (DRL) to address geological and mineral grade uncertainties, which are often 
overlooked by traditional methods, resulting in suboptimal decisions. The proposed framework 
employs the proximal policy optimization (PPO) algorithm and integrates multiple numerical 
realizations of a mineral resource to enhance financial performance. In the gold mine case study, the 
DRL approach achieved an 8.3% higher expected profit and extracted 3.4% more gold compared to 
standard industry methods. The primary benefit of this approach lies in its ability to incorporate 
geological uncertainty into mine planning, leading to improved decision-making.  
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2. Technical Uncertainty: Technical uncertainty encompasses the variability associated with the 
mining process, equipment performance, and operational conditions. Factors contributing to 
technical uncertainty include equipment reliability, mining method efficiency, processing plant 
performance, and variations in ore recovery rates. 

Based on [55] study, uranium in situ recovery faces challenges in predicting fluid flow and 
geochemical reactions due to geological uncertainties. Traditional simulations are computationally 
intensive, making uncertainty propagation impractical. Therefore, they proposed a Scenario 
Reduction Method for 100 realizations of a production block to select a subset of geo-statistical 
simulations and approximate a larger set. This method, validated against full simulations, maintains 
accuracy in predicting median uranium production and confidence bounds while significantly 
reducing computational time. The results offer an effective way to quantify production uncertainty 
in uranium in situ recovery mining and reduce computational time.  

Upadhyay [56; 57] developed a simulation optimization framework for mining operations, 
combining discrete event simulation with goal programming to account for uncertainties and enhance 
short-term production planning. This tool allows proactive decision-making through scenario 
analysis and was verified using an iron ore mine case study. Tabesh [58] presented four 
agglomerative hierarchical clustering algorithms incorporating geostatistical realizations to handle 
geological uncertainties, resulting in more robust and minable aggregates. In a separate study, Tabesh 
[59] used discrete event simulation to model iron ore processing plants, focusing on output quality 
and the impact of input uncertainties. Moradi-Afrapoli [60] created an integrated simulation and 
optimization framework for truck dispatching in surface mines, improving production by 11% 
compared to current models. Moradi-Pirbalouti [61] examined different mathematical models for 
mine planning under deterministic and uncertain conditions, comparing approaches to manage data 
uncertainty. Jelvez [62] proposed new optimization models and conditional simulation to address 
geological uncertainty, improving solution quality in a real case study and helping decision-makers 
identify risks. 

3. Economic Conditions: Economic uncertainty results in fluctuations and in market conditions, 
commodity prices, and economic factors that affect the financial aspects of mining operations. 
Economic uncertainty arises from market demand, changes in commodity prices, exchange/inflation 
rate fluctuations, and broader economic trends. 

Kizilkale [63] introduced a dynamic programming framework to optimize production rates across 
multiple metal mines under financial uncertainty. Each mine's production rate is treated as a 
stochastic optimization problem, with solutions provided via dynamic programming and Markovian 
feedback control based on current price data. The hierarchical approach separates individual mine 
scheduling from global extraction rate targets, addressing metal content uncertainty locally and 
financial uncertainty globally. Using a distributed policy iteration method, each mine's extraction 
rate is optimized in parallel until a unique equilibrium is achieved. Numerical results indicate that 
this global optimization method outperforms individual mine optimizations, enhancing financial 
performance and robustly managing mining rates under uncertainty. 

3. Discussion and Results 

In the following there is some analysis about the studies on stochastic optimization and traditional 
modeling in mine planning problems.  
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Table 1. The summary of publications on Stochastic Optimization in mine planning. 

Author Year Method Outcome 

Gilani [2]  2020 
Particle Swarm Optimization 
(Geological Uncertainty) 

High performance on a large-scale open pit mine; 
higher NPV with reduced solution time. 

Rimele [64] 2018 
Stochastic Integer 
Optimization Programming 

Integrated disposal of mining waste and tailings 
directly inside the pit into life-of-mine planning, 
saving costs and environmental impact. 

Fattahi [65] 2021 
Multi-Stage Stochastic 
Optimization 

Designed a sustainable mining supply chain with 
renewable energy, showed the impact of improving 
environmental and social objectives on total cost. 

Dimitrakopoulos 
[66]  

2022 
Simultaneous Stochastic 
Optimization 

Highlighted managing uncertainty and technical 
risks; increased metal production, operational 
capability, and net present value. 

Morales [52] 2024 
High-Order Simulation Of 
Geological Domains 

Presented a 20% higher NPV and up to 40% wider 
risk profiles. 

Nelis [67] 2022 
Optimization Model For 
Scheduling And Mining Cuts 

Captured profit and met mining, processing, and 
operational constraints. 

Joshi [68] 2022 
Integrated Parametric Graph 
Closure and Branch-and-Cut 
Algorithm 

Reduction in computational time with reasonable 
optimality gap. 

Guo [69] 2021 
Artificial Neural Network 
Approach 

Estimating mining capital cost with ANN model; 
demonstrated superior performance 

Levimson [70] 2023 
Reinforcement Learning with 
Mathematical Programming 

Increase in annual cash flow 

Whittle [71] 2018 
Global Optimization 
Principles 

Discussed global optimization principles and their 
application in various industries 

Kumral [72] 2010 
Robust Stochastic 
Optimization 

Improved resilience and efficiency in a case study 
of production scheduling. 

Carpentier [73] 2016 
Stochastic Integer 
Programming 

Designed a SIP model for underground mine 
production scheduling; showed higher project value 
and better production risk control. 

Dimitrakopoulos 
[74] 

2011 
Stochastic Simulation And 
Optimization 

A risk-based framework for strategic mine 
planning; increased production schedule value by 
25%. 

Montiel [75] 2015 Simulated Annealing 
Optimized mining complexes achieved a 5% 
increase in NPV and reduced risk. 

Montiel [76] 2017 Heuristic Approach 
Significant improvement in expected NPV and 
capacity management. 

Lin [44] 2024 
Mixed Integer Programming 
(MIP) 

Sustainable production scheduling with reduced 
GHG emissions by 47%; superior performance in 
NPV maximization. 

Carvalho [77] 2023 
Actor-Critic Reinforcement 
Learning 

Production planning and fleet management with 
47% increase in cash flow. 

Faria,  et al. [78] 2022 
Integrated Stochastic 
Optimization 

Stope design and long-term scheduling with 11% 
higher NPV and shorter mine life. 

Yaakoubi [79]  2022 
Learn-to-Perturb (L2P) 
Hyper-Heuristic 

Reduced iterations and computational time with 
enhanced efficiency in mining complexes. 
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Minniakhmetov 
[80] 

2021 
Data-Driven High-Order 
Simulation 

Practical utility demonstrated in copper deposits. 

Rendu [81] 2014 Cut-off Grade Estimation 
Enhanced understanding of cut-off grade 
estimation; crucial for profitability and socio-
economic impacts. 

Saliba [82] 2019 Stochastic Optimization 
Improved operational flexibility and profitability 
for gold mining operation. 

Sepúlveda [83] 2020 
Metaheuristic and Simulation 
Tools 

Incorporated uncertainties in mine planning; 
recommended inclusion of environmental and 
social variables. 

Table 1 shows that most of the research has been conducted in recent years (2018-2024), indicating 
an increasing focus on optimization methods in mining. Particularly, there is a notable increase in 
publications from 2020 onwards. Earlier studies (e.g., from 2010 and 2011) laid the foundation for 
robust and stochastic optimization, which evolved into more sophisticated and integrated approaches 
seen in recent years. 

 

Figure 4. Trends in publications on stochastic optimization in mine planning problems. 

Here we analyze the summary of stochastic optimization studies based on year, method, and findings. 

 Stochastic Optimization: Most papers reflect the importance of handling geological and 
operational uncertainties in mining. 

 Many studies focus on maximizing the Net Present Value (NPV) of mining operations, 
showing that this is a critical measure of success. Studies such as those by Gilani et al., 
Morales et al., Joshi et al., Levimson et al., and Lin et al. report significant improvements in 
NPV. 

 A significant portion of the findings emphasize managing risk and uncertainty. For instance, 
the work by Dimitrakopoulos [66] and Faria [78] show that integrating uncertainty into 
planning leads to better risk control and higher project values. 

 Several studies, such as those by Rimélé [64] and Lin [44] , highlight cost savings and 
reduced environmental impacts as key outcomes, demonstrating the dual focus on economic 
and environmental sustainability. 
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 The integration of advanced technologies such as AI and reinforcement learning  ([69; 77] 
is a notable trend, indicating a shift towards leveraging modern computational tools for 
optimization. 

 The increasing number of publications in recent years reflects growing interest and 
advancements in mining optimization techniques. 

Top and commonly used methods in 2010-2024 on the studies on stochastic optimization in mine 
planning are as follows respectively. While Meta-heuristics, Simulation, and Mixed-integer 
programming remains dominant, there is significant exploration of other innovative methods such as 
data-driven simulation and heuristic algorithms.  

1. Meta-heuristic algorithms 
2. Stochastic simulation and optimization 
3. Mixed integer programming (MIP)  
4. Data-driven high-order simulation method 
5. Heuristic approach  

Table 2. Summary of publications on Traditional Modeling in mine planning. 

Author Year Method Finding 

Ramazan 
[5]  

2005 
Fundamental Tree Algorithm 
(FTA) Based on LP Model 

Consolidates blocks reducing binary variables for 
production scheduling in large open pit mines, making 
MIP models feasible. 

Sullivan 
[10]  

2015 Integer Programming 
Improving computational efficiency, and practical 
applicability for mine scheduling. 

Jelvez 
[11]  

2020 Hybrid Heuristic Algorithm 
Providing feasible and near-optimal solutions for 
scheduling problems, improving efficiency and 
solution quality. 

Desale 
[84]  

2015 
Heuristic and Meta-Heuristic 
Algorithms 

Provide robust near-optimal solutions efficiently, 
invaluable for NP-complete challenges. 

Denardo 
[85]  

2012 Dynamic Programming 
Shares features among sequential decision processes, 
identifying it as a branch of applied mathematics. 

Souza 
[86]  

2022 Dynamic Programming Review 
DP may not be extensively explored for scheduling, 
but advances come from DP's theoretical findings. 

Chandra 
[33]  

2022 
Hyper-Heuristic Approach 
Derived From Meta-Heuristic 
Algorithms 

Explores nature-inspired computing models and hyper-
heuristics, advocating for multi-level heuristics for 
real-world challenges. 

Tolouei 
[87]  

2021 
Hybrid of Lagrangian Relaxation 
(LR) with Meta-Heuristic 
Methods 

Hybrid LR-meta-heuristic approach outperforms others 
in NPV, and computational time, suggesting potential 
of LR-BA method. 

It appears that research methodologies in the summary of deterministic modeling studies are 
different. This might indicate a diverse range of methods used across the papers. The most used 
methodologies are as follows.  

1. Integer programming 
2. Heuristic and meta-heuristic algorithms 
3. Hybrid heuristic algorithm 
4. Fundamental Tree Algorithm (FTA) based on LP model 
5. Dynamic programming 

We observe that the most common method in traditional modeling is integer programming. This 
method is favored for its efficiency and straightforward modeling process. Additionally, heuristic 
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and meta-heuristic methods are widely used in many studies. These methods are particularly useful 
for tackling large-scale problems due to their ability to provide robust and near-optimal solutions.  

4. Conclusion  

This study highlights the critical role of stochastic optimization in strategic mine planning, especially 
in addressing the inherent uncertainties of geological, economic, and operational parameters. 
Traditional deterministic models, while useful in scenarios with fixed input parameters, often fall 
short in capturing the dynamic nature of real-world mining conditions. The integration of stochastic 
methods, such as Monte Carlo simulation, geostatistical simulation, and robust optimization, offers 
a significant improvement in the reliability and effectiveness of mine planning by considering 
multiple scenarios and probabilistic distributions. While stochastic optimization presents a more 
complex computational challenge, its ability to produce more realistic and robust solutions makes it 
an invaluable tool in strategic mine planning.  

Recent advancements in computational power and algorithm development have enabled more precise 
and reliable stochastic models, enhancing the decision-making process and the economic viability of 
mining projects. Techniques such as machine learning and reinforcement learning are becoming 
increasingly prevalent, further refining the accuracy of predictions and operational strategies. 

Furthermore, the emphasis on sustainability and environmental considerations within stochastic mine 
planning is a significant development. By incorporating environmental impact assessments and 
sustainability metrics, these models ensure that resource extraction is conducted responsibly, 
aligning with regulatory requirements and the growing demand for sustainable mining practices.  
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