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ABSTRACT 

In this study, a novel simulation model is introduced to assess and determine the optimal 
configuration of truck fleet type and size for mining operations. The aim is to improve operational 
efficiency, productivity, and sustainability. The study investigates the performance of both 
homogeneous and heterogeneous fleets in various scenarios. The findings reveal that the 
heterogeneous fleet outperforms the homogeneous fleet in terms of meeting production targets and 
minimizing fuel consumption, thereby striking an effective balance between productivity and 
sustainability. Conversely, the homogeneous fleet exhibits higher total fuel consumption and fuel 
consumption per ton production. Additionally, smaller trucks in the fleet offer greater flexibility in 
transferring ore materials and prove advantageous in scenarios involving truck failures, with 
reduced average downtime. Therefore, homogenous fleet of smaller trucks outperforms the 
heterogenous fleet when truck failure is considered. The study emphasizes the importance of 
considering factors such as fleet type and sizing, truck failures, fuel consumption, and production 
rates in optimizing fleet performance and material flow in mining operations. These insights 
contribute to the development of strategies for improving overall mining efficiency and reducing 
costs. 

Keywords: Truck fleet selection and sizing, Open-pit mine, Sustainability, Truck failure, Simulation 

1. Introduction 

Open-pit mining presents a variety of substantial challenges requiring solutions. These encompass 
mine design, road network analysis, infrastructure optimization, fleet management, truck quantity 
and type determination, and truck allocation. Achieving an efficient truck fleet size is crucial for a 
cost-effective hauling system in mining, ensuring production needs are met while minimizing 
expenses. Choosing the quantity and types of trucks for the fleet is a substantial financial 
commitment, given its non-reversible nature (Salhi and Rand, 1993). Within the mining system, an 
excess of trucks can lead to over-trucking, with trucks waiting for shovels, while too few trucks result 
in under-trucking, causing shovels to wait (Ataeepour and Baafi, 1999). Having the right fleet size 
is crucial for efficient transportation. Having too few or too many trucks can cause delays and 
underutilization. A shortage of trucks reduces production, while an excess raises GHG emissions. 
Achieving the optimum number of trucks maintains a balance between meeting production needs 
and minimizing GHG emissions. 
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Simulation modeling proves potent for testing alternative actions, offering insights into optimal 
outcomes. In mining, these models predict the impact of new ideas and policies. Monte Carlo 
Simulation and specialized languages have simplified discrete event model creation, aiding analysis 
of production capacities, bottleneck identification, and resource utilization (Knights and Bonates, 
1999). Manríquez et al. (2019) highlighted discrete event simulation's role in designing mining 
systems, including transportation routes and equipment types. For truck allocation, simulation has 
long been valued. Maran and Topuz (1988) stressed its importance, especially when traditional 
methods fall short. Discrete event simulation is widely used in optimizing truck and shovel systems 
due to its capacity to model randomness and complexity (Que et al., 2016). 

This study employs Arena simulation software to develope a discrete event simulation model, 
evaluating fleet truck sizing and selection's influence on production rates and GHG emissions in 
open-pit mining. Truck allocation in the simulation model relies on a multi-objective optimization 
model aiming to minimize deviations from target production, shovel idle time, truck wait time, and 
fuel consumption. The study also examines the impact of truck failures in production and truck fleet 
selection. 

In the upcoming sections, following a literature review, this research will introduce the simulation 
model and the integrated optimization model. Subsequently, a detailed explanation of the case study, 
including key performance indicators (KPIs), will be provided. Shifting to the results, the paper will 
analyze and compare the performance of different scenarios related to truck selection, sizing, and the 
impact of failures within a case study. Lastly, the paper will engage in a comprehensive discussion 
of the results, drawing conclusions, and outlining potential directions for future research. 

2. Literature Review 

The use of simulation techniques is crucial for effectively addressing fleet management and haulage 
systems within open-pit mining. Through the creation of a dynamic virtual environment, simulation 
empowers researchers and engineers to comprehensively analyze the impact of truck fleet selection 
and sizing in mining operations, production rate, and GHG emissions. As a result, decision-makers 
gain the insights needed to make informed choices. Simulation serves as a reliable tool for evaluating 
trade-offs and alternative scenarios, ultimately providing decision-makers with a clearer perspective, 
and enhancing efficiency, sustainability, and resource utilization. In what follows, a series of studies 
are presented that address the fleet selection and sizing challenge in open pit mining, followed by 
application of simulation in this context. 

Bozorgebrahimi et al. (2003) reviewed critical parameters of fleet sizing in open pit mining. On the 
other hand, Burt and Caccetta (2018, 2014) explored fleet selection problem in mining, supported by 
case studies. They reviewed fleet selection problem challenges, applications, and solution approaches 
within the context of open-pit mining. 

Over the years, various techniques have been used in fleet selecting and sizing in open-pit mining. 
Markeset and Kumar (2000) introduced the Lifecycle costing technique, followed by Samanta et al. 
(2002) who combined the Analytical Hierarchy Process and Life-cycle costing. Different approaches 
like the match factor concept (Burt and Caccetta, 2007; Douglas, 1964), queuing theory (Ercelebi 
and Bascetin, 2009), linear programming (Edwards et al., 2001; Ta et al., 2013), and machine repair 
modeling (A. Krause and Musingwini, 2007) have been used conventionally. In addition, innovative 
computer-based algorithms, including expert systems, fuzzy set theory, genetic algorithms, multiple 
criteria decision-making, and machine learning algorithms have also emerged (Bandopadhyay and 
Venkatasubramanian, 1987; Bazzazi et al., 2011; Li and Song, 2009; Marzouk and Moselhi, 2004; 
Nobahar et al., 2022). To address uncertainties in the selection of surface mining fleet, it is necessary 
to create a stochastic model. Discrete event simulation, pioneered by Rist (1961) for mine haulage, 
offers a solution by considering stochastic parameters. Noteworthy applications of this simulation 
method can be found in various mining studies (Ataeepour and Baafi, 1999; Baafi and Ataeepour, 
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1998; Chaowasakoo et al., 2017; Kolonja and Mutmansky, 1994; Que et al., 2016; Yuriy and 
Vayenas, 2008; Zeng et al., 2019; Zhang et al., 2022). However, these models often lack accuracy 
with respect to real-world fleet management systems and underestimate production capacity effects. 
To address these limitations, Moradi Afrapoli et al. (2019) presented an integrated simulation model 
encompassing mining, processing, and dispatching systems. Subsequently, several studies utilized 
the integration of simulation and dispatch optimization modeling to predict the optimal solution for 
the fleet selection and sizing problem in the presence of uncertainty (Mirzaei-Nasirabad et al., 2023; 
Mohtasham et al., 2021; Moradi-Afrapoli et al., 2021; Moradi-Afrapoli and Askari-Nasab, 2020; 
Moradi Afrapoli et al., 2022; Upadhyay et al., 2021; Yeganejou et al., 2022). Nevertheless, their 
model fails to account for energy efficiency, greenhouse gas (GHG) reduction, and truck failure. In 
this study, an integrated framework is established that integrates simulation and optimization, 
considering production capacity, energy efficiency, and GHG mitigation as well as truck failure. 

3. Methodology 

The integrated simulation and optimization model in this research relies on various input parameters 
and data, which encompass the short-term production schedule, the mine's road network, 
specifications for shovels and trucks detailing capacities and performance, information about 
dumping locations and their capacities, as well as the count of dumping points per dump location. 
Moreover, fitted probability distributions are necessary for numerous input variables, including 
loading and dumping times, hauling durations, empty travel times, backing times, spot times, shovel 
bucket capacities, and truck loading capacities. The majority of these inputs are stochastic, which 
makes them particularly challenging. Consequently, historical data for such random variables were 
employed to fit diverse probability density functions. 

3.1. Multi-Objective Optimization Model 

The truck dispatching optimization model utilized in this research is centered around four primary 
objectives: reducing deviations from target path flow rates, minimizing fuel consumption (and GHG 
emissions), minimizing shovel idle time, and minimizing truck wait time. Since these four objectives 
exist in varying dimensions, it is necessary to transform them into dimensionless forms. An efficient 
operation requires the satisfaction of several constraints. Furthermore, certain estimated parameters 
are utilized within the constraints, and their estimation methods (formulas) are presented in the 
equalization constraints of the mathematical model. Several indices, parameters, and decision 
variables are available within the optimization model. The indices are as follows: 

𝑡 Index for set of trucks: 𝑡 = {1, … , 𝑇} 

𝑠 Index for set of shovels: 𝑠 = {1, … , 𝑆} 

𝑑 Index for set of dumping points: 𝑑 = {1, … , 𝐷} 

𝑑ᇱ Index for set of locations where trucks are required to dump their load before 
traveling to the new shovel: 𝑑ᇱ = {1, … , 𝐷} 

𝑤 Index for set of weights assigned to individual goals: 𝑤 = {1, 2, 3, 4} 

𝑔 index for the group of trucks that are currently waiting in a queue of the 
shovel: 𝑔 = {1, … , 𝑁𝑇𝑊𝑆} 

The parameters are introduced below: 
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𝐼𝑇௧௦ௗ Idle time for shovel 𝑠 if truck 𝑡 is assigned to transport material from shovel 
𝑠 to the dumping point 𝑑 

𝑊𝑇௧௦ௗ Wait time for truck 𝑡 if it is assigned to transport material from shovel 𝑠 to 
the dumping point 𝑑 

𝑁௪ Normalized weights of individual goals based on priority 

𝐴𝐹 A factor balancing available trucks with the required capacity of plants 

𝑃𝐶ௗ Capacity of the plant 𝑑: 𝑑 = {1, … , 𝑃} ⊂ {1, … , D} 

𝑆𝐶௦ Production capacity of shovel 𝑠 

𝑀𝑃௦ௗ Path flow rate for the path from shovel 𝑠 to the dumping point 𝑑 that the 
production operation has met so far 

𝑇𝐶௧ Actual capacity of truck 𝑡 (tonne) 

𝑁𝑇𝐶௧ Nominal capacity of truck 𝑡 (tonne) 

𝑃௦ௗ Path flow rate for the path from shovel 𝑠 to the dumping point 𝑑 

𝑇𝑅௧௦ௗ Next time truck 𝑡 reaches shovel 𝑠, if truck 𝑡 is assigned to transport material 
from shovel 𝑠 to the dumping point 𝑑 

𝑆𝐴௧௦ௗ Next time shovel 𝑠 is available to serve truck 𝑡, if truck 𝑡 is assigned to 
transport material from shovel 𝑠 to the dumping point 𝑑 

TNOW Current time of the operation/simulation 

𝐿𝐷௧ௗᇲ  The distance truck 𝑡 must travel to reach the dumping point 𝑑ᇱ to dump its 
load 

𝐸𝐷௧ௗᇲ௦ The distance truck 𝑡 must travel from the dumping point 𝑑ᇱ to the next 
expected shovel 𝑠 

𝐴𝐿𝑇௧ Average loading time of truck 𝑡 

𝐴𝑃𝐿௧ Average payload of truck 𝑡 

𝐿𝑉௧ௗᇲ௦ Average loaded velocity of truck 𝑡 traveling to dumping point 𝑑ᇱ and will 
travel to shovel 𝑠 after dumping its load 

𝐸𝑉௧ௗᇲ௦ Average empty velocity of truck 𝑡 traveling from dumping point 𝑑′ to the 
next expected shovel 𝑠 

𝐷𝑄௧ௗᇲ Queue time for truck 𝑡 in the queue of the dumping point 𝑑ᇱ 

𝐷𝑇௧ௗᇲ  Dump time for truck 𝑡 to dump its material in dumping point 𝑑ᇱ 
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𝑁𝑇𝑊𝑆௦ Number of trucks waiting in queue at shovel 𝑠 

𝑆𝑇௚ Spotting time for the truck 𝑔 in the queue 

𝐿𝑇௚ Loading time for the truck 𝑔 in the queue 

𝛼௧ Intercept of truck 𝑡 for the fuel consumption  

𝛽௧ Payload coefficient of truck 𝑡 for the fuel consumption 

𝛾௧ Loading time coefficient of truck 𝑡 for the fuel consumption 

𝜏௧ Idle time coefficient of truck 𝑡 for the fuel consumption 

𝜔௧ Empty traveling time coefficient of truck 𝑡 for the fuel consumption 

𝜑௧ Loaded traveling time coefficient of truck 𝑡 for the fuel consumption 

𝑆𝐼𝑇௧௦ௗ Shovel idle time coefficient, by assigning truck 𝑡 to the path of shovel 𝑠 to 
dumping point 𝑑  

𝑇𝑊𝑇௧௦ௗ Truck wait time coefficient, by assigning truck 𝑡 to the path of shovel 𝑠 to 
dumping point 𝑑 

𝐹௧௦ௗ Truck fuel consumption coefficient, by assigning truck 𝑡 to the path of shovel 
𝑠 to dumping point 𝑑  

Below are the decision variables: 

𝑥௧௦ௗ Binary variable equals to 1 if truck t assigns to the path of shovel 𝑠 to 
dumping point 𝑑 , and 0 otherwise 

𝑦௦ௗ
ି  Negative deviation of the met path flow rate and the desired path flow rate 

for the path between shovel 𝑠 and dumping point 𝑑 

𝑦௦ௗ
ା  Positive deviation of the met path flow rate and the desired path flow rate for 

the path between shovel 𝑠 and dumping point 𝑑 

The model has the following objective functions: 

𝑓ଵ = ෍ ෍(𝑦௦ௗ
ି + 𝑦௦ௗ

ା )

஽

ௗୀଵ

ௌ

௦ୀଵ

 
(1) 

𝑓ଶ = ෍ ෍ ෍ 𝐹௧௦ௗ𝑥௧௦ௗ

஽

ௗୀଵ

ௌ

௦ୀଵ

்

௧ୀଵ

 
(2) 

𝑓ଷ = ෍ ෍ ෍ 𝑆𝐼𝑇௧௦ௗ𝑥௧௦ௗ

஽

ௗୀଵ

ௌ

௦ୀଵ

்

௧ୀଵ

 
(3) 
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𝑓ସ = ෍ ෍ ෍ 𝑇𝑊𝑇௧௦ௗ𝑥௧௦ௗ

஽

ௗୀଵ

ௌ

௦ୀଵ

்

௧ୀଵ

 
(4) 

The following two formulas are used to normalize the objective functions and to present the 
normalized weighted sum objective function, respectively. 

𝑓௜̅ =
௙೔ି௎೔

ே೔ି௎೔
                                     ∀𝑖 ∈ {1,2,3,4}    (5) 

𝑓 = 𝑁ଵ𝑓ଵ̅ + 𝑁ଶ𝑓ଶ̅ + 𝑁ଷ𝑓ଷ̅ + 𝑁ସ𝑓ସ̅   (6) 

The constraints of the model are expressed below: 

෍ ෍ 𝑇𝐶௧𝑥௧௦ௗ

஽

ௗୀଵ

ௌ

௦ୀଵ

≤ 𝑁𝑇𝐶௧                                 ∀𝑡 ∈ {1, … , 𝑇} 
(7) 

෍ ෍ 𝑇𝐶௧𝑥௧௦ௗ

ௌ

௦ୀଵ

்

௧ୀଵ

≥ 𝐴𝐹 × 𝑃𝐶ௗ                          ∀𝑑 ∈ {1, … , 𝑃} 
(8) 

෍ ෍ 𝑇𝐶௧𝑥௧௦ௗ

஽

ௗୀଵ

்

௧ୀଵ

≤ 𝑆𝐶௦                                     ∀𝑠 ∈ {1, … , 𝑆} 
(9) 

෍ 𝑇𝐶௧𝑥௧௦ௗ +

்

௧ୀଵ

𝑀𝑃௦ௗ + 𝑦௦ௗ
ି − 𝑦௦ௗ

ା = 𝑃௦ௗ      ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 
(10) 

 

𝐴𝐹 =  
∑ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑟𝑢𝑐𝑘𝑠

∑ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑎𝑡ℎ𝑠
     

(11) 

𝑇𝑅௧௦ௗ = 𝑇𝑁𝑂𝑊 +
𝐿𝐷௧ௗᇲ

𝐿𝑉௧ௗᇲ௦
+ 𝐷𝑄௧ௗᇲ + 𝐷𝑇௧ௗᇲ +

𝐸𝐷௧ௗᇲ௦

𝐸𝑉௧ௗᇲ௦
 

                 ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} & ∀𝑑ᇱ ∈ {1, … , 𝐷} 

(12) 

 

𝑆𝐴௧௦ௗ = 𝑇𝑁𝑂𝑊 + ෍ ൫𝑆𝑇௚ + 𝐿𝑇௚൯ 

ே்ௐௌೞ

௚ୀଵ

 

                  ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(13) 

 

𝑆𝐼𝑇௧௦ௗ = max (0, 𝑇𝑅௧௦ௗ − 𝑆𝐴௧௦ௗ)          

                  ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(14) 

 

𝑇𝑊𝑇௧௦ௗ = max (0, 𝑆𝐴௧௦ௗ − 𝑇𝑅௧௦ௗ)         

                   ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(15) 
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𝐹௧௦ௗ = 𝛼௧ + 𝛽௧ × 𝐴𝑃𝐿௧ + 𝛾௧ × 𝐴𝐿𝑇௧ + 𝜏௧ × 𝑇𝑊𝑇௧௦ௗ + 𝜔௧  
ா஽

೟೏ᇲೞ

ா௏೟೏ᇲೞ

+ 𝜑௧  
௅஽

೟೏ᇲ

௅௏೟೏ᇲೞ

       

∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} & ∀𝑑ᇱ ∈ {1, … , 𝐷} 

(16) 

 

𝑥௧௦ௗ ∈ {0,1}                           ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (17) 

𝑦௦ௗ
ି ≥ 0                                            ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (18) 

𝑦௦ௗ
ା ≥ 0                                            ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (19) 

The first objective employs a goal programming approach to minimize deviations from path flow 
rates, which is computed using Eq. (1). The second objective function seeks to minimize the total 
fuel consumption of active trucks using Eq. (2). The third objective centers on minimizing the idle 
time of active shovels using Eq. (3). The fourth objective is to decrease truck wait time during 
operations, calculated using Eq. (4). To achieve the model's solution, the four objectives are made 
dimensionless using Nadir and Utopia points (Grodzevich and Romanko, 2006), defining lower and 
upper limits. This process scales objectives from 0 to 1 using Eq. (5). Priority weights for the 
weighted sum method are based on normalized versions of objectives from Eqs. (1) to (4) in Eq. (6). 
There are several constraints in the model. Constraint (7) restricts a truck's payload to its nominal 
capacity for tonnage transport in one cycle. In constraint (8), the material transported to processing 
plants via all trucks must fulfill processing targets set by each plant, adjusted by the AF factor 
(calculated in Eq. (11)). Only the AF portion of plant requirements can be fulfilled. Constraint (9) 
limits haulage capacity to a shovel's nominal digging rate, while constraint (10) calculates path flow 
rate deviations for paths linking a shovel as a source and a dumping location as a destination. Eq. 
(12) is employed to ascertain the arrival time of each truck for loading by a shovel. Shovel availability 
is determined using Eq. (13), predicting the next time the shovel will be available to load the truck. 
The coefficients for the three optimization objectives are computed through Eqs. (14), (15), and (16), 
corresponding to shovel idle time, truck wait time, and fuel consumption objective functions, 
respectively. Lastly, constraint (17) guarantees the binary nature of the first set of decision variables, 
while constraints (18) and (19) ensure non-negativity for the goal programming variables. 

3.2. Integrated Simulation and Optimization Framework 

The simulation section of the framework employs a step-by-step approach, as depicted in Figure 1. 
Initially, the model identifies trucks awaiting assignment to operational shovels and destinations. 
Subsequently, the multi-objective optimization model comes into action, efficiently allocating 
unassigned trucks. This ensures that all available trucks are effectively assigned their respective 
tasks. Throughout the simulation, the optimization model is recalibrated in response to specific 
events, such as truck initiation, dumping completion, or truck reactivation following a failure. These 
occurrences trigger a reassessment of the optimal assignment for each truck. The optimization 
process for assigning available trucks persists throughout the simulation runtime until the predefined 
time period for the simulation is reached. The input data for the framework encompasses the quantity 
and types of trucks present within the system. As a result of this input, the framework generates Key 
Performance Indicators (KPIs) statistical report, which will be elaborated upon in the subsequent 
section. Figure 2 depicts the hauling procedure executed by trucks in open-pit mining. The sequence 
commences at the terminal, where trucks are designated to ore or waste shovels, determined by 
considerations like production goals, travel durations, queue statuses, and processing periods. 
Following this, the trucks journey to either the waste dump or one of the crushers/plants, contingent 
on their cargo and the hopper capacities at each plant. Ultimately, the trucks are reassigned to a 
different shovel based on the timetable and objective functions, and this cycle persists. Finally, Figure 
3 presents a flowchart of a truck status during the operation. Once a failed truck has been repaired, 
it becomes imperative to reassign it to a new loading or unloading point. 
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Figure 1. An overview of the simulation and optimization integration process. 

 
Figure 2. An active truck’s operations. 
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Figure 3. Truck status flowchart. 

3.3. Key Performance Indicators (KPIs) 

Variables below are introduced as KPIs in this study. Collectively, these variables wield a substantial 
influence in evaluating and optimizing truck dispatching within mining operations, facilitating 
improved decision-making, heightened operational efficiency, and enhanced profitability. 

 Total ore tonnage production: This metric reflects the overall volume of ore transported to 
processing plants, directly impacting the mining operation's profitability and productivity. 

 Total ore and waste tonnages mined and delivered: Monitoring the total quantities of both 
ore and waste materials offers insights into mining process efficiency and facilitates resource 
utilization optimization. 

 Utilization of ore and waste shovels: Evaluating the usage of shovels dedicated to ore and 
waste handling ensures optimal deployment and helps identify potential operational 
bottlenecks or underutilized equipment. 

 Total and average queue times for trucks: Tracking queue times for trucks awaiting loading 
or unloading provides operational efficiency information and reveals areas where delays 
might occur. 
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 Trucks' fuel consumption: Effective fuel management is vital for cost control and 
environmental sustainability. Monitoring and optimizing fuel usage aids in minimizing 
operational expenses and carbon emissions. 

 Fuel consumption of a truck per tonne of production: This measure offers insights into trucks' 
fuel efficiency relative to the amount of material transported. It identifies opportunities for 
enhancing fuel efficiency and reducing operational costs. 

 Ore TPGOH (tonne per gross operating hour): This gauge quantifies mining productivity by 
calculating extracted ore per equipment operation hour. Higher TPGOH values signify better 
efficiency and productivity. 

 Stripping ratio: This ratio compares waste material removal volume to ore extraction 
volume, shedding light on the balance between ore production and waste elimination. 

 Trucks' availabilities and downtimes: Monitoring truck availability and tracking downtimes 
identifies potential equipment failures, planned maintenance activities, and minimizes 
mining operation disruptions. Additionally, it can significantly impact TPGOH. 

4. Design of Experiments, and Results 

This study includes a case study utilizing historical data from the Gol-E-Gohar iron ore open-pit 
mine in Iran to assess the developed framework. The evaluation aims to analyze the performance of 
different truck fleets in terms of their truck’s types and quantities, and also to investigate the impact 
of truck failures on each fleet scenario. Figure 4 depicts the arrangement of loading and dumping 
points, as well as the operational road network. At the loading points, there are five active shovels, 
with two designated for ore extraction and three for waste. At the dumping points, there are three 
destinations including two processing plants and a waste dump. 

 
Figure 4. Gol-E-Gohar iron ore mine network. 

The equipment present in the case study comprises Hitachi EX2500 and Hitachi EX5500 shovels, as 
well as Caterpillar 785C and Caterpillar 793C trucks for the transportation operations. The mining 
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activities involve three distinct destinations: two processing plants equipped with two hoppers each, 
and a waste dump featuring multiple dumping points. The distribution of shovels and trucks to the 
excavation and dumping locations is outlined in Table 1. 

Table 1. Equipment distributions. 

Origin Destination Shovel Type Truck Type 

Shovel 1 
Plant 1 
Plant 2 

Hitachi EX2500 
Cat 785C 
Cat 793C 

Shovel 2 
Plant 1 
Plant 2 

Hitachi EX2500 
Cat 785C 
Cat 793C 

Shovel 3 Waste Dump Hitachi EX5500 
Cat 785C 
Cat 793C 

Shovel 4 Waste Dump Hitachi EX5500 
Cat 785C 
Cat 793C 

Shovel 5 Waste Dump Hitachi EX2500 
Cat 785C 
Cat 793C 

There is deterministic and stochastic information included in the case study's input data. The Arena 
Input Analyzer tool (Rockwell Automation, 2019) has been utilized in (Moradi Afrapoli, 2018) for 
the establishment of stochastic input distributions based on historical data. Each processing plant has 
a feeding rate target (capacity limit) of 2300 tonnes per hour. 

The calculation of fuel consumption for individual CAT 785C trucks is performed using  Eq. (20) 
obtained from (Dindarloo and Siami-Irdemoosa, 2016): 

𝐹(
𝑙

𝑐𝑦𝑐𝑙𝑒
) = 1.37071 + 0.00483 × 𝑃𝐿 + 0.00398 × 𝐿𝑇 + 0.00499 × 𝐸𝑆

+ 0.01471 × 𝐸𝑇𝑅 + 0.00278 × 𝐿𝑆 + 0.0519 × 𝐿𝑇𝑅 
(20) 

F: fuel consumption per cycle (liters) 

PL: payload (tonnes) 

LT: loading time (seconds) 

ES: empty idle time (seconds) 

ETR: empty travel time (seconds) 

LS: loaded idle time (seconds) 

LTR: loaded travel time (seconds) 

The fuel consumption for the CAT 793C truck type is determined through Eq. (21), where a specific 
coefficient from the Caterpillar handbook (Caterpillar Performance Handbook Edition 29, 1999) is 
multiplied with it. This coefficient accounts for factors such as load and haul conditions, road 
conditions, grades, and rolling resistance. As a result, the CAT 793C's fuel consumption is 
approximately 1.59 times that of CAT 785C. Thus, Eq. (21) outlines the formula utilized to compute 
the fuel consumption for CAT 793C trucks in each operational cycle. 

𝐹(
𝑙

𝑐𝑦𝑐𝑙𝑒
) = 2.17943 + 0.00768 × 𝑃𝐿 + 0.00633 × 𝐿𝑇 + 0.00793 × 𝐸𝑆

+ 0.02339 × 𝐸𝑇𝑅 + 0.00442 × 𝐿𝑆 + 0.0825 × 𝐿𝑇𝑅 

(21) 
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The simulation encompassed a duration of 10 days, involving 12 hours of operation per day, with the 
goal of achieving a satisfactory ore production of 550,000 tonnes for the planned mining operations 
over this period. 

The operational efficiency, productivity, cost-effectiveness, and sustainability of a mining fleet are 
significantly impacted by the number and varieties of trucks within it. It is crucial to carefully 
consider the right quantity of trucks, select appropriate truck types, and efficiently manage their 
dispatch. This plays a vital role in developing a productive and financially viable fleet system. 
Through analysis of these factors and implementing fleet management approaches,, mining 
companies can streamline operations, boost productivity, and reduce expenses and environmental 
impacts. This research presents 40 scenarios based on different truck types and quantities. The first 
nine scenarios focus on a homogenous fleet of CAT 785C trucks.. Subsequently, the following eight 
scenarios involve a homogenous fleet of CAT 793C trucks, each with varying quantities. The 
remaining scenarios encompass a diverse fleet arrangement, incorporating both CAT 785C and CAT 
793C trucks (heterogenous fleet) within the system. Within the Appendix, there is a comprehensive 
table (Table A. 1) that presents the key performance indicators (KPIs) for each distinctive scenario 
involving diverse combinations of truck types and quantities. Among the scenarios, scenario 6 with 
a homogenous fleet of 30 CAT 785C trucks, scenario 13 featuring 18 CAT 793C trucks in a 
homogenous fleet, and scenario 24 that combines 20 CAT 785C trucks with 5 CAT 793C trucks in 
a heterogenous fleet, demonstrate the best performance in terms of achieving production goals and 
reducing fuel usage as shown in Figure 5, Figure 6, and Figure 7. 

 

Figure 5. Production and fuel consumption in homogenous fleet of CAT 785C. 
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Figure 6. Production and fuel consumption in homogenous fleet of CAT 793C. 

 

Figure 7. Production and fuel consumption in heterogenous fleet of CAT 785C and CAT 793C. 

With the central aim being the maximization of production, scenario 24 emerges as the optimal 
selection by simultaneously achieving production targets, minimizing fuel usage, and reducing 
carbon emissions. This configuration involves a fleet composition comprising 20 smaller trucks 
(CAT 785C) and 5 larger trucks (CAT 793C). This choice effectively strikes a balance between the 
demand for high productivity and the imperative to curtail fuel consumption and environmental 
impact, aligning seamlessly with the sustainability objectives outlined in this study. Scenario 6 boasts 
the highest utilization of ore and waste shovels, closely followed by scenario 24. Among the three 
scenarios, scenario 13 demonstrates the lowest utilization of shovels. When considering average 
truck queue times, scenario 6 holds the record for the longest, followed by scenario 24. Scenario 13 
displays the shortest average truck queue time among the three scenarios. All three scenarios achieve 
acceptable ore tonnage, with scenario 6 slightly surpassing in ore tonnage, and scenario 13 slightly 
lagging. Surprisingly, scenario 13 showcases the highest total tonnage, standing notably higher than 
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the other scenarios, followed by scenario 6. In contrast, scenario 24 presents a slightly lower total 
tonnage when compared to scenario 6. In terms of fuel consumption, a comparison between scenario 
6, scenario 13, and the lowest fuel consumption recorded in scenario 24 reveals a clear distinction. 
Scenario 6 shows a 5.83% higher fuel consumption ratio, while scenario 13 exhibits a significantly 
higher ratio difference of 17.35%. 

 Table 2 details the average cycle numbers for each shovel and destination for every truck in scenario 
24. Moreover, it provides the OreCycles%, which is the percentage of times a truck transports ore 
material of the total cycles. Similarly, it presents the WasteCycles%, representing the percentage for 
waste material transport. 

Table 2. Heterogenous fleet cycles of scenario 24. 

Truck 
Type 

Truck# SH1 SH2 SH3 SH4 SH5 P1 P2 WD 
Ore 

Cycles 
(%) 

Waste 
Cycles 

(%) 

785C 

1 84 82.2 50.4 56.6 51.6 82.8 83.4 158.6 51 49 

2 82.8 77.8 54.4 58.8 55.4 79.4 81.2 168.6 49 51 

3 75.4 78.4 60.4 59.8 58 74.8 79 178.2 46 54 

4 79.8 76.4 60.8 63.4 53 81.2 75 177.2 47 53 

5 80.6 74.6 61.6 67 52.6 75.6 79.6 181.2 46 54 

6 81.6 65.4 60.2 76 57.2 68.8 78.2 193.4 43 57 

7 84.2 67.6 65.8 71.8 51.2 69.6 82.2 188.8 45 55 

8 72.6 71.4 71.4 69.2 57.4 66.8 77.2 198 42 58 

9 81.6 65 66.6 83 51 69.4 77.2 200.6 42 58 

10 71.8 68.4 67.2 85.6 56.4 65.2 75 209.2 40 60 

11 72.2 70.8 77.4 82.4 47.6 69.8 73.2 207.4 41 59 

12 73.6 63.4 72 85.4 54 66.4 70.6 211.4 39 61 

13 73.4 65.8 76.6 88 48.2 67 72.2 212.8 40 60 

14 68.4 68 78.2 88.6 53 67.2 69.2 219.8 38 62 

15 71.4 64.6 79.4 82.8 55.2 63.8 72.2 217.4 38 62 

16 77 64.8 84.2 83.2 45.8 65.2 76.6 213.2 40 60 

17 78.4 64 73.2 80.2 50.2 67.6 74.8 203.6 41 59 

18 76.2 76 78.6 75 43.4 74 78.2 197 44 56 

19 70.6 77.6 78 84.4 41.4 67.6 80.6 203.8 42 58 

20 76 78.2 79 75.6 41 74 80.2 195.6 44 56 

793C 

21 47.8 67.8 48.4 44.8 95.8 67.4 48.2 189 38 62 

22 45.4 60.4 58.4 39 104.2 61.8 44 201.6 34 66 

23 48.2 61 53.8 42.6 98 61.4 47.8 194.4 36 64 

24 52.2 57 54.4 44.4 101.4 58.2 51 200.2 35 65 

25 51.4 61.6 46.8 39.4 103.2 61.8 51.2 189.4 37 63 

The findings highlight that CAT 793C trucks transport larger quantities of waste in comparison to 
CAT 785C trucks.  While waste dumping isn't constrained by hourly capacity, plants have specific 
hourly hopper limits. Trucks with lower capacities offer greater flexibility for transferring ore 
materials within the system, making them a more suitable choice for assignment to ore shovels. 
Furthermore, a significant distinction is observed in the assignment of large trucks to waste shovel 
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5. This difference primarily arises from the fact that shovel 5 boasts a higher digging rate and capacity 
than the other waste shovels. 

In Table 3, the KPIs for the most promising scenarios, accounting for truck failures, are shown. These 
scenarios, previously discussed without factoring in truck failures. Considering truck failures, 
scenario 6, featuring a homogeneous CAT 785C truck fleet with 30 number of trucks, stands out for 
its remarkable tonnage transportation, production rate, and shovels' utilization. Although its fuel 
consumption isn't the lowest, its rate per tonne of production is acceptable.. Examining the impact of 
truck failures, it becomes evident that a fleet with a higher number of smaller trucks holds advantages 
in achieving the hourly ore production rate. Despite their smaller capacities, the flexibility of smaller 
trucks enhances their effectiveness Moreover, these smaller trucks (CAT 785C) experience reduced 
downtime when compared to the larger trucks (CAT 793C), further enhancing their performance in 
the context of truck failures. 

Table 3. KPIs of the Best Scenarios with the Trucks failure, and differences’ percentages in KPIs. 

Scenario 
Util. 
Ore 
(%) 

Util. 
Waste 
(%) 

Average 
Q time 
(Mins) 

Total 
Q time 
(Hrs) 

FC 
(KL) 

Ore 
Tonnage 

(KT) 

Total 
Tonnage 

(KT) 

Ore 
TPGOH 

(T) 
SR 

6(F) 78.1 53.5 3.4 527 361 531 1222 4421 
 

1.30 
 

13(F) 66.6 43.3 2.3 190 389 512 1180 4264 
 

1.31 
 

24(F) 71.8 50.1 2.9 378 343 502 1171 4181 
 

1.33 
 

(%) Diff. 
6(F) 
and 6 

-3.8 -4.8 -11.4 -15.3 -12.0 -4.0 -4.4 -4.0 -0.8 

(%) Diff. 
13(F) and 

13 
-7.0 -10.2 -11.0 -17.4 -14.4 -7.0 -8.9 -7.0 -3.0 

(%) Diff. 
24(F) and 

24 
-8.8 -7.1 -15.7 -21.8 -11.4 -9.0 -8.3 -9.0 1.5 

Scenario 6 stands out with the least variation in KPIs compared to other scenarios. This suggests that 
incorporating a larger number of smaller trucks in the fleet can minimize production losses in the 
event of unplanned failures. However, when considering the presence of a stockpile or several 
stockpiles in the system and a slightly higher number of trucks in both types, a heterogenous fleet 
still outperforms homogenous fleets. 
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Figure 8, and Figure 9 illustrate that the daily average TPGOH for scenario 6 and scenario 24, 
respectively, is significantly impacted by the daily average number of active trucks available in the 
system. This underscores that a decrease in the active truck count can result in a corresponding 
reduction in the TPGOH and consequently, total ore production. 

211



Kazemi Ashtiani M. et. al.   MOL Report Eleven Ⓒ 2023   205-17 

 

 
 

 
Figure 8. Scenario 6 (Homogeneous fleet - 30 small trucks) - impact of truck failures on average TPGOH. 

 

Figure 9. Scenario 24 (Heterogenous fleet - 25 Small and 5 large trucks) - impact of truck failures on average 
TPGOH. 
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5. Conclusions 

The study primarily focused on determining the optimal quantity and types of trucks required within 
the system, utilizing a developed truck dispatching optimization model. model's primary objective 
was to minimize deviations in path flow rates, shovel idle time, truck wait time, and truck fuel 
consumption. An important contribution of this research was the incorporation of fuel consumption 
and GHG emissions as criteria for truck fleet selection and sizing. Furthermore, the study enhanced 
the model's practicality and reliability by considering truck uptime and downtime. 

The number and types of trucks within a mining fleet exerted a substantial impact on operational 
efficiency, productivity, and cost-effectiveness. Apart from an efficient dispatching system, 
optimizing the selection and quantity of available trucks played a pivotal role in establishing a 
sustainable and productive haulage system for open-pit mines. Among the various scenarios 
explored, scenario 24, a mix of 20 CAT 785C and 5 CAT 793C trucks in a heterogeneous fleet, 
displayed optimal performance in meeting production targets and minimizing fuel consumption. This 
configuration effectively balanced high productivity with the imperative to reduce fuel consumption 
and environmental impact, aligning well with the study's sustainability goals. Scenario 6, consisting 
of 30 CAT 785C trucks, exhibited a 5.83% higher fuel consumption ratio and 5.45% higher fuel 
consumption per tonne of production. The CAT 793C trucks transported more waste material per 
truck due to their higher capacity. Notably, while dumping in the waste disposal area had no hourly 
capacity restriction, the processing plants had specific hourly hopper capacities. Trucks with lower 
capacities offered enhanced flexibility in transferring ore materials and were better suited for 
assignment to ore shovels. 

In scenarios accounting for truck failures, a fleet with a higher number of smaller trucks proved 
advantageous in maintaining the hourly ore production rate due to increased flexibility, despite the 
smaller average capacity per truck.  Additionally, smaller trucks had lower average downtimes 
compared to larger counterparts, contributing to their superior performance in the context of truck 
failures. When prioritizing fuel consumption per tonne of production, scenario 6 with a homogeneous 
fleet of 30 small trucks, along with scenarios 20 (comprising 22 small and 4 large trucks) and 24 
(comprising 20 small and 5 large trucks) with heterogeneous fleets, emerged as the most reliable and 
efficient choices. However, scenario 6 stood out due to its higher production rate and dispatching 
flexibility, making it the optimal selection when accounting for unforeseen failures in the model. In 
conclusion, considering truck failures, fuel consumption, and production rates, scenario 6 with a 
homogeneous fleet of 30 CAT 785C trucks demonstrated favorable performance. Nonetheless, 
introducing one or more stockpiles into the system and having a slightly higher number of trucks of 
both types could potentially lead to a heterogeneous fleet outperforming homogeneous ones. It is 
important to note that stockpiling wasn't a part of this study's framework. These considerations 
ensured steady material flow, mitigated truck failure effects, and optimized overall production 
efficiency in mining operations. 

 Future research should consider aspects such as truck age, shovel failure impact, and stockpile 
integration to improve the modeling approach's reliability, realism, and comprehensiveness. 
Incorporating these factors could lead to more accurate predictions, refined optimization strategies, 
and ultimately, greater efficiency and sustainability in mining operations. 
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7.  Appendix 

List of abbreviations: 

CAT Caterpillar 

HIT Hitachi 

TPGOH Tonne Per Gross Operating Hours 

OTPGOH Ore Tonne Per Gross Operating Hours 

SR Stripping Ratio 

Q Queue 

SIT Shovel Idle Time 

TWT Truck Wait Time 

PD Production Deviation 

FC Fuel Consumption 

min Minutes 

hrs Hours 

t / kt Tonnes / Kilo Tonnes 

l / kl Liters / Kilo Liters 

tph Tonne Per Hour 
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Table A. 1. KPIs for Various Types of Trucks and Number of Trucks. 

Scenario 
Number 
of trucks 

785C 

Number 
of trucks 

793C 

Utilization 
Ore 
(%) 

Utilization 
Waste 

(%) 

Average 
Q time 
(mins) 

Total 
Q time 
(hrs) 

FC 
(kl) 

Ore 
Tonnage 

(kt) 

Total 
Tonnage 

(kt) 

Ore 
TPGOH 

(t) 
SR 

1 22 0 67.84 47.55 2.72 373.29 298.31 461.50 1080.23 3845.87 1.34 

2 24 0 74.92 50.84 2.82 416.18 324.12 508.44 1166.06 4237.02 1.29 

3 26 0 79.40 54.31 3.12 488.36 346.97 541.50 1241.02 4512.54 1.29 

4 28 0 80.20 54.98 3.51 555.85 378.91 545.41 1253.44 4545.11 1.30 

5 29 0 80.60 56.15 3.67 591.81 392.78 548.64 1272.59 4572.02 1.32 

6* 30 0 81.16 56.22 3.85 622.29 410.04 552.39 1277.51 4603.23 1.31 

7 32 0 81.29 58.40 4.16 686.96 440.67 552.36 1304.78 4603.02 1.36 

8 34 0 81.18 59.44 4.61 770.65 470.49 552.26 1317.77 4602.15 1.39 

9* 36 0 81.19 60.14 4.92 825.31 506.12 552.32 1324.50 4602.65 1.40 

10 0 15 68.85 43.14 2.13 175.38 369.04 529.10 1196.37 4409.20 1.26 

11 0 16 70.85 45.66 2.28 195.68 393.42 544.77 1248.65 4539.73 1.29 

12 0 17 70.96 46.96 2.40 213.87 421.65 545.57 1270.10 4546.44 1.33 

13* 0 18 71.60 48.20 2.63 229.66 454.54 550.06 1295.28 4583.85 1.35 

14 0 19 71.73 49.06 2.66 239.92 485.36 551.08 1312.29 4592.29 1.38 

15* 0 20 71.95 48.64 2.84 254.45 517.51 552.31 1305.70 4602.59 1.36 

16 0 21 71.94 50.61 3.00 274.56 545.11 552.14 1333.44 4601.17 1.42 

17 0 22 72.07 52.89 3.18 299.42 572.12 552.27 1372.42 4602.28 1.49 

18 25 3 80.05 53.94 3.75 552.06 418.24 552.21 1263.46 4601.73 1.29 

19 26 3 80.15 55.59 3.83 577.76 433.62 552.23 1285.20 4601.89 1.33 

20* 22 4 79.39 54.70 3.59 521.00 388.72 551.17 1277.53 4593.06 1.32 

21 23 4 79.70 55.45 3.70 543.67 405.79 551.96 1289.60 4599.71 1.34 

22 24 4 79.55 54.89 3.77 549.45 429.54 551.29 1281.59 4594.05 1.32 

23 19 5 76.77 53.48 3.14 432.65 376.35 538.51 1258.84 4487.59 1.34 
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24* 20 5 78.71 53.89 3.45 483.93 387.44 551.52 1276.65 4596.02 1.31 

25 21 5 79.12 55.32 3.67 522.96 400.03 551.37 1292.61 4594.76 1.34 

26 22 5 79.12 56.31 3.75 543.72 417.23 552.27 1306.81 4602.26 1.37 

27 18 6 76.15 54.49 3.17 431.62 388.18 536.69 1279.36 4472.42 1.38 

28 19 6 78.55 54.92 3.46 481.03 398.40 551.41 1298.85 4595.12 1.36 

29 20 6 78.62 55.95 3.68 518.31 412.42 552.12 1309.17 4601.03 1.37 

30 21 6 78.71 56.96 3.82 545.51 428.61 552.37 1322.11 4603.12 1.39 

31 24 6 79.14 57.73 4.29 623.72 481.38 552.35 1334.03 4602.92 1.42 

32 17 7 76.28 54.88 3.32 445.52 397.33 540.61 1298.82 4505.10 1.40 

33 19 7 78.32 56.42 3.70 512.38 424.99 552.04 1322.56 4600.33 1.40 

34 20 7 78.52 57.61 3.85 543.51 440.50 552.04 1341.86 4600.34 1.43 

35 16 8 76.08 55.82 3.35 442.32 409.77 540.87 1321.28 4507.23 1.44 

36 18 8 77.87 57.77 3.80 522.46 433.74 551.64 1351.33 4597.04 1.45 

37 14 10 75.36 58.24 3.51 455.19 428.78 541.39 1375.32 4511.56 1.54 

38 12 12 74.47 59.72 3.67 462.28 449.87 540.02 1413.49 4500.14 1.62 

39 10 14 74.22 60.61 3.78 461.28 472.90 542.37 1449.22 4519.73 1.67 

40 8 15 73.56 58.48 3.80 437.64 470.42 541.60 1423.36 4513.37 1.63 
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