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ABSTRACT 

Truck fleet dispatching plays a key role in reducing operational costs and fulfilling operational 
targets in open-pit mining operations and is subject to large uncertainty arising from the operating 
cycles of trucks and loading equipment. In this research, we propose a reinforcement learning-based 
truck dispatching system. Reinforcement learning is a machine learning area that deals with learning 
an optimal sequential decision-making strategy in an uncertain environment. An open-pit load-and-
haul simulation is developed that also captures the truck movements and interactions in the shared 
road network, and a Neural Network is successfully trained to suggest truck dispatching decisions 
in real-time. 

1. Introduction 

A truck dispatching system aims to assign trucks to their next destination after completing an 
operating cycle. An open-pit is a complex and dynamic production environment where trucks haul 
material between mining faces and different material destinations, travelling across a shared haul 
road network. A truck dispatching system must provide real-time assignments as trucks complete 
their cycles, based on the current state of the mine, to contribute towards the shift production targets. 
The operating cycle of trucks, comprising of hauling empty towards a shovel, receiving its payload, 
hauling the payload, and dumping it at a given destination, is subject to operational uncertainties at 
every step. These arise from equipment characteristics, equipment and road condition, and operator 
skill, amongst other factors. Furthermore, traffic rules such as no overtaking and different equipment 
sizes and production rates make the truck dispatching problem challenging to model and solve in a 
real-time manner. 

The problem is usually modelled and solved in two stages, as proposed by White and Olson (1986) 
[1] and Olson et al. (1993) [2], where a first or upper stage defines a simplified model of the open-
pit production environment and uses linear programming (LP) to obtain shovel digging rates and 
tonnage of material to be moved between different paths between mining faces and destinations in 
the pit. A lower stage refers to the real-time dispatch of trucks in operations and is solved using a 
heuristic rule to match trucks to shovels to meet the path tonnages established in the upper stage 
section. New developments have focused on more complex optimization models and using 
simulations (Temeng et al. (1998) [3], Ta et al. (2005) [4], Topal and Ramazan (2012) [5], Ahangaran 
et al. (2015) [6], Moradi Afrapoli et al. (2018) [7], Moradi Afrapoli et al. (2019) [8], Moradi-Afrapoli 
and Askari-Nasab (2020) [9], Moradi-Afrapoli et al. (2021) [10], Mohtasham et al. (2022) [11], 
Pirmoradian et al. (2022) [12], Moradi-Afrapoli et al. (2022) [13], Mirzaei-Nasirabad et al. (2023) 
[14], Ghasempour and Moradi-Afrapoli (2023) [15]). For a more detailed review of truck dispatching 
systems, readers are directed to Moradi Afrapoli and Askari-Nasab (2019) [16]. However, 
approaches based on linear optimization have a limited ability to capture the dynamics of the pit 
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operations requiring significant simplifications or a large model that is incurring in large computing 
times. Moreover, these models make decisions based on estimates of equipment activity times which 
are highly uncertain, and simulation models have only been used to evaluate the performance of the 
dispatching model rather than to integrate the uncertainty into the optimization process directly. 

This paper proposes an artificial intelligence (AI) based truck dispatching agent trained in an open-
pit simulation environment that captures all the equipment cycle and interaction uncertainties. This 
allows the agent to learn from the system's uncertainties and directly incorporate them into the 
optimization process. The truck dispatching agent is trained to meet target shovel digging target rates 
in tonnes-per-hour (tph) and target tonnage targets to be delivered at the different destinations during 
a production shift. Furthermore, the training process is linked with the monthly production schedule 
and projected pit development to ensure the truck dispatching model performs optimally for the next 
month of production. 

The truck dispatching agent is trained using Reinforcement Learning (RL). RL is a branch of 
Machine Learning (ML) that implements a computational approach to learning an optimal policy, a 
decision-making strategy, through interactions with an environment (Sutton and Barto (2018) [17]).  
In an RL framework, an agent, an abstraction for the decision-maker, interacts with an environment 
at different time steps. At any time-step 𝑡 where the agent must act, it observes the current state of 
the system, 𝑠௧, and makes an action, 𝑎௧ based on it. The environment then responds to this action by 
transitioning into a new state in the next time step 𝑠௧ାଵ, and providing a reward 𝑅௧ାଵ for the agent 
(Figure 1).  

 

 
Figure 1. Reinforcement learning conceptual framework. 

RL goal is to enable the agent to learn an optimal decision-making policy that maximizes the 
cumulative reward received throughout its interaction. The objective function that RL algorithms 
optimize is the total discounted reward accumulated by the agent by interacting with the environment. 
The RL agent seeks to learn a relation, or a function, from state-action pairs, (𝑠, 𝑎), to the expected 
return of taking action 𝑎 from state 𝑠, denominated Q-value, 𝑄(𝑠, 𝑎). The Q-value is a function 
defined as the expected cumulative discounted reward achieved by the agent by taking an action 𝑎 
from a state 𝑠, following the same function for the next steps until the end of an episode (Equation 
1). The cumulative nature of the return allows the agent to understand the impact of actions over long 
sequences rather than acting greedily at every step. 

𝑄(𝑠, 𝑎) = 𝐸 ൥෍ 𝛾௡𝑅௡

௡

อ 𝑠௧ = 𝑠, 𝑎௧ = 𝑎൩ (1) 

The use of Deep Neural Networks (DNN) as function approximators in RL frameworks to learn the 
Q-value function provides the ability to learn complex and non-linear relations between environment 
states, agent actions, and returns. This framework has been used to develop complex scheduling and 
routing systems for complex real-world industrial applications in manufacturing plants (Lian et al. 
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(2022) [18]), chemical production plants (Hubbs et al. (2020) [19]), and vehicle routing platforms 
(Qin et al. (2020) [20]).  

Machine Learning and Reinforcement Learning frameworks have also been explored for truck 
dispatching in open-pit mining (Noriega and Pourrahimian (2022) [21], Nobahar et al. (2022) [22]). 
Zhang et al. (2020) [23] proposed a deep Q-learning model that maximizes the total fleet productivity 
in open-pit operations, considering a truck fleet of heterogeneous capacities. However, the system 
does not consider potential production targets at different destinations, making it impractical for real-
world operations where ore and waste targets can vary depending on the different processing methods 
applied in the mine. Moreover, the system is trained and evaluated for a single production shift. de 
Carvalho and Dimitrakopoulos (2021) [24], on the other hand, proposed a deep Q-learning that can 
dispatch trucks to meet different ore and waste production targets; however, the simulation that is 
used to train the agent is relatively simple and would not be able to fully capture the dynamics of a 
real-world operation which could lead to significant discrepancies in a potential real-world 
application. Furthermore, the authors train their system for only three days of production, and the 
evaluation indicates that the performance significantly degrades after five days suggesting that the 
model would need to be continuously retrained. This paper aims to address these limitations by 
training the agent in a detailed open-pit simulation environment and linking the training process with 
the production schedule to obtain optimal and consistent performance for a month of production. 

2. METHODS 

A discrete event simulation (DES) model is used to build a simulated open-pit production 
environment to train the truck dispatching agent. DES models have been widely used to evaluate 
mining fleet productivity and the impact of changes to the mining production environment 
(Upadhyay et al. (2021) [25], Moradi-Afrapoli et al. (2022) [26]) and provide an approximation of 
the impact of truck dispatching decisions in the open-pit system state. The DES is built using 
information about the mine layout to model the haul road network, mining faces and destination 
locations, and other relevant features. Equipment dispatch and mine planning databases are used to 
model the uncertainties in equipment activities as probability distributions. The DES then simulates 
the movement of trucks and their interaction with shovels and dumping destinations keeping track 
of different key production indicators (KPIs) and productivity rates. Whenever a truck dispatching 
decision is required, control in the DES is yielded to the AI truck dispatching agent, which observes 
the current state of the mine, described as a vector, and outputs a dispatching action. The agent is a 
neural network (NN), trained by interacting multiple times with the environment, receiving a 
feedback signal, the Q-value cumulative discounted returns. The feedback signal is designed to 
encourage the agent to meet desired goals, in this case, maximizing equipment utilization and 
meeting the different shift production targets. Figure 2 presents the methodology proposed in this 
paper. Due to the extensive AI packages available, the DES model is implemented in Python, an 
open-source programming language. The training loop is executed using PyTorch’s deep learning 
framework. 

2.1. Open-pit environment 

The open-pit DES environment simulates a shift of production where trucks move between shovels 
and dumping destinations across a shared haul road network. Stochasticity is considered in each 
component of the truck operating cycle: hauling empty, getting loaded, hauling loaded and dumping. 
With queues forming based on the limited serving capacity of both shovels and dumping destinations. 
The DES is based on the models described by (Goris Cervantes et al. (2019) [27]). At the start of 
each shift simulated, shovels are assigned to a mining face based on the mine plan which also dictates 
the destination of the material being loaded there. Truck dispatching actions are required every time 
a truck dumps its payload, where the system's current state is given as input to the AI dispatched to 
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obtain a truck-shovel assignment for its next cycle. Figure 3 shows the general logic of the DES 
environment and its interaction with the AI dispatcher agent. 

 
Figure 2. General methodology proposed for the development of an AI based truck dispatching agent. 

 
Figure 3. Interaction between the open-pit DES environment and the AI dispatcher agent. 

When a truck starts traveling across the road network towards either a shovel or a dump destination, 
it is assigned a path, a collection of connected road segments from the network that is the shortest 
path between the current location of the truck and its next destination. Each road segment in this path 
contains information about the segment’s rolling resistance, grade resistance, and length and 
maintains a queue of trucks that are traveling across it which is used to model truck bunching. 
Moreover, each segment has a maximum speed limit 𝑣௥௢௔ௗ that constrains the speed of any truck 
traveling through it. 

Each truck traverses its path by moving along each road segment. Truck velocities are estimated 
using the equipment dispatch database to model each truck type's empty flat haul movement 
distribution. This refers to the velocity of trucks when hauling empty over flat segments and provides 
a good baseline then to include the effects of payload and road resistance. After entering a segment, 
the truck enters the road segment truck’s queue and is assigned a velocity based on its truck type 
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empty flat haul velocity distribution adjusted by the road resistance and payload based on the truck 
manufacturer's rimpull curves. While travelling through the different road segments, trucks are not 
allowed to overtake and bunch behind, adopting its leading truck’s velocity. 

2.2. Truck Dispatching Agent 

The implementation and training of the AI dispatcher agent require the definition of state, action, 
rewards, and the NN architecture. The decision on these components is based on the goals that the 
AI agent must reach. In this paper, we design the agent to dispatch trucks to meet given shovel 
digging rate targets for each shovel, expressed in tonnes-per-hour (tph), meet target tonnes dumped 
at the different destinations by the end of the shift and maximize equipment utilization. 
To handle large truck fleets and improve generalization, each truck is considered an individual agent 
that collects state, action, next state, reward transitions, or experiences. However, a centralized truck 
dispatching policy is used to avoid incurring in training many individual agents, which severely 
suffers from scalability and implementation issues. Each truck pushes its experiences to a shared 
buffer that is used to train one general truck dispatching NN agent. Therefore, each transition between 
states of the pit encodes information about dispatching a single truck and its impact on the production 
environment after completing its cycle. 
Considering an open-pit with 𝑚 shovels and 𝑛 destinations, the state of the system refers to an 
observation of useful features that the agent can use to correlate with the expected return of actions. 
In this case, the state is a vector that encodes information available by processing real-time data based 
on equipment tracking systems, production targets, and monitoring of shift progress. The AI agent's 
action is assigning the truck to a shovel for its next operating cycle. This action is encoded as a one-
hot vector, a vector with a dimension equal to the number of shovels where the index or position of 
each element is tied to a shovel in the system. All its elements are 0 except for one element with a 
value of 1 where its position indicates the shovel assignment.  

 
Figure 4. State and action representation for the truck dispatching agent. 

In the state and action descriptuion the 𝑖, 𝑗, 𝑘 indices refer to trucks, shovels and destinations 
respectively. The 𝐶𝑎𝑝 ∈ ℝ component is a real number indicating the capacity of the current truck 
being dispatched; this allows the agent to handle fleets with trucks of different sizes better. 𝐷𝑖𝑠𝑡௝  ∈

ℝ௠ is a vector containing the total distance to be travelled along the road network for the next 
operating cycle between the location of the current truck and each shovel 𝑗. 𝑇𝐶𝑎𝑝௝  ∈ ℝ௠ is a vector 
that contains information about the total truck capacity currently in route, at the queue and being 
serviced at each shovel, and its obtained based on the current truck’s shovel assignments. 𝑊𝑎𝑖𝑡௝  ∈

ℝ௠ elements contain the expected waiting for the current truck to be loaded at each shovel and is 
estimated based on path length, number of trucks in route, at the queue and being serviced by each 
shovel. 𝑇𝑎𝑟𝑔𝑒𝑡௞  ∈ ℝ௡ indicates the current progress of the target tonnage to be dumped at each 
destination. 𝑆ℎ𝑇𝑃𝐻௝  ∈ ℝ௠ vector contains the current shovel’s tph. 𝑆𝐻௜  ∈ ℝ௠ is a one-hot encoded 
vector that indicates the last shovel assignment of the current truck and 𝑇 ∈ ℝ is a real number 
indicating the current time of the shift. Each component is scaled to avoid the dominance of a single 
component due to large quantities. 
The reward signal is designed to direct the agent to meet the desired goals. Once the agent dispatches 
a truck to a shovel and this completes its operating cycle by dumping its load at a destination point, 
a transition is completed and a reward, 𝑟௧, is provided as the truck waits for a new assignment. The 
reward function is shown in Equation 2. 

182



Noriega R. et. al.    MOL Report Eleven Ⓒ 2023   203-6 

𝑟௧ = ෍ 𝑡𝑝ℎ௝
ି

௝

+ (1 − 𝑞𝑡௜) +
𝐶𝑎𝑝௜

𝑀𝑎𝑥𝐶𝑎𝑝
𝛿௞ + 𝛿் ෍ 𝑐௞

ି

௞

 (2) 

In the first component, 𝑡𝑝ℎ௝
ି indicates the current negative deviation, or shortfall, from the target tph 

of shovel 𝑗, expressed as a ratio. Adding all shovel production shortfalls encourages the agent to keep 
all shovels at the target rates, or higher. The second component rewards the agent for obtaining 
efficient truck cycles, where 𝑞𝑡௜ indicates the fraction of time the current truck spent at queues both 
at shovel and destination in its last cycle because of the action taken. The third  component rewards 
the agent for every truck payload delivered, weighing by how large relative to the maximum truck 
size, where 𝐶𝑎𝑝௜ is the capacity of the current truck, 𝑀𝑎𝑥𝐶𝑎𝑝 is the maximum truck capacity in the 
system and 𝛿௞ is a binary indicator for meeting the tonnage target to be delivered at the destination 
where the current truck dumped. This reward component only applies to destinations whose targets 
have not been met, using the binary indicator, to create a reward gradient with respect to other 
destinations with unmet targets and encourage the agent to meet all production targets. Finally, the 
last component of the reward is only applied at the end of an episode, where  𝛿௞ is a binary indicator 
that takes the value 1 when the shift ends, and penalizes the agent for not meeting the shift targets at 
each destination, where 𝑐௞

ି is the shortfall from the target tonnes delivered at destination 𝑘 at the end 
of the shift, expressed as a ratio. 
The agent is implemented as a neural network (NN), which takes a state observation and estimates 
the Q-value for each action; that is, the expected discounted cumulative reward for taking each 
dispatching action from the given state up to the end of the shift. The action with the highest Q-value 
is then selected. The NN implemented in this paper is a feedforward network with five layers and 
200 neurons in each layer using the ReLU function as the activation function. 

2.3. Training Process 

The AI dispatching agent is trained using the Deep Q-learning algorithm described by Mnih et al. 
(2015) [28], with the Double Q-learning modification proposed by van Hasselt et al. (2016) [29]. 
The training process refers to the iterative adjustment of the agent’s NN weights, 𝜃, to better predict 
the action-values, Q-value, for taking each action from a given state of the system. 
The training process in deep Q-learning relies on the agent interacting with the environment storing 
experience vectors, 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) that represent each transition observed, in a memory replay 
buffer which serves as the training dataset for every training update of the NN agent. The role of the 
replay buffer is to break the correlation between consecutive experiences obtained from sequential 
time steps in the environment. The Q-values are estimated recurrently from the experience vectors 
by calling the NN to estimate the Q-value of the next state from the transition.  
At every NN training step, a batch of experiences is drawn randomly from the replay buffer, and the 
NN weights are trained to minimize the prediction loss 𝐿௜(𝜃௜) defined as the mean square error 
(MSE) between the observed return (target) and the predicted return from the network at training 
step 𝑖, as shown in Equation 3. 

𝐿௜(𝜃௜) = (𝑟 + 𝛾𝑚𝑎𝑥௔೟శభ
𝑄൫𝑠௧ାଵ, 𝑎௧ାଵ; 𝜃௜

௧௚௧൯ − 𝑄(𝑠௧ , 𝑎௧; 𝜃௜))ଶ (3) 

Where 𝜃௜
௧௚௧ refers to a NN used to evaluate target returns not trained at every step but synced with 

the online network defined by 𝜃௜ every 𝐶 steps, called the target network, which helps stabilize the 
training process. The original Q-learning tends to overestimate the value of actions, which is harmful 
for training stability. Double Q-learning alleviates this problem by making the simple modification 
of using the training NN to choose actions but evaluating the next state Q-values using the target 
network and has been found to overperform the original implementation. Stochastic gradient descent 
(SGD) is used to update the NN weights to minimize the loss function. This process is controlled by 
a learning rate parameter, 𝛼, that scales the magnitude of the update in the direction of the loss 
gradients. 
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A training episode consists of a production shift and the agent’s NN is updated at each transition, a 
truck operating cycle, as described above. To develop a dispatching model for the next month of 
production, at the start of the training shift the location of the shovels and the mine road layout is 
chosen randomly based on the production schedule and the projected pit development. That is the 
shift to be simulated and used for training is representative of one of the projected shifts for the next 
month. This helps avoid prohibitively long training episodes, as each episode is still one shift, and 
learn a general dispatching policy as the policy learned must be optimal for the whole month. 

3. Results 

3.1. Case Study 

The AI truck dispatching agent was tested in a case study based on an iron ore mining operation. The 
mining operation uses a total of five shovels to load material from mining faces: 2 Hitachi 2500 
shovels for ore production and 3 Hitachi 5500 Ex shovels for waste production. A fleet of 38 trucks 
is employed to haul the material from the pit to their destination, either one of two crushers or a waste 
dump. The mine uses 22 CAT785C, with a payload of 140 tonnes, and 16 CAT793C, with a payload 
of 218 tonnes. Two crushers are available, which both require 25,000 tonnes of ore to be delivered 
every shift. Figure 5 shows a plan view of the mine layout, in addition to the crusher and waste dump 
locations and the access to the mining faces areas. From the mining faces access, it is assumed that 
the distance to each mining face is the linear distance between its digging coordinate and the closest 
access point in the road network. 

 
Figure 5. Case study iron ore open-pit layout. 

Equipment activity records are available in the form of a Leica Jigsaw equipment dispatch database. 
This database is used to fit probability distributions to each shovel, truck operating activities, and 
truck haul speeds to build the stochastic DES open-pit for the case study. This probability fitting 
section is considered out of scope, not presenting any novelty, and not included to avoid a lengthy 
paper. 

3.2. Training Results 

The dispatcher agent is trained by interacting with the environment multiple times, simulating 
production shifts randomly based on the production schedule and pit layout. The agent’s NN is 
updated to identify the best actions to take to maximize the total cumulative reward obtained at the 
end of the simulated shift. An epsilon greedy exploration strategy was used to encourage the agent 

184



Noriega R. et. al.    MOL Report Eleven Ⓒ 2023   203-8 

to explore and discover better dispatching strategies. When an action is required, there is a 
probability, 𝜀, that the agent will select a completely random action. This probability starts high but 
decreases linearly as training progresses and the agent has experienced more episodes. The 
parameters used for the training of the AI truck dispatcher are shown in Table 1. The 𝜀 probability 
of taking random actions starts at 80% and decreases linearly to 1% during 500,000 environment 
transitions.  

Table 1. Parameters used for the training of the truck dispatching agent. 
 

Replay buffer size 200,000 

Batch size for NN training updates 32 

Discount factor, 𝛾 0.99 

Learning rate, 𝛼 5 × 10ି଺ 

Iteration update frequency of target network 25,000 

 
The system was trained in Google Colab platform, which provides powerful GPU cloud nodes to 
develop deep learning models. The training took about 4 hours and 20 minutes until convergence 
was achieved in the total cumulative reward obtained by the agent. Figure 6 shows the training 
performance, total production, average truck fleet cycle times, and average truck utilization as the 
agent learns an optimal dispatching policy. 

 
Figure 6. Training performance of the AI truck dispatching agent. 

As training progresses, the agent improves its performance as measured by the total cumulative 
reward obtained at the end of each episode. After about 1000 training episodes, the agent can 
consistently achieve a high total cumulative reward over all simulated shifts randomly drawn 
considering the next production month. Since the agent receives a penalty for failing to keep the 
shovels at the target tph, total negative rewards indicate irregular shovel production. By the end of 
the training, the agent maintains a consistent production at all shovels, as its total cumulative reward 
approaches zero, where the small shortfall is caused due to the first hours of production when the 
trucks are starting their initial trips. The improvement in the performance of the agent can also be 
observed in the total production obtained, the improvement in the average truck cycle times and truck 
fleet utilization.  
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3.3. Performance Evaluation 

During the training process, the performance of the dispatcher was measured based on a single shift 
drawn from the projected configurations of the pit during the next month. To evaluate the 
performance of the AI dispatcher, the entire month is simulated in one run. The DES is modified to 
allow shovel movement between mining faces as their current working areas are depleted. When this 
happens, a shovel is marked as unavailable, and the AI dispatcher is asked to re-dispatch all trucks 
currently assigned to it. Once the shovel arrives at its new working area, it is marked as available 
again. 

The agent is tested for a month of production in the case study described above, using a mixed fleet 
of 22 CAT 785C and 16 CAT 793C trucks, 2 HIT 2500 shovels for ore production and 3 HIT 5500EX 
shovels for waste stripping. A total of 20 replications of the production month are used to obtain an 
average value for the different KPIs. 

The agent managed to meet the shift production target and obtain extra daily production over the 
month as shown in Figure 7. The dips in material correspond to time slots where the shovels finish 
mining their current working area and move to the next one based on their schedule, where they are 
unavailable to constrain the system. 

 
Figure 7. Average daily tonnes delivered at the destination over the month of production by the AI truck 

dispatching agent. 

The AI agent also managed to meet the different shovel productivity rates, expressed as tonnage-per-
hour (tph) loaded, as shown in Figure 8. The agent not only manages to maximize the total 
productivity of the system but also consistently meets the different shovel-loading targets at the 
different mining faces established from the mine plan, to ensure the projected advance in the ore 
mining faces and waste stripping requirements. 

Moreover, the truck dispatching also achieves high average utilization rates for the equipment fleet. 
Figure 9 shows the average utilizations achieved for the shovel and truck fleet. The shovel fleet 
achieves an average of 90% utilization across the month which indicates the agent manages to keep 
all the shovels reasonably busy throughout the shift. The truck fleet utilization hovers around 85%, 
which could indicate some inevitable queues formed at the shovels. 
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Figure 8. Average daily shovel tonnes-per-hour (tph) rate over the month of production obtained by the AI 

truck dispatching agent. 

 
Figure 9. Average equipment fleet utilization achieved by the AI truck dispatching agent over the month of 

production. 

4. Conclusions 

This paper proposed an Artificial Intelligence (AI) based truck dispatching agent for open-pit mining. 
The agent is trained using a Deep Reinforcement (DR) Learning algorithmic framework, which has 
seen successful application in other production industries. The AI truck dispatcher is trained in a 
discrete simulation model of the open-pit operation, that considers stochasticity at every stage of the 
truck and shovel operating cycles. This allows the agent to learn the uncertainties in the behavior of 
the system and discover efficient dispatching strategies. The agent is trained to maximize equipment 
utilization and meet shovel productivity rates and destination rates, including ore delivered to 
crushers and waste stripping. After the agent is trained, obtaining a truck assignment is fast as it only 
requires a forward pass through a neural network, which takes a fraction of a second, making it 
appealing for real-time truck dispatching. 

The framework is evaluated in an iron open-pit operation, where the simulation environment was 
built using the mine planning database, the mine layout, and the equipment dispatch database to 
model the stochasticity in the equipment activities. The agent was trained to learn a dispatching 
strategy for the next month of production and successfully met all the targets while maximizing 
equipment utilization and overall production. 

The use of data-driven AI-based truck dispatching systems would allow the efficient use of multiple 
real-time data streams to take full advantage of new developments in monitoring systems for open-
pit operations and digital twin technologies. Although the system currently takes about 4 hours and 
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a half to train for one month of production, future research will focus on extending the time over 
which the truck dispatching system operates and developing efficient training strategies to minimize 
computational effort—additionally, incorporating extra data streams such as equipment health and 
shovel bucket load sensors to provide better real-time dispatching solutions. 
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