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ABSTRACT 

In open pit mining, trucks play a vital role in transporting materials. By optimizing truck dispatching 
strategies, both productivity and sustainability principles can be effectively enhanced. This research 
focuses on developing a new framework for green truck dispatching, aiming to accomplish four 
specific objectives: minimizing the deviations from target production rates set by strategic plans, 
reducing shovel idle time, minimizing truck wait time, and minimizing truck fuel consumption. The 
significant contribution of this study lies in the inclusion of Greenhouse Gas (GHG) mitigation by 
considering fuel consumption reduction as an objective, which brings direct economic and 
environmental benefits. To account for uncertainty in open-pit mining operations, a discrete event 
simulation using Arena software is employed. Different scenarios are examined based on objective 
weights. The case study conducted at Gol-E-Gohar mines in Iran, an iron ore mine, demonstrates 
that the developed framework successfully reduced fuel consumption by 4.88% per ton of production. 
In absolute terms, this equates to a total reduction of over 12,000 liters of fuel. By prioritizing fuel 
consumption, a potential reduction of up to 6% in fuel consumption per tonne of production is 
attainable, potentially leading to a significant overall decrease of up to 20,000 liters in fuel 
consumption. 

Keywords: Truck dispatching, Open-pit mine, Discrete Event Simulation, Real-Time Decision 
Making, Fuel Consumption, Multi-objective optimization 

1. Introduction 

The mining industry, vital for the global economy and population growth, faces challenges due to its 
energy consumption and emissions. Approximately 8% of global greenhouse gas emissions stem 
from the mining industry (Rahnema et al., 2023). Energy efficiency improvement is crucial for 
environmental sustainability, but research in this area, especially related to energy-intensive 
activities like haulage in open-pit mines, is lacking. Both the industry and academia recognize the 
challenge of inadequate energy efficiency in mining, underscoring the importance of advancing 
environmental sustainability (Patterson et al., 2017). Certain mining projects, such as iron, bauxite, 
and coal ventures, attribute 41% to 66% of energy consumption and 37% to 54% of greenhouse gas 
emissions to mineral loading and hauling activities (Feng et al., 2022). Apart from the substantial 
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environmental impact, the mining haulage system entails noticeable operational costs. Haulage 
expenses constitute a significant portion of mining operational costs, around 50-60% (Alarie and 
Gamache, 2002; Moradi-Afrapoli et al., 2021; Moradi Afrapoli et al., 2019; Moradi Afrapoli and 
Askari-Nasab, 2017; Upadhyay and Askari-Nasab, 2019). 

The truck fleet transports materials from shovels to plants or waste dumps depending on the type of 
the material. The process of dynamically assigning a truck first to a shovel and then to an unloading 
point is referred to as truck dispatching. Efficient truck dispatching is vital for optimizing 
productivity, profitability, and sustainability. This research addresses truck dispatching in open-pit 
mining, proposing an innovative approach that considers factors like truck capacity, distances, 
extraction rates, and plant capacity. The goal is a solution that meets operational needs, enhances 
productivity, reduces costs, and contributes to sustainability by reducing greenhouse gas emissions. 
This study examines truck dispatching in open-pit mines, where trucks aren't locked to specific areas. 
Instead, they're assigned based on real-time factors such as shovel availability and production rates. 
To achieve this, a multi-objective stochastic simulation and optimization framework is developed, 
utilizing mathematical models and simulations to optimize truck dispatching, with a primary focus 
on minimizing fuel consumption and carbon emissions. In summary, effective truck dispatching 
enhances open-pit mining success by improving productivity, cost-efficiency, and environmental 
impact. This research develops a framework considering the dynamic nature of mining, aiming to 
provide practical, optimized solutions that adapt to operational changes. 

In the subsequent sections, after a brief literature review, the benchmark methods for dispatching 
trucks will be introduced, and then the new framework applied in this research will be presented. 
This will be followed by a detailed explanation of the case study, including key performance 
indicators (KPIs) and different operational scenarios. Moving on to the results, the paper will analyze 
how well the framework performed in the case study, comparing it to the benchmark methods. 
Finally, in the last section, the paper will have a thorough discussion of the results, drawing 
conclusions, and suggesting areas for future research. 

2. Literature Review 

Truck dispatching in open-pit mines is a critical aspect of mining operations. It involves determining 
the optimal allocation and routing of trucks to transport materials from mining sites to dump sites for 
further processing. Truck dispatching decisions have direct impact on production rate, operational 
cost, fuel consumption, and subsequently GHG emissions. Efficient truck dispatching strategies can 
lead to satisfy the target production requirement, as well as reducing the operational cost, and GHG 
emissions. Therefore, well-coordinated truck dispatching plays a crucial role in balancing production 
needs with environmental considerations. Cost-efficient dispatching methods are a priority for 
industrial companies, while sustainable dispatching methods align with the preferences of 
governments and communities. Past research has employed three distinct approaches including, 
operations research, queuing theory, and simulation techniques to optimize decision-making in this 
context (Upadhyay, 2013). In the upcoming sections, a range of studies focusing on truck 
dispatching, routing, and allocation problems are reviewed and categorized based on their 
methodologies and underlying objectives. These perspectives are organized into two primary 
viewpoints: the economical perspective and the environmental perspective. 

2.1. Economical Perspective 

Ataeepour and Baafi (1999) applied a simulation model using Arena simulation software to examine 
the impact of truck dispatching on mine productivity by ensuring optimal utilization of available 
trucks and shovels, with the trucks being identical in their scenario. Topal and Ramazan (2010) 
introduced mixed integer programming model to meet production targets and optimize the truck 
schedule considering the truck maintenance cost in an open-pit mine. Souza et al. (2010) introduced 
a hybrid algorithm combining greedy randomized adaptive search procedure (GRASP) and general 
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variable neighborhood search (GVNS) metaheuristics for dynamic truck allocation in an open-pit 
mine. Their approach aimed to minimize truck usage while meeting production and quality goals. 
Zhang and Xia (2015) employed integer programming to optimize open-pit mine truck dispatching, 
resulting in cost reduction and production objectives satisfaction. Matamoros and Dimitrakopoulos 
(2016) presented a new method to optimize truck fleet allocation. Their method handled input 
parameter uncertainties and improved allocation efficiency resulting in cost savings in a multi-
element iron mine case study.  Fadin and Moeis (2017) applied a "look-ahead algorithm" approach 
(Jang et al., 2001) to solve open-pit mine truck dispatching. Combining simulation and optimization 
models with real data, the approach aimed to optimize truck routes and schedules, boosting 
production, and reducing operational costs. Utilizing discrete event simulation, the research tested 
multiple dispatching scenarios. Shishvan and Benndorf (2019) investigated optimizing material 
dispatch in coal mines, particularly focusing on safe placement of diverse overburden types. Their 
approach considered equipment factors like capacity, performance, and availability to make dispatch 
decisions. Alexandre et al. (2019) developed two Multi-objective Genetic Algorithms (MOGAs) to 
efficiently and dynamically allocate trucks in an open-pit mine. The goals were to maximize 
production and minimize costs within operational constraints. Wang et al. (2023) addressed real-time 
truck dispatching challenges in open-pit mines, optimizing full and empty truck stages. Unlike prior 
methods, the model splits into full and empty truck dispatching, aiming to minimize waiting times, 
path flow deviations, and transportation costs with adjustable weights. To gain a deeper 
understanding of truck dispatching, it would be beneficial to explore two comprehensive review 
studies on the subject. Newman et al. (2010) reviewed mine planning operations, including open-pit 
truck dispatching, categorizing strategies and analyzing their mathematical basis. Moradi Afrapoli 
and Askari-Nasab (2017) conducted a comprehensive assessment of fleet management methods, 
addressing path determination, production optimization, and real-time dispatching. They examined 
various allocation techniques like queuing theory, linear programming, goal programming, and 
stochastic programming. 

2.2. Environmental Perspective 

As global warming concerns grow, most of the large organizations are investing more resources and 
effort into reducing energy consumption and emissions of pollutants (Ganji et al., 2020). In spite of 
efforts to reduce energy consumption, numerous mines find it difficult to reduce their energy 
consumption (Awuah-Offei, 2016). The literature extensively covers green vehicle routing problems 
in various industries, emphasizing sustainability and environmental factors. However, the mining 
sector's exploration of green vehicle routing is comparatively limited. Awuah-Offei (2016) reviewed 
previous studies regarding energy efficiency in loading and hauling activities within the mining 
industry. Yu et al. (2016) used mixed integer programming to optimize shovel production plans and 
truck allocations, reducing costs, fuel consumption, and emissions. They also considered equipment 
failure uncertainties with a multi-scenario approach. Gonzalez et al. (2017) presented a simulation-
based approach to determine the optimal balance between carbon emissions and operational costs in 
underground mining projects. Mohtasham et al. (2021) used mixed integer linear programming to 
optimize truck scheduling in open-pit mines, aiming to maximize production, minimize deviations 
in head grade, and tonnage, and minimize fuel consumption. In a follow-up study, Mohtasham et al. 
(2022) addressed fleet cycle time uncertainty using a multi-stage approach involving simulation-
based optimization and a novel heuristic algorithm for real-time truck scheduling decision-making 
in open-pit mines, targeting production loss and fuel consumption reduction. Mirzaei-Nasirabad et 
al. (2023) presented a multi-stage approach that optimizes real-time dispatching and determines fleet 
size. The technique in their study, assessed through a case study in a copper ore mine. Anaraki and 
Afrapoli (2023) introduced a mathematical multi-objective model that aims to minimize 
transportation costs and carbon emissions associated with truck travel in open pit mines. The model 
takes into account various types of trucks with different age groups, recognizing their impact on 
carbon emissions. Huo et al. (2023) Utilized reinforcement learning in order to improve truck fleet 
dispatching efficiency in open-pit mining. Their primary objective was to develop a smart fleet 
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management system and decrease greenhouse gas emissions. This study differs from previous 
research by introducing a real-time decision-making framework that integrates economic, 
environmental, and uncertainty considerations. The approach simultaneously addresses emissions, 
economic goals, and operational objectives, providing benefits to both economy and environment. 

3. Methodology 

This chapter delves into the theoretical foundations of an integrated simulation and optimization 
framework for open-pit mine truck dispatching. By introducing a new multi-objective mixed integer 
goal programming (MOMIGP) model, this chapter focuses on enhancing production efficiency 
through the reduction of shovel idle time, truck wait time, deviations from target production rates, 
and greenhouse gas (GHG) emissions arising from truck fuel consumption. Notably, the MOMIGP 
model adeptly manages dispatching decisions in the face of uncertain factors.  

Within this chapter, there are two sections. The first section presents optimization models, while 
another section introduces the integrated simulation and optimization framework. Divided into three 
subsections, the optimization models section introduces three distinct truck dispatching optimization 
approaches: Modular Mining Dispatch (MODULAR MINING) by White and Olson (1993; 1986), 
Tri-Objective model by Moradi Afrapoli et al. (2019), and Quad-Objective model, which is the 
central model of this research. 

3.1. Optimization Models 

3.1.1. Modular Mining Dispatch 

The Modular Mining Dispatch stands as one of the mining industry's most extensively utilized truck 
dispatching systems for open-pit mines. This system offers real-time dispatching, a crucial factor in 
optimizing mining operations. Within the Modular Mining Dispatch model, truck dispatching relies 
on the prioritization in two main lists: "needy shovels" and "available trucks." The first list 
encompasses shovels requiring trucks, ranked by urgency, while the second list ranks available trucks 
by their next availability. Dispatching entails assigning the foremost available truck to the top-listed 
shovel, a process repeated until all trucks are dispatched. Thanks to its effectiveness and widespread 
application, Modular Mining Dispatch has emerged as the dominant fleet dispatching system in the 
mining market. Given its extensive industry usage, the Modular Mining Dispatch model serves as 
one of benchmark models for comparison in evaluating the Quad-Objective dispatch model of this 
research. This choice stems from its established reputation as an efficient solution for mining fleet 
dispatching. This model also served as the benchmark in the study by Moradi Afrapoli et al. (2019). 

3.1.2. Tri-Objective Model 

To facilitate real-time truck dispatching in open-pit mines, Moradi Afrapoli et al. (2019) developed 
a Tri-Objective dispatching model that concurrently minimizes shovel idle times, truck wait times, 
and deviations from planned production rates. This model efficiently managed diverse fleets of 
varying sizes and types, operating autonomously to maintain the target production rate. The model 
is executed whenever a new truck assignment is needed including when the truck starts working, and 
when the truck dumps its load. Their model accounted for operational factors like stripping ratios, 
truck capacity, plant throughput, and shovel dig rates. Impressively, their Tri-Objective model 
achieved maximum plant capacity with 14% fewer trucks than the Modular Mining Dispatch model, 
utilizing just 86% of the intended fleet size while meeting production needs. Meeting the predefined 
production rate, this model holds the status of an additional benchmark in this context. 

3.1.3. Quad-Objective Model 

This study introduces a Quad-Objective mathematical optimization model designed for real-time 
truck dispatching. An exceptional aspect of this model is its incorporation of an extra objective 
function dedicated to minimizing overall trucks' fuel consumption, thus addressing carbon emissions 
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and environmental concerns. The model is employed whenever a truck requires a new assignment, 
triggered by events like the initiation of a truck's operation, truck dumping, shovel breakdowns before 
loading, and the restart of a truck's operation after downtime. Numerous indices, parameters, and 
decision variables are available within the optimization model. The indices are listed below: 

𝑡 Index for set of trucks: 𝑡 = {1, … , 𝑇} 

𝑠 Index for set of shovels: 𝑠 = {1, … , 𝑆} 

𝑑 Index for set of dumping points: 𝑑 = {1, … , 𝐷} 

𝑑ᇱ Index for set of locations where trucks are required to dump their load before 
traveling to the new shovel: 𝑑ᇱ = {1, … , 𝐷} 

𝑤 Index for set of weights assigned to individual goals: 𝑤 = {1, 2, 3, 4} 

𝑔 index for the group of trucks that are currently waiting in a queue of the 
shovel: 𝑔 = {1, … , 𝑁𝑇𝑊𝑆} 

The decision variables are listed below: 

𝑥௧௦ௗ Binary variable equals to 1 if truck t assigns to the path of shovel 𝑠 to 
dumping point 𝑑 , and 0 otherwise 

𝑦௦ௗ
ି  Negative deviation of the met path flow rate and the desired path flow rate 

for the path between shovel 𝑠 and dumping point 𝑑 

𝑦௦ௗ
ା  Positive deviation of the met path flow rate and the desired path flow rate for 

the path between shovel 𝑠 and dumping point 𝑑 

The parameters are listed below: 

𝐼𝑇௧௦ௗ Idle time for shovel 𝑠 if truck 𝑡 is assigned to transport material from shovel 
𝑠 to the dumping point 𝑑 

𝑊𝑇௧௦ௗ Wait time for truck 𝑡 if it is assigned to transport material from shovel 𝑠 to 
the dumping point 𝑑 

𝑁௪ Normalized weights of individual goals based on priority 

𝐴𝐹 A factor balancing available trucks with the required capacity of plants 

𝑃𝐶ௗ Capacity of the plant 𝑑: 𝑑 = {1, … , 𝑃} ⊂ {1, … , D} 

𝑆𝐶௦ Production capacity of shovel 𝑠 

𝑀𝑃௦ௗ Path flow rate for the path from shovel 𝑠 to the dumping point 𝑑 that the 
production operation has met so far 

𝑇𝐶௧ Actual capacity of truck 𝑡 (tonne) 

𝑁𝑇𝐶௧ Nominal capacity of truck 𝑡 (tonne) 
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𝑃௦ௗ Path flow rate for the path from shovel 𝑠 to the dumping point 𝑑 

𝑇𝑅௧௦ௗ Next time truck 𝑡 reaches shovel 𝑠, if truck 𝑡 is assigned to transport material 
from shovel 𝑠 to the dumping point 𝑑 

𝑆𝐴௧௦ௗ Next time shovel 𝑠 is available to serve truck 𝑡, if truck 𝑡 is assigned to 
transport material from shovel 𝑠 to the dumping point 𝑑 

TNOW Current time of the operation/simulation 

𝐿𝐷௧ௗᇲ  The distance truck 𝑡 must travel to reach the dumping point 𝑑ᇱ to dump its 
load 

𝐸𝐷௧ௗᇲ௦ The distance truck 𝑡 must travel from the dumping point 𝑑ᇱ to the next 
expected shovel 𝑠 

𝐴𝐿𝑇௧ Average loading time of truck 𝑡 

𝐴𝑃𝐿௧ Average payload of truck 𝑡 

𝐿𝑉௧ௗᇲ௦ Average loaded velocity of truck 𝑡 traveling to dumping point 𝑑ᇱ and will 
travel to shovel 𝑠 after dumping its load 

𝐸𝑉௧ௗᇲ௦ Average empty velocity of truck 𝑡 traveling from dumping point 𝑑′ to the 
next expected shovel 𝑠 

𝐷𝑄௧ௗᇲ Queue time for truck 𝑡 in the queue of the dumping point 𝑑ᇱ 

𝐷𝑇௧ௗᇲ  Dump time for truck 𝑡 to dump its material in dumping point 𝑑ᇱ 

𝑁𝑇𝑊𝑆௦ Number of trucks waiting in queue at shovel 𝑠 

𝑆𝑇௚ Spotting time for the truck 𝑔 in the queue 

𝐿𝑇௚ Loading time for the truck 𝑔 in the queue 

𝛼௧ Intercept of truck 𝑡 for the fuel consumption  

𝛽௧ Payload coefficient of truck 𝑡 for the fuel consumption 

𝛾௧ Loading time coefficient of truck 𝑡 for the fuel consumption 

𝜏௧ Idle time coefficient of truck 𝑡 for the fuel consumption 

𝜔௧ Empty traveling time coefficient of truck 𝑡 for the fuel consumption 

𝜑௧ Loaded traveling time coefficient of truck 𝑡 for the fuel consumption 

𝑆𝐼𝑇௧௦ௗ Shovel idle time coefficient, by assigning truck 𝑡 to the path of shovel 𝑠 to 
dumping point 𝑑  
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𝑇𝑊𝑇௧௦ௗ Truck wait time coefficient, by assigning truck 𝑡 to the path of shovel 𝑠 to 
dumping point 𝑑 

𝐹௧௦ௗ Truck fuel consumption coefficient, by assigning truck 𝑡 to the path of shovel 
𝑠 to dumping point 𝑑  

In order to determine the arrival time of each truck to be loaded by shovel, Eq. (1) is used. To 
calculate the shovel availability, Eq. (2) is used, which represents the next time the shovel will be 
available to load the truck. The coefficients for three objectives within the optimization problem can 
be calculated using Eqs. (3), (4) and (5). Accordingly, these coefficients correspond to the objective 
functions associated with shovel idle time, truck wait time, and fuel consumption, respectively. 

 𝑇𝑊𝑇௧௦ௗ = max (0, 𝑆𝐴௧௦ௗ − 𝑇𝑅௧௦ௗ)        

                    ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(4) 

 𝐹௧௦ௗ = 𝛼௧ + 𝛽௧ × 𝐴𝑃𝐿௧ + 𝛾௧ × 𝐴𝐿𝑇௧ + 𝜏௧ × 𝑇𝑊𝑇௧௦ௗ + 𝜔௧  
ா஽

೟೏ᇲೞ

ா௏೟೏ᇲೞ

+ 𝜑௧  
௅஽

೟೏ᇲ

௅௏೟೏ᇲೞ

       

∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} & ∀𝑑ᇱ ∈ {1, … , 𝐷} 

(5) 

The optimization model comprises four distinct objectives, each with a specific purpose. The initial 
objective focuses on minimizing active shovel idle time, calculated using Eq. (6). The second 
objective aims to reduce truck wait time during operation, computed through Eq. (7). The third 
objective adopts a goal programming approach to minimize deviations from path flow rates, as 
determined by Eq. (8). Lastly, the fourth objective function aims to minimize total fuel consumption 
by active trucks using Eq. (9). These objectives possess differing scales and varying degrees of 
influence on the system. The model is categorized as a Mixed Integer Linear Programming (MILP) 
model, necessitating a non-preemptive mixed integer linear weighted sum goal programming 
approach for resolution. Following are the objective functions of the model: 

𝑓ଵ = ෍ ෍ ෍ 𝑆𝐼𝑇௧௦ௗ𝑥௧௦ௗ

஽

ௗୀଵ

ௌ

௦ୀଵ

்

௧ୀଵ

 
(6) 

𝑓ଶ = ෍ ෍ ෍ 𝑇𝑊𝑇௧௦ௗ𝑥௧௦ௗ

஽

ௗୀଵ

ௌ

௦ୀଵ

்

௧ୀଵ

 
(7) 

 
𝑇𝑅௧௦ௗ = 𝑇𝑁𝑂𝑊 +

𝐿𝐷௧ௗᇲ

𝐿𝑉௧ௗᇲ௦
+ 𝐷𝑄௧ௗᇲ + 𝐷𝑇௧ௗᇲ +

𝐸𝐷௧ௗᇲ௦

𝐸𝑉௧ௗᇲ௦
 

                 ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} & ∀𝑑ᇱ ∈ {1, … , 𝐷} 

(1) 

 
𝑆𝐴௧௦ௗ = 𝑇𝑁𝑂𝑊 + ෍ ൫𝑆𝑇௚ + 𝐿𝑇௚൯ 

ே்ௐௌೞ

௚ୀଵ

 

                  ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

 
(2) 

 𝑆𝐼𝑇௧௦ௗ = max (0, 𝑇𝑅௧௦ௗ − 𝑆𝐴௧௦ௗ)          

                  ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 

(3) 
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𝑓ଷ = ෍ ෍(𝑦௦ௗ
ି + 𝑦௦ௗ

ା )

஽

ௗୀଵ

ௌ

௦ୀଵ

 
(8) 

𝑓ସ = ෍ ෍ ෍ 𝐹௧௦ௗ𝑥௧௦ௗ

஽

ௗୀଵ

ௌ

௦ୀଵ

்

௧ୀଵ

 
(9) 

To achieve the model's solution, the four objectives are converted into dimensionless forms through 
the application of Nadir and Utopia points, a concept proposed in (Grodzevich and Romanko, 2006). 
Within this method, Utopia defines lower boundaries for each objective, while Nadir establishes 
upper limits. By determining these points, a range is set for the objective functions within the Pareto 
optimal set. When considering a single objective, optimization directs towards the Utopia point, 
yielding minimal values. Conversely, upper limits are determined using components derived from 
the Nadir point. The process of normalization is achieved by employing Nadir and Utopia points, 
thereby scaling objectives within a range of 0 to 1 by Eq. (10). To establish the necessary priority 
weights for the weighted sum method, each component of the objective function outlined in Eq. (11) 
represents a weighted and normalized version of an individual objective from Eqs. (6) to (9). 

𝑓௜̅ =
௙೔ି௎೔

ே೔ି௎೔
                                     ∀𝑖 ∈ {1,2,3,4}    

(10) 

𝑓 = 𝑁ଵ𝑓ଵ̅ + 𝑁ଶ𝑓ଶ̅ + 𝑁ଷ𝑓ଷ̅ + 𝑁ସ𝑓ସ̅ (11) 

Following are the constraints of the model: 

෍ ෍ 𝑇𝐶௧𝑥௧௦ௗ

஽

ௗୀଵ

ௌ

௦ୀଵ

≤ 𝑁𝑇𝐶௧                                 ∀𝑡 ∈ {1, … , 𝑇} 
(12) 

෍ ෍ 𝑇𝐶௧𝑥௧௦ௗ

ௌ

௦ୀଵ

்

௧ୀଵ

≥ 𝐴𝐹 × 𝑃𝐶ௗ                          ∀𝑑 ∈ {1, … , 𝑃} 
(13) 

෍ ෍ 𝑇𝐶௧𝑥௧௦ௗ

஽

ௗୀଵ

்

௧ୀଵ

≤ 𝑆𝐶௦                                     ∀𝑠 ∈ {1, … , 𝑆} 
(14) 

෍ 𝑇𝐶௧𝑥௧௦ௗ +

்

௧ୀଵ

𝑀𝑃௦ௗ + 𝑦௦ௗ
ି − 𝑦௦ௗ

ା = 𝑃௦ௗ      ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} 
(15) 

 

𝑥௧௦ௗ ∈ {0,1}                           ∀𝑡 ∈ {1, … , 𝑇} & ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (16) 

𝑦௦ௗ
ି ≥ 0                                            ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (17) 

𝑦௦ௗ
ା ≥ 0                                            ∀𝑠 ∈ {1, … , 𝑆} & ∀𝑑 ∈ {1, … , 𝐷} (18) 

𝐴𝐹 =  
∑ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑟𝑢𝑐𝑘𝑠

∑ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑝𝑎𝑡ℎ𝑠
     

(19) 
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In order to ensure the system's efficient operation, a number of constraints are placed on it. According 
to constraint (12), the amount of tonnage that a truck can transport in one payload is limited to its 
nominal capacity. For constraint (13) it is considered that the material hauled to the processing plants 
using all the trucks must meet the processing target determined by each plant in AF times the 
percentage. AF, or the adjustment factor, is calculated using Eq. (19), and it is used to adjust the 
amount of material required for each processing plant. This means that only the AF portion of the 
plant's requirements can be met. It is indicated by constraint (14) that the total haulage capacity 
directed to a shovel will be limited to the nominal digging rate for that shovel. Constraint (15) 
calculates the deviation of the path flow rate from the desired path flow rate for each path connecting 
a source to a destination. Finally, constraint (16) ensures that the first set of decision variables are 
binary, and constraints (17) and (18) ensure that the goal programming variables are not negative. 
After the model has been solved, trucks will be dispatched to shovels in order to ensure that the 
system operates efficiently. 

3.2. Integrated Simulation and Optimization Framework  

The simulation segment of the framework follows a structured procedure, outlined in Figure 1. 
Initially, the model identifies active trucks awaiting assignment to suitable shovels and destinations. 
Subsequently, the multi-objective optimization model takes charge, efficiently assigning unassigned 
trucks to their respective tasks, ensuring optimal utilization. Throughout the simulation, the 
optimization model is recurrently executed upon specific events, such as a truck commencing work, 
completing a dump, or reactivating after a failure. These events trigger a reevaluation of the optimal 
truck assignment decision. The optimization process for truck assignments persists throughout the 
simulation runtime until the designated time period is reached. 

 

Figure 1. An overview of the simulation and optimization integration process. 

56



Kazemi Ashtiani M. et. al.   MOL Report Eleven Ⓒ 2023   104-10 

 

 
 

4. Design of Experiments and Results 

The assessment of the developed model in this study is carried out using a case study based on 
historical data from the Gol-E-Gohar iron ore open-pit mine in Iran. Figure 2  illustrate the layout of 
loading and dumping points, along with the operational road network. Five shovels are active at the 
loading points, with two assigned for ore extraction and three for waste. Trucks have three 
destinations: two processing plants and a waste dump. 

 
Figure 2. Gol-E-Gohar iron ore mine network. 

The ore shovels utilized are Hitachi EX2500, while waste shovels 1 and 2 are Hitachi EX5500, and 
waste shovel 3 is a Hitachi EX2500. The available fleet comprises 30 CAT 785C trucks. 

Fuel consumption for each CAT 785C truck is computed using the regression formula derived from  
(Dindarloo and Siami-Irdemoosa, 2016) specific to the CAT 785C truck type. The formula is 
depicted in Eq. (20): 

𝐹(
𝑙

𝑐𝑦𝑐𝑙𝑒
) = 1.37071 + 0.00483 × 𝑃𝐿 + 0.00398 × 𝐿𝑇 + 0.00499 × 𝐸𝑆

+ 0.01471 × 𝐸𝑇𝑅 + 0.00278 × 𝐿𝑆 + 0.0519 × 𝐿𝑇𝑅 
(20) 

The equation’s variables signify the following quantities: fuel consumption (F) in liters per cycle, 
payload (PL) in metric tons, loading time (LT) in seconds, empty idle time (ES) in seconds, empty 
travel time (ETR) in seconds, loaded idle time (LS) in seconds, and loaded travel time (LTR) in 
seconds. 

The simulation was conducted over a span of 10 days, operating for 12 hours each day. The runtime 
and the quantity of replications are pivotal for precise and dependable outcomes, as multiple 
simulation iterations diminish randomness and enhance resilience, particularly for intricate systems 
or uncertain conditions. The targeted ore and waste material productions for the planned 10-day 
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mining operations are 552, and 718 kilotonnes respectively. The input data comprises deterministic 
and stochastic information, with stochastic input distributions calibrated using historical data through 
the Arena Input Analyzer tool (Rockwell Automation, 2019). 

Key Performance Indicators (KPIs) introduced below (Table 1) are essential variables within the 
fleet management system of an open-pit mine, exerting a substantial influence on operational 
efficiency and overall performance. KPIs are crucial when comparing different models, as they 
provide a basis for evaluating performance and making informed decisions. 

Table 1. Key Performance Indicators. 

Key Performance Indicator 
(KPI) 

Significance 

Shovel’s Utilization Measures efficiency and productivity 

Truck’s Waiting Time Indicates operational flow 

Truck’s Fuel Consumption Displays environmental impact 

Production of Ore and Total 
Tonnages  

Shows the efficiency of production planning and resource utilization 

Ore Tonne Per Gross Operating 
Hour (OTPGOH) 

Quantifies the efficiency of ore production per hour of operation, the 
mining productivity and resource utilization 

Selecting appropriate weights for multi-objective optimization is vital and requires understanding of 
the problem domain and objectives. Sensitivity analysis helps determine weights, reflecting 
stakeholder preferences and trade-offs among objectives. Table 2 presents scenarios with different 
objective’s weights and  

 Table 3 showcases corresponding KPIs for each scenario. 

Table 2. Weights of the objective functions. 

Scenario W1(SIT) W2(TWT) W3(PD) W4(FC) 

S1 0.1 0.25 0.55 0.1 

S2 0.3 0.1 0.5 0.1 

S3 0.1 0.2 0.5 0.2 

S4 0.1 0.1 0.4 0.4 

S5 0.1 0.3 0.4 0.2 

S6 0.2 0.3 0.4 0.1 

S7 0.25 0.25 0.25 0.25 

S8 0.1 0.1 0.7 0.1 

S9 0.1 0.1 0.2 0.6 

S10 0.6 0.1 0.2 0.1 

S11 0.1 0.6 0.2 0.1 

S12 0.1 0.35 0.55 0 

S13 1 0 0 0 

S14 0 1 0 0 

S15 0 0 1 0 

S16 0 0 0 1 
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 Table 3. Weighted scenarios' KPIs. 

Scenario 
Util. 
Ore  
(%) 

Util. 
Waste 

(%) 

Queue 
Time 

(mins) 

Fuel 
Cons. 
(kl) 

Ore 
Tonnage 

(kt) 

Total 
Tonnage 

(kt) 

Ore 
TPGOH 

(t) 

S1 81.2 56.0 3.66 416 552 1273 4602 

S2 81.2 56.1 3.73 414 552 1273 4603 

S3 81.2 56.2 3.75 413 552 1278 4601 

S4 81.1 56.4 3.66 415 552 1279 4602 

S5 81.2 56.2 3.68 415 552 1278 4603 

S6 81.3 56.2 3.71 414 552 1276 4602 

S7 81.2 56.2 3.66 416 552 1277 4603 

S8 81.0 56.3 3.66 415 552 1277 4604 

S9 81.2 56.2 3.85 410 552 1278 4603 

S10 81.3 56.2 3.61 417 552 1277 4602 

S11 81.2 56.3 3.62 416 552 1278 4603 

S12 81.2 55.9 3.62 417 552 1271 4603 

S13 81.2 56.2 3.64 416 552 1275 4603 

S14 81.2 55.3 3.59 420 552 1263 4603 

S15 81.2 51.0 4.16 417 552 1205 4603 

S16 81.1 55.7 4.18 403 552 1269 4603 

Most KPIs remain stable despite weight adjustments, except Total Tonnage and Fuel Consumption. 
The fuel consumption weight (W4) strongly negatively correlates (-0.91) with total fuel 
consumption. Other weights also correlate with their KPIs. Notably, Total Fuel Consumption and 
Average Queue Time negatively correlate (-0.63). To achieve minimal fuel consumption and 
acceptable production in 10 days, weight scenario 9 is chosen for further comparison with 
benchmarks. Figure 3, and Figure 4 depict Total production, Average truck queue time, and total fuel 
consumption across all scenarios. 
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Figure 3. Production for different scenarios. 

 

Figure 4. Each scenario's fuel consumption and queue time. 

4.1. Comparison 

The comparison of the Quadratic Objective (Quad-Obj.) model (designated as model number 3) 
introduced in this study against the Modular Mining Dispatch model (model number 1) and the Tri-
Objective (Tri-Obj.) model (model number 2) extracted from the work of Moradi Afrapoli et al. 
(2019) is shown by various figures below. This comparison involves the assessment of multiple 
significant Key Performance Indicators (KPIs). 

For Plant 1, the Quad-Obj. and Tri-Obj. models transported about 16% more material on average 
than the Modular Mining Dispatch model. Similarly, for Plant 2, both models outperformed the 
Modular Mining Dispatch model by approximately 11%. Figure 5 reveals material quantities 
transported to the plants and the waste dump across all models. The Modular Mining Dispatch model 
moved more waste, yielding a higher stripping ratio (SR). However, this model couldn't meet the 
target ore production. In contrast, both Tri-Obj. and Quad-Obj. models succeeded. However, the 
Quad-Obj. model had a higher SR than Tri-Obj., moving more waste by 3.7%, equivalent to 26.2 kt. 
Figure 6 presents the daily average TPGOH along with their corresponding confidence levels. The 
Tri-Obj. and Quad-Obj. models demonstrate higher TPGOH values when contrasted with the 
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Modular Mining Dispatch model. Furthermore, the average TPGOH levels remain fairly constant 
across all days for all models.  

 

Figure 5. Tonnage Statistics for Plant1, Plant2, and Waste Dump for all models. 

 

 
Figure 6. Average TPGOH in each day for each model. 

Figure 7 highlights the consistent waste delivery superiority of the Quad-Obj. model over the Tri-
Obj. model every day. Notably, the Modular Mining Dispatch model surpasses both models in waste 
delivery, yet it falls short in meeting required ore tonnage delivery for each plant. 
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Figure 7. Average Waste tonnage in each day for each model. 

Figure 8 presents the fuel consumption details for generating 1000 tonnes of ore for each model, 
along with a total fuel consumption bar chart. Notably, the Quad-Obj. model consumes 12190 liters 
less fuel than the previous Tri-Obj. benchmark model. The Modular Mining Dispatch model boasts 
the lowest fuel consumption due to its focus on selecting shortest paths for trucks and prioritizing 
waste materials over ores. This choice is influenced by shorter distances between waste polygons 
and the waste dump compared to those between ore polygons and plants. The Quad-Obj. model 
shines with the lowest fuel consumption per tonne of ore, yielding a 2.88% reduction, equivalent to 
roughly 22050 liters saved, compared to the Tri-Obj. model. The reduction increases to 4.88% when 
total production, including waste, is considered. 

 

Figure 8. Fuel consumption per a kilotonne ore production. 
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Figure 9 depicts shovel utilization across models. The Modular Mining Dispatch model 
shows lower ore shovel utilization but higher waste shovel utilization. Quad-Obj. and Tri-
Obj. models exhibit similar utilizations, differing only in waste shovel 4, where Quad-Obj. 
model surpasses Tri-Obj. model. 

 
Figure 9. Shovels Utilization. 

In Figure 10, and Figure 11 the truck average waiting time for each model is shown. The first figure 
shows the waiting time for shovels, and the second figure shows the waiting time in processing 
plants. Among the models, the Modular Mining Dispatch model has the shortest queue times for ore 
shovels while experiencing the longest queue times for waste shovels, with waste shovel 5 showing 
a notable variation.  Concerning queue times at destinations, waste dumps exhibit no queue time due 
to multiple available dumping points. Additionally, the Modular Mining Dispatch model avoids 
processing plant queues by assigning more trucks to the waste dump. Another important observation 
is that, across both processing plants, the Quad-Obj. model demonstrates lower average queue times 
compared to the Tri-Obj. model. 
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Figure 10. Trucks Average Queue Time at Each Shovel (Minutes). 

 

Figure 11. Destinations Average Queue Time (Minutes). 

Finally, the S16 scenario (within objective’s weight scenarios), as the most fuel-efficient scenario, is 
evaluated against the Tri-Obj. benchmark model in Figure 12. Notably, implementing the Quad-Obj. 
model within the S16 scenario resulted in a 4.6% reduction in total fuel consumption, a 1.4% increase 
in total production, and a 6% decrease in fuel consumption per tonne of production. 
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Figure 12. Production and fuel consumption of the most fuel-efficient scenario and Tri-Obj. models. 

5. Conclusions 

This study primarily focuses on optimizing truck dispatching. The developed framework aims to 
minimize path flow rate deviations, shovel idle time, truck wait time, and fuel consumption. A 
notable contribution of the study is the integration of fuel consumption reduction as an objective in 
the dispatching model, yielding economic and environmental advantages. To address the uncertainty 
in open-pit mining, a discrete event simulation model was developed using Arena software 
(Rockwell Automation, 2019). Scenarios with varied objective weights were explored, with 
application in the Gol-E-Gohar iron ore mine as a case study. The Quad-Objective model yielded a 
4.88% reduction in fuel consumption per tonne of production compared to the Tri-Objective 
benchmark, saving over 12,000 liters. Prioritizing fuel consumption led to a potential 6% reduction 
per tonne, corresponding to a noticeable 20,000 liters overall decrease. The model-maintained 
production rates while increasing waste extraction by 3.74%, equivalent to about 26.2 kilotonnes 
over ten operational days. 

In future studies, it will be important to consider the age of trucks when developing simulation and 
optimization models. Truck age significantly impacts performance, including speed, fuel use, and 
emissions. Integrating age data can yield insights into efficiency, costs, and environmental effects, 
informing maintenance and replacement strategies. Moreover, applying In-pit crushing and 
conveying (IPCC) in mine haulage systems is worth investigating. IPCC involves crushing ore in the 
pit and conveying it using belts, reducing costs, energy consumption, GHG emissions, and truck 
transport requirements. 
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Appendix 

LIST OF ABBREVIATIONS: 

CAT Caterpillar 

HIT Hitachi 

TPGOH Tonne Per Gross Operating Hours 

OTPGOH Ore Tonne Per Gross Operating Hours 

SR Stripping Ratio 

Q Queue 

SIT Shovel Idle Time 

TWT Truck Wait Time 

PD Production Deviation 

FC Fuel Consumption 

Min Minutes 

Hrs Hours 

t / kt Tonnes / Kilo Tonnes 

l / kl Liters / Kilo Liters 

Tph Tonne Per Hour 
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