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ABSTRACT

Digital Twin as a key enabler of Mining 4.0 is a sensational topic nowadays, characterized with
intelligent decision-making and real-time data flow. Conventional methods are overshadowed by
this disruptive technology since they fall short in fulfilling complex needs of modern systems. This
research attempts to conduct a retrospective overview on the applications of simulation,
optimization and machine learning in the surface mining concept to elicit their merits and
demerits. Then, the twining technology is proposed as a mechanism to fill the gap. Lastly, a
six-layer Digital-Twin-based architecture is developed to be applied as a roadmap in the mineral
industry.

1. Introduction

Bottlenecks in surface mining such as optimization, decision-making and real-time supervision
seem to be directly or indirectly tractable by resorting to novel technologies such as artificial
intelligence, digital twins and cloud computing. In addition, profitable and intelligent mining
known as Mining 4.0 entails mines to adopt these disruptive methods. The fourth industrial
revolution, known as Industry 4.0 is a new movement in which virtual and physical systems of
production interact flexibly on a global scale (Schwab, 2017). In other words, cyber-physical
systems (CPSs) will communicate with one another using Internet of Things (IoT) (Sipsas et al.,
2016). The year 2015 is deemed to be the beginning of this era (Munirathinam, 2020). Industry 4.0
is established on nine pillars including simulation, internet of things (IoT), cyber security, cloud
computing, augmented reality, autonomy, machine learning, and real-time data (Rüßmann et al.,
2015; Munirathinam, 2020). As it is obvious, Industry 4.0 holds the key to all bottlenecks in
Mining 4.0, whose main enabler is Digital Twin (DT).

In simple terms, a DT is a dynamic digital representation of an asset/system and imitates its
real-world behavior (Lu et al., 2020). The twinning technology has the potential to capture
desirable features such as dynamicity and automation found to be scarce in conventional methods.
The present study endeavors to conduct a retrospective overview on simulation, optimization and
machine learning approaches in an attempt to find pros and cons associated with them in Section 2.
Results will direct us towards the fact that the lack of an integrated solution like DT is really felt
within surface mining. Then, an exemplary architecture inspired by forerunning industries is
illustrated in the third section. Finally, discussion and conclusion are put forward.

2. Retrospection

Herein, applications of simulation, optimization and machine learning in surface mines are
generally explored to identify merits and demerits required to be taken into account in the
development of novel approaches such as DT.
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2.1. Simulation

Simulation is the process of imitating a real system and conducting experiments to understand the
behavior of the system and/or evaluate various strategies (Shannon, 1998). Discrete-event
simulation (DES) paradigm is referred to as the simulation model possessing a state at any point in
time, and only if an event occurs does the state undergo a change (Hollocks, 2006; Law, 2007).
Having a discrete sequence of time-ordered events (namely drilling, blasting, loading, hauling and
dumping), mining is capable of preparing the foundation for DES (Blouin et al., 2007). Monte
Carlo Simulation (MCS) model forms the basis of DES (Sturgul, 1999). The first credit for
simulating a mine is given to Rist (1961) for emulating a haulage problem in an underground mine.
Main efforts of simulation in surface mines are classified into two general categories of production
scheduling and equipment management. Scholars have incorporated simulation in production
scheduling for a variety of objectives, namely uncertainties related to geology and price, risk
analysis, and block sequencing. The year 2020 was prolific in research projects for geological
uncertainties (Chatterjee and Dimitrakopoulos, 2020; Gilani et al., 2020; Maleki et al., 2020;
Quigley and Dimitrakopoulos, 2020). Simulation in price uncertainties was applied by Alipour et
al. (2022) where they availed a stochastic differential equations simulation-based dynamic block
value technique to an open-pit production-scheduling problem in order to consider the variation of
commodity price in mine planning. In the field of simulation-based production scheduling,
Shishvan and Benndorf (2019) ran alternatingly a deterministic optimization model and a stochastic
simulation model to find the best extraction sequence between spreaders and excavators in an
opencast coal mine employing a transportation problem and a job-shop scheduling problem. There
are other worthwhile efforts, too (Fytas et al., 1993; Frimpong et al., 1998; Askari-Nasab et al.,
2007; Askari-Nasab and Szymanski, 2007; Manríquez et al., 2019). Reliability and risk analysis
have also been on the radar in mine planning every now and then (Huang and Espley, 2005; de
Carvalho Junior et al., 2012; Kumral and Sari, 2017; Ugurlu and Kumral, 2020). Ugurlu and
Kumral (2020) proposed an approach for determining the number of bits required in a given period
and the number of holes to be drilled in drilling operations through reliability analysis and DES
under uncertainty.

Madge (1964) was one of the first researchers employing simulation in truck management in an
open pit mine to decide the optimum fleet size. In the 1960s and 1970s, simulation-based fleet
management was at earlier stages, and the computer language used was primarily Fortran. Elbrond
and Soumis (1987) tested their real-time dispatching procedure with the help of a simulation model
fed with Erlang distributions, resulting in production increase and reduction in truck waiting times.
Overall, the 1980s witnessed a substantial rise in the applications of computer techniques in truck
haulage systems. Jacobsen et al. (1995) used GPSS/H for the simulation model of a waste handling
system and PROOF for the animation. The most brilliant advancement appears to be the advent of
animation over the 1990s. In the third millennium, Awuah-Offei et al. (2003) used a SIMAN-based
simulation technique to forecast truck-shovel requirements for a gold mine over four years.
Simulation-based fleet management in the 2000s was not as prevalent as it was in the 1980s, at
least in the academic context. Askari-Nasab et al. (2014) integrated a mixed integer linear
goal-programming model with a DES to upgrade fleet management systems (FMSs). Their
mathematical model aimed to allow for four objectives of production, grade control, processing
plant feed rates, and operating costs. Moradi-Afrapoli et al. (2019) formulated a multiple objective
mixed integer linear programming model, with the truck fleet size being 13% less than the required
number of trucks suggested by a benchmark tool. Mohtasham et al. (2022) presented a DES-based
optimization method to evaluate the optimal number of trucks in their multi-stage approach. In the
2010s and later, simulation was included into the center of mathematical and heuristic techniques
for multistage dispatching strategy. There are also more attempts in simulation-based FMSs over
the last decade (Chanda and Gardiner, 2010; Nageshwaraniyer et al., 2013; Chęciński and Witt,
2015; Dindarloo et al., 2015; Hashemi and Sattarvand, 2015; Tabesh et al., 2016; Tan and
Takakuwa, 2016; Chaowasakoo et al., 2017; Upadhyay and Askari-Nasab, 2018; Moradi-Afrapoli
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and Askari-Nasab, 2019; Ozdemir and Kumral, 2019; Moradi-Afrapoli et al., 2021; Tapia et al.,
2021; Yeganejou et al., 2022). However, some demerits are mooted including 1) Expensiveness of
simulation tools, 2) Requiring special training and experience, 3) Dependence to statistical
methods, 4) Incapability to optimize the system alone, entailing combination with other techniques
(Pegden et al., 1995).

2.2. Optimization

An optimization algorithm is generally categorized as classical (e.g. operations research (OR)) and
advanced algorithms (e.g. metaheuristics). OR has been used in mining primarily for development
and exploitation stages (Newman et al., 2010), and applied in a variety of problems including
production scheduling and equipment management. Production scheduling is an optimization
problem of realizing the most profitable sequence of blocks bounded by various constraints.
Johnson (1969) is a pioneer in applying a linear programing (LP) model in open pit mine planning.
Nevertheless, the algorithm shows flaws in scheduling of underlying blocks. Hence, integer
variables are introduced to resolve the issue of mining partial blocks. Integer programming (IP) has
other expansions, namely mixed integer programming (MIP), mixed integer linear programming
(MILP) and stochastic integer programming (SIP). Gershon (1983) added additional decision
variables to Johnson’s LP model and created a MIP model. However, current commercial packages
fail to solve a large number of zero – one variables. Some techniques are proposed to resolve this
pitfall such as Lagrangian relaxation (Akaike and Dagdelen, 1999), clustering approach (Ramazan
et al., 2005), branch-and-cut approach (Caccetta and Hill, 2003), and definition of some variables
as linear and creation of an MIP model (Ramazan and Dimitrakopoulos, 2004). Some researchers
have adopted dynamic programming (DP), in which the main problem is divided into sub-problems
to find an optimal solution for each (Dowd and Onur, 1992). Uncertainty was considered in IP as
well (Benndorf and Dimitrakopoulos, 2013). Zhang et al. (1993) emphasized on the application of
goal programming (GP) and its effectiveness compared to linear programming. Given the
complexity of the problem, several researchers have invoked metaheuristics such as simulated
annealing (SA) (Kumral, 2013), tabu search (TS) (Lamghari and Dimitrakopoulos, 2012), variable
neighborhood descent (VND) (Lamghari et al., 2014), genetic algorithm (GA) (Alipour et al.,
2020), particle swarm algorithm (PSA) (Khan and Niemann-Delius, 2015), and ant colony
optimization (ACO) (Gilani and Sattarvand, 2016).

FMS is a multistage optimization consisting of three sub-stages of finding the shortest path, the
upper stage, and the lower stage (Moradi-Afrapoli and Askari-Nasab, 2019). Among multitude
algorithms developed, Dijkstra (Dijkstra, 1959) is more prevalent in mining systems for the
shortest path problem due to its simplicity, and also seen in commercial packages. Regarding the
upper stage, other OR techniques have been implemented. Koenigsberg (1960) modeled a surface
mine haulage system whose runtime increased proportionally by the number of trucks using
queuing theory. LP and MILP approaches are prevalent in the upper stage problem. The first
application of LP in truck- shovel hauling system returns to 1970s (Gurgur et al., 2011). White and
Olson (1986) and White et al. (1993) introduced a two segment LP model to make optimal
decisions on production requirements. While the first segment tries to ascertain shovels’ digging
rates, the second part allocates a minimum number of trucks to each active route to meet the routes’
productivity rate. A pitfall of LP-based models is that to consider the limitations of the operation,
such as the stripping ratio and required feed grade, the models have to define an acceptable range,
pushing the operation far behind optimality (Moradi-Afrapoli, 2019). Elbrond and Soumis (1987),
and Munirathinam and Yingling (1994) argue that the use of a nonlinear model at the upper stage
instead of a linear one is preferable since truck waiting time does not follow a linear function, and
NLP models search for the optimum solution over the entire feasible region instead of corners
merely. Mohtasham et al. (2021) proposed a mixed-integer non-linear programming model for
equipment sizing. Another OR method called Transportation modelling approach has also been
applied in the upper stage by researchers like Li (1990) for homogeneous fleet. On account of
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numerous goals involved in the mining operation optimization, Temeng et al. (1997) formulated a
GP model to enhance shovel production considering ore grade, shovel dig rate, dumping capacity
and stripping ratio requirement.

The dynamic allocation of empty trucks is expressed as dispatching problem minding different
criteria—e.g. production rate, as well as obeying a rule such as minimizing truck waiting time. This
optimization problem is solvable by single-stage or multi-stage approaches. The multi-stage
approach is more efficient in that a variety of constraints have been addressed at the upper stage
(Alarie and Gamache, 2002). Despite the tremendous published models on the upper stage, the
quota of the lower stage has been limited. Notable early works on the multi-stage form of
dispatching are listed as White and Olson (1986), Soumis et al. (1989), Li (1990), White et al.
(1993), and Temeng et al. (1997). Then, the problem kept a low profile for nearly twenty years.
Ahangaran et al. (2012) used an MILP model for dynamic truck assignments by minimizing the
total cost of loading and transportation in their two-stage algorithm without considering traffic over
the routes. Moradi-Afrapoli (2019) compared a benchmark model used in DISPATCH® with three
simulation-integrated models for real-time dispatching, namely a multiple objective goal
programming model, a stochastic mixed integer linear programming model, and a fuzzy linear
programming model. Another group of authors have resorted to heuristics such as GA (He et al.,
2010), VND (Souza et al., 2010), imperialist competitive algorithm (Dabbagh and Bagherpour,
2019), ACO (Dabbagh and Bagherpour, 2019), and TS (Zhang et al., 2021).

Notwithstanding, optimization techniques are not flawless. OR methods run into difficulty for
large-size production scheduling in terms of complexity and runtime. Another vital aspect is
uncertainty which is absent in most OR techniques. In addition, deterministic approaches often lead
to non-optimal results. Metaheuristics are exploited to rectify the downsides, yet they deal with
their own demerits such as enormous diversity, hyper-parameters adjustments and being
problem-specific (Lamghari, 2017).

2.3. Machine learning

Artificial Intelligence (AI) refers to something with the ability to think on its own. Machine
learning (ML) is a part of AI allowing the system to learn without explicitly being programmed and
is categorized into three learning strategies: supervised learning, unsupervised learning, and
reinforcement learning (RL). Common ML techniques include linear and nonlinear discriminant
analysis (LDA), decision trees, random forests (RF), k-nearest neighbors (kNN), support vector
machines (SVMs), artificial neural networks (ANNs), linear regression, principal component
analysis (PCA), and Q-learning (QL). One of the most substantial sub-fields of ML is deep learning
(DL), in which feature extracting of input data is carried out without human interventions. Gartner
Inc. placed DL and ML at the peak of inflated expectations in their hype cycle for emerging
technologies in 2017 (Gartner Inc., 2017). A recent trend analysis indicates that ANNs and RL may
become consolidated choices in due time (Noriega and Pourrahimian, 2022). A systematic review
of studies in the 2010s indicates that SVM, and after that, DL were the most prevalent ML
techniques in exploration, exploitation, and reclamation phases (Jung and Choi, 2021). In the
exploitation stage of mining, ML applications can be chiefly classified as production scheduling,
drilling/blasting, and equipment management. With regard to mine planning, Askari-Nasab and
Szymanski (2007) introduced an intelligent open pit optimal production simulator, in which an
agent interacts within an open pit environment through simulation and uses Q-learning algorithm to
maximize the NPV of the mining operation. Regarding ore delineation, Beretta et al. (2019) used
unmanned aerial vehicles to photograph and classify lithology of mining benches by kNN, SVM
and tree-based methods. There are some articles focusing on capital cost prediction (Nourali and
Osanloo, 2019; Zhang et al., 2020; Guo et al., 2021). With respect to drilling and blasting, Dirkx
and Dimitrakopoulos (2018) applied a multi-armed bandit framework to select the best infill
drilling pattern amongst a set of patterns. Khandelwal and Monjezi (2013) predicted backbreak in
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blasting operations by incorporating rock properties and blast design parameters using the SVM
method. Guo et al. (2021) applied an advanced version of ANNs for prediction of flyrock induced
by blasting, as well as implementing the whale optimization algorithm to find a suitable blasting
pattern. K-means clustering algorithm and ANNs were considered by Nguyen et al. (2020) for
predicting blast-caused ground vibration in open-pit mines.

In the scope of equipment management, Choi et al. (2021) compared six ML techniques for
predicting ore production through truck haulage, with the SVM model outperforming others. In
agent-based truck dispatching problems, trucks are considered individual agents interacting with
the mining system to optimize a goal. Bastos et al. (2011) presented a single-dependent agent
approach based on time-dependent Markov Decision Processes to model the dispatching problem.
Their model outperformed two common dispatching heuristics. Zhang et al. (2020) proposed a
multiple-agent and experience-sharing Deep Q Network for heterogeneous fleet dispatching. Their
algorithm outdid two heuristics in terms of productivity. Fuel consumption prediction using ANNs
has also been targeted in some studies (Siami-Irdemoosa and Dindarloo, 2015; Soofastaei et al.,
2016; Alamdari et al., 2022). With regard to autonomous trucks, Ali and Frimpong (2021)
developed a framework consisting of convolutional neural networks for object recognition ability,
and an RL-based algorithm for the steering action decision making ability.

2.4. Recapitulation

Simulation was born with manual applications, and evolved by 3D-animated gadgets. Yet, a review
of previous works demonstrates that the simulation applied suffers from four main shortages such
as 1) Being online (real-time and bidirectional data flow), 2) Being intelligent (capable of learning
in the course of time), 3) Integration with optimization tools, i.e., simulation is unable to optimize
problems per se and should be integrated with other tools, 4) Being inclusive of the mining value
chain. Exact techniques run into trouble in complex and large-size occasions, as well as ignoring
dynamic behaviors. Metaheuristics have their own fraction of demerits. AI is disrupting all the
industries, and mining is no exception. The new solution exclusive of the aforementioned
drawbacks must show prerequisites such as dynamicity and self-dependency. DT seems to be the
technology pushing all the right buttons. In the ensuing section, this phenomenon is explained
thoroughly and an exemplary architecture is proposed.

3. Digital Twin

DT owns it existence to NASA efforts in the 1970s, when a similar concept named mirroring
technology was applied to test some failure scenarios. Grieves (2002) proposed a conceptual model
consisting of real space, virtual space, and a link for data flow between the two elements. After
changing a few names, the term “Digital Twin” was coined in a NASA report (Piascik et al., 2010).
A DT can be defined as a virtual representation of a physical asset enabled through data and
simulators for real-time prediction, optimization, monitoring, controlling, and improved
decision-making (Rasheed et al., 2020). A DT model is comprised of three main elements of
physical twin (physical asset), digital twin (virtual asset), and digital thread (exchange of data and
information between twins) (Grieves, 2022). Kritzinger et al. (2018) distinguished three types of
digital model, digital shadow and DT based on manual, one-way and bidirectional data flow
between the real and digital worlds, respectively. In another classification, DTs are categorized
according to five maturity levels (Evans et al., 2019). Intelligent Digital Twins involve four main
characteristics of being active, online, goal seeking, and anticipatory (Grieves, 2022). Gartner’s
hype cycle for emerging technologies in 2018 placed DT at the peak of inflated expectations, with
needing 5 to 10 years to reach the plateau of productivity (Gartner Inc., 2018). Other industries
have pioneered in synthesizing DT into their systems. Table 1 lists some exemplary works in
non-mining fields with potential usage in the mining concept. Manufacturing, agriculture,
healthcare, automotive, and smart cities are able to provide fruitful guidelines for the mining
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industry, especially in terms of fleet systems/processing plants, rehabilitation, health/safety
concerns, autonomous trucks, and water/electricity conservation.

Table 1. Exemplary Digital Twin works in other sectors.

No. Domain Authors Focused area Application in mining

1 Manufactu
ring

Redelinghuys et
al. (2020) Catalytic converter assembly lines

Emulation of fleet systems
and processing plants.

Zhou et al.
(2020) Manufacturing cells

Polini and
Corrado (2020)

Composite assembly manufacturing
process

2 Agricultur
e

Alves et al.
(2019) Smart farming Rehabilitation and land

restoration (e.g.
vegetation) during

exploitation and mine
closure phases.

Chaux et al.
(2021) Climate and crop management

Verdouw et al.
(2021) Smart farming

3 Healthcare

Liu et al. (2019) Health management of elderly patients
Health and safety of
miners. Occupational
hazards identification.

Risk assessment.

Laamarti et al.
(2020) Health and well-being

Elayan et al.
(2021) Diagnosing heart conditions

4 Automotiv
e

Al-Ali et al.
(2020) Supervision on vehicles

Emulation of equipment
such as trucks, shovels,

etc. Development of
autonomous trucks.

Almeaibed et al.
(2021)

Safety and security in autonomous
vehicles

Martínez-Gutiér
rez et al. (2021) Automatic guided vehicles

5 Smart
cities

Conejos Fuertes
et al. (2020) Water distribution system

Utility management in
mines. Designing smart

mines.

Tomin et al.
(2020) Electricity networks and power grids

Schrotter and
Hürzeler (2020) Urban Planning

Ever-increasing attentions on DT have induced many companies to come up with software and
hardware infrastructures for implementation of the twinning technology. Azure Digital Twins®,
Ansys Twin Builder®, and Siemens NX® are among key players providing solutions for a variety of
industries. Particularly-designed platforms for mining also exist. FORESTALL® provides
predictive algorithms and maintenance, and health monitoring (Petra Co., 2022). TIMining Aware®

promises real-time mine visualization, live mine plan compliance, and hauling speed improvement
tools (TIMining Co., 2022). Centralized data with remote access and hyper-connected planning are
claimed by MineLife® (LlamaZOO Co., 2022).

A CPS consists of several layers for exchange of data and information between physical and virtual
spaces. In contrast, a DT is a layer in the structure of a CPS. Lee et al. (2015) unveiled a 5–level
CPS structure known as the 5-C architecture as a guideline for manufacturing (Fig. 1). At the smart
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connection level, data might be directly acquired by sensors or obtained from controllers. At the
second level, meaningful information is inferred from the data. The cyber level acts as a central
information hub in this architecture, where visualization is achieved through digital twinning.
Optimization and decision making are carried out at the cognition level to issue commands for the
configuration layer which acts as a supervisory control unit through complying with corrective and
preventive decisions.

Figure. 1. The 5C architecture for implementation of a CPS (adopted from (Lee et al., 2015)).

Research efforts developing a DT structure in surface mining are few. Elbazi et al. (2022) proposed
a four-level architecture for mining industry. On the first layer, all the necessary data is collected
from physical assets. On the second layer, the raw data is preprocessed by cleaning, integration and
reduction, and then fed onto the edge computing layer for the real-time update of the DT. The last
layer is the residence of cloud databases receiving data from the previous layer for both storage and
implementation of predictive production, maintenance scheduling and process optimization.
Peña-Graf et al. (2022) integrated a machine learning technique, DES, and a DT to capture
geological uncertainties in gold mineral processing performance. Nonetheless, the architecture was
more of a digital shadow than a DT due to general offline data flow. With respect to lessons taken
from some industrial frameworks (Al-Ali et al., 2020; Laamarti et al., 2020; Redelinghuys et al.,
2020; Chaux et al., 2021), it can be envisaged that a decent DT-based architecture for the mining
sector should incorporate approximately six layers, namely 1) Physical space layer (physical
assets), 2) IoT gateway layer (the network of sensors, controllers and actuators), 3) Cloud
repository layer (storing data and information), 4) Virtual space layer (DT), 5) Cognition layer
(prediction, optimization, and decision-making using AI and optimization techniques), and 6)
Briefing layer (issuance of analytical reports), as developed and depicted in Fig. 2. Firewalls and
cybersecurity measure must be in action on all layers.
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Figure 2. The proposed DT-based architecture for mining in this study.

4. Discussion

This misconception should be dispelled that DT will replace OR, metaheuristic and simulation
techniques. Despite being consumed with some drawbacks, conventional methods still play an
incumbent role in CPSs. The more complicated systems become in the future, the more needy they
get for DT incorporation. This theory corresponds with an opinion survey indicating that DTs and
simulation will achieve high accuracy and reliability by 2030 (Siemens Co., 2020). Genuine case
studies carried out by some companies at some surface mines uncover striking improvements in
fleet production, cycle delays, throughput of a mine refinery, and ore extraction (General Electric
Co., 2018; Du Preez, 2021). DT paves the way for opportunities such as increasing productivity,
early detection of hazards, teleworking, and predictive maintenance. However, there are some
challenges as well, including the need for creating new business models, training the staff,
stablishing prerequisite infrastructure, and persuasion of traditionally-minded managers. These
challenges are tractable through precise planning and management. DT will gain more recognition
and reliance in the course of time. The proposed architecture is just a paradigm for DT integrations.
More details are required to be added during the implementation process. We are on the edge of the
fourth industrial revolution in mining and it seems to be inevitable.

5. Conclusions

The retrospective overview highlighted the fact DT is the cure for the existent demerits in
conventional solutions over the already-begun era of Industry 4.0. Nevertheless, exact, heuristic
and simulation techniques are still essential in the structure of CPSs, but they act under the
supervision of AI and DT. A paradigmatic six-layer architecture for surface mining was developed
through scrutinizing frameworks presented in pioneering sectors. Like any growing technology, DT
is encountered with some minor challenges addressable with appropriate measures. It wouldn’t be
absurd to say “Its time has finally arrived.”
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